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INTRODUZIONE ALLA TRASMISSIONE DEL CALORE

La Trasmissione del Calore ¢ per gli Allievi probabilmente la parte pit nuova della Fiswca Tecnica
poiché non ¢ mai stata affrontata in altri corsi, come invece avviene, ad esempio, per la Termodinamica.

Questa Scienza si ¢ sviluppata a partire dalla seconda meta dell’o#focento quando Fourier enuncio il
suo postulato sulla conduzione termica attraverso una parete. Quella relazione pose le base, fra I'altro,
ad una vera e propria rivoluzione culturale che ha portato negli anni ‘setfanta llia Prigogine a formulare le
sue leggi sulla Termodinamica Irreversibile della quale altre volte si ¢ fatto cenno nello studio della
Termodinamica Applicata.

11 postulato di Fourier poneva per la prima volta in forma esplicita la dipendenza fenomenologica del
flusso di calore ad una differenza di temperatura:

dQ* = 29T 4,
ds

(s7 vedra in seguito il simbolismo qui indicato) cosa che non andava d’accordo con I'impostazione della
Termodinamica Classica per la presenza di una freccia nella trasmissione del calore (da temperatura maggiore
verso temperatura minore e mai viceversa, spontaneanmente!).

Successivamente molte leggi furono formulate sulla stessa falsariga del postulato di Fowrier, ad
esempio la Legge di Fick per la diffusione, la legge di Ampere per la corrente elettrica, la legge di Bernoulli
per il moto dei fluidi reali. Tutte queste leggi avevano in comune il legame funzionale fra un flusso
(di calore, di massa, di corrente, .....) con una causa prima e cio¢ una differenza di potenziale (AT, AV,
AC, Ap,.....).

Si cominciavano a porre le basi per le considerazioni entropiche di Boltzmann e di Gibbs e, negli
ultimi due decenni, per la stessa Termodinamica Irreversibile di Y. Prigogine.

In breve vedremo che tutta la Trasmissione del Calore ¢ basata sull’irreversibilita dovuta alla
differenza di temperatura. Possiamo allora definire la Trasmissione del Calore pia semplicemente come una
applicazione della Termodinamica dei processi Irreversibili.

Questa Scienza assume oggi un’importanza fondamentale in tutti i settori della Tecnica, dalla
Meccanica all’Elettronica, dall'impiantistica alla energetica degli edifici ed industriale e alla stessa vita
del’'Uomo.

I meccanismi di scambio termico sono alla base di tutti i fenomeni reali sia perché direttamente
voluti o perché indotti da trasformazioni passive per attrito in calore.

L’evoluzione dell’Elettronica, ad esempio, ¢ oggi fortemente legata al miglioramento degli scambi
termici. Si pensi, ad esempio, all’enorme densita di potenza termica dei transitori di potenza o dei tubi
per impianti radat: si raggiungono gli stessi valori di densita di potenza (cioe di &£IW/»7) degli impianti
nucleari di potenza. Come fare a raffreddare questi componenti in modo che possano lavorare
correttamente?

Tutti sappiamo che un moderno microprocessore consuma una potenza specifica (cio¢ riferita
alla superficie) molto elevata (70 W/en? = 700 £W/n?) e che il suo raffreddamento ¢ un problema
gravoso da risolvere, specialmente per installazioni su computer portatili dove si hanno spazi ridotti e
possibilita di scambi di calore con I'esterno estremamente difficili.

Le applicazioni e le ricadute industriali della Trasmissione del Calore sono immense e non facilmente
riassumibili in questa sede.

Ogni impianto, ogni componente di macchine, ogni struttura progettata e costruita dall’Uomo ¢
soggetta ai fenomeni di scambio termico e quindi di Trasmissione de/ Calore. E non si puo neppure
lontanamente immaginare una progettazione cosciente € congruente che non tenga conto dei fenomeni
termici di qualunque natura essi siano.

Nei prossimi capitoli si affrontano gli argomenti principali della Traswissione del Calore e in
particolare gli argomenti classici:
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La Conduzione termica,
La Convezione termica

L’ Irraggiamento termico.

Si vedranno alcune applicazioni quali gli scambiatori di calore e i collettori solari.

L’impostazione degli argomenti ¢ in questa sede volutamente tradizionale ritenendo
I'impostazione della teoria del trasporto solistica ed ostica per gli allievi del corso di Fisica Tecnica.

Data la limitatezza del Corso, inoltre, non si potranno sviluppare argomenti importanti presenti
nei corsi annuali di Trasmissione del Calore. In particolare non si ¢ dato spazio ai fenomeni di diffusione
oggi di fondamentale importanza, ad esempio, per i fenomeni ambientali.

Pur tuttavia si ¢ voluto fare alcuni cenni ai metodi di risoluzione numerica sia per la conduzione
che per la convezione lasciando ai corsi specialistici (Termotecnica, Energetica, Impianti Termotecnici) 1o
sviluppo piu approfondito di questi argomenti.

L’impostazione che si ¢ data a questo testo ¢, per necessita sia di spazio che di tempo, limitata alla
trattazione degli argomenti pit importanti.

Laddove possibile i singoli argomenti saranno presentati in modo completo, cio¢ incluse le
dimostrazioni. In alcuni casi si presenteranno solamenti i risultati finali.

Un po’ di attenzione ho voluto prestare all’ebollizione, alla condensazione e ai fluidi bifase dei
quali si fara cenno anche al calcolo delle perdite di pressione: questi argomenti risultano fondamentali
nell'impiantistica di potenza (generatori di vapore, impianti industriali, impianti nucleari,....)

Una estensione ai testi fondamentali puo aiutare ad approfondire gli argomenti trattati e a
colmare eventuali mancanze di argomenti.

Si fa presente che nel biennio di laurea specialistica in Ingegneria Meccanica (per tutte le
specializzazioni) ¢ presente il corso di TermoFluidoDinamica nel quale saranno approfonditi con
maggior attenzione gli argomenti qui trattati.

Buon lavoro ragazzi!

Catania 05/11/2007
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1 INTRODUZIONE ALLA TRASMISSIONE DEL CALORE

Si vuole qui presentare alcuni concetti alla base della Trasmissione del Calore. Non si intendi qui
esaurita la trattazione di argomenti che da soli richiederebbero un intero corso annuale ma si ritiene
necessario comungque affrontare gli argomenti che si ritengono piu importanti per gli studi futuri degli
Allievi Ingegneri.

La Trasmissione del Calore puod avvenire con meccanismi diversi che possiamo qui classificare:

Condnzione;

Convezione;

Irraggiamento.

A questi si aggiunge la Diffusione di massa (e con essa anche di energia) che in questa sede non viene
affrontata. Ciascun meccanismo di trasmissione ¢ caratterizzato da peculiarita legate ai materiali, alla
topologia o anche alla geometria. Non tutti questi parametri ¢ necessario che siano presenti nei
meccanismi di scambio, come vedremo nel prosieguo.

Si tenga presente che I'esposizione separata dei meccanismi di scambio non deve mascherare la
reale difficolta che si ha nella pratica di affrontare globalmente la Trasmissione del Calore spesso somma di
due o piu modalita diverse. Cosi, ad esempio, il calore generato da transistor di potenza si trasmette per
conduzione in superficie dove, per convezione e per irraggiamento viene disperso nell’ambiente
esterno.

Le leggi fondamentali di ciascun meccanismo di trasmissione del calore sono le seguenti:

Conduzione Termica

Il gia citato postulato di Fourier esprime il flusso termico (V) per conduzione attraverso una
parete avente facce isoterme, di spessore s (m)e conducibilita termica' A (IW/#K), e con T, e T, le
temperature superficiali (K) e di superficie § (7% secondo 'equazione:

L,-T

AQ=-21-2—13
S

Convezione Termica

La convegione termica ¢ un fenomeno complesso dato da un insieme di piu fenomeni
apparentemente semplici: essa ¢ il risultato del movimento di fluidi (azzivato o non da dispositivi esterni) che
trasportano nel loro movimento energia termica. I.a complessita di questi fenomeni ¢ formalmente
mascherata dalla legge di definizione di Newton che si esprime nella forma:

Q:h's'(Tp _Tf)
ove Q ¢ il flusso in W, 4 ¢ il coefficiente di convezione termica (W/#?K, di cui dira nel
prosieguo), T, la temperatura della parete calda e T;la temperatura del fluido (K).
Irraggiamento Termico

E’ una forma particolare di trasmissione del calore attuata mediante onde elettromagnetiche che, una
volta assorbite da un corpo, si trasformano in energia interna e quindi in calore.

Tutti 1 corpi al di sopra dello 0 K emettono onde elettromagnetiche. La legge fondamentale ¢ di
Stefan — Boltzmann che per corpi grigi” si esptime nella forma:

Q = 0,65k, (T14 _T24)

1 Si dira piu diffusamente di questo parametro nel prosieguo.

2 Si vedra nel prosieguo la definizione di corpi grigi.

PROF. ING. GIULIANO CAMMARATA
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con G, costante pati a 5.67 . 10 ™ W/»°K’, € emissivita specifica del corpo (di cui si parlera nel
prosieguo) e T la temperatura assoluta (K), F,, ¢ il fattore di vista relativo allo scambio fra corpo 1 e corpo
2 (di cui parimenti si dira nel prosieguo).

1.1 CONDUZIONE IN UNA PARETE PIANA

Se consideriamo due supetfici sofermiche a temperatura T, e T,, ove é T,>T,, all'interno di un
materiale che supponiamo, a solo scopo euristico e semplificativo, omageneo ed isotrops’ allora il piu volte
citato postulato di Fourzer dice che (vedi Figura 1):

AQ*z—ﬂ.uSAr /1]
S

ove si ha il seguente simbolismo:
A ¢ una proprieta termofisica del corpo e viene detta conducibilita termica. Le sue unita
di misura sono, nel S.I. W/ (mK)] mentre nel S.T. sono [kcal/ (hn°C)];
s lo spessore di materia fra le due superfici isoterme considerate, unita di misura /7/;
A) é la superficie attraverso la quale passa il calore; unita di misura /#/’};
At ¢ l'intervallo di tempo considerato; unita di misura /s/;
AQ*  él'energia termica (in ]) trasmessa nell'intervallo At attraverso la superficie S di materiale

avente spessore s e conducibilita termica A e temperature T, e T.
La [1] si puo scrivere anche in forma differenziale:

dQ* = 29T sq, 2]
ds

11 segno #negativo che compare nella [1] e [2] deriva dall'enunciato stesso del secondo principio della
termodinamica secondo il quale il calore si trasmette, spontancamente, da temperature maggiori verso
temperature minori; la differenza T, - T, é negativa e pertanto il segno meno serve a rendere positiva la
quantita di calore trasmessa uscente dalla superficie piu calda.

111 LA CONDUCIBILITA TERMICA

I coefficiente A rappresenta una proprieta termofisica del corpo in esame. Cio significa che il
suo valore ¢ funzione solo del #po di materiale scelto e dalle sue condizioni fisiche (cioe¢ a quale
temperatura e in quale stato fisico, solido o liquido o gas, si trovi). Nella Tabella 1 seguente sono
riportati alcuni valori di A per i materiali pit usuali. I valori sopra indicato mostrano come A vari molto
dai materiali gassosi a solidi e in quest'ultimo caso ai conduttori.

Questi ultimi presentano, infatti, i valori di A piu elevati, in accordo con la teoria della conduzione
elettrica che li vede primeggiare sugli altri materiali. In effetti il meccanismo di conduzione termica é
associato strettamente, ove possibile, al meccanismo di conduzione elettronica: sono, infatti, sempre gli
elettroni che oltre a trasportare elettricita trasportano energia (di agizazione termica) lungo 1 metalli.

Per la conduzione termica di tipo elettronico il parallelismo fra conduzione elettrica dovuta agli
elettroni liberi nella banda di conduzione e conduzione termica ad essi associati ¢ ben descritto dalla
relazione di Wiedemann — Frang — Lorenz la quale ci dice che:

i:G-T
A

e

ove G ¢ una costante pari a 24.5 10’ W?/A°K% In definitiva il meccanismo conduttivo, sia
elettrico che termico, ¢ lo stesso ed ¢ dovuto essenzialmente al movimento della cariche elettroniche.

3 Un corpo si dice omogeneo se ha caratteristiche chimiche costanti in tutti i suoi punti e si dice Zsofrgpo se il suo
comportamento non dipende dalla direzione considerata. Ad esempio l'acqua é un materiale omogeneo ed isotropo, il legno
¢ omogeneo ma non isotropo poiché ha caratteristiche che variano con la direzione delle fibre.

PROF. ING. GIULIANO CAMMARATA
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Appate a prima vista strano che il diamante abbia valoti di A elevatissimi: esso, si ricorda, é un
cristallo perfetto di atomi di carbonio disposti in modo geometricamente esatto ai vertici di un

icosaedro.
T1> T2
Il calore si trasmette dalla superfice a temperatura T1
verso la superfice a temperatura inferiore T2, nel verso
indicato.
Le superfici sono isoterme e il materiale omogeneeo e
isotropo, di spessore s e estensione S.
S Le caratteristiche trasmissive del materiale sono date
Q dal coefficiente di conduciblita termica.
Il postulato di Fourier si esprime dicendo che la quanti-
ta di energia termica trasmessa € proporzionale, secon-
do il coefficiente di conducibilita, alla differenza di tem:
peratura (T1-T2) e alla superfice S ed é inversamente
proporzionale allo spessore di materiale s fra le due su-
perfici considerate.
SSELEY
Figura 1: Postulato di Fourier per la conduzione.
Materiale Conducibilita [W/(mK)]

Vapote acqueo saturo a 100 °C 0,0248

Ammoniaca 0,0218

Elio 0,1415

Ossigeno 0,0244

Acqua 0,5910

Alcool Etilico 0,1770

Mercutrio 7,9600

Olio di oliva 0,1700

Pomice 0,2300

Polistirolo espanso (25 kg/m?) 0,0350

Sughero in lastre 0,0500

Calcestruzzo 0,93-1,5

Laterizi 0,7-1,3

Terreno asciutto 0,8200

Acciao 30-50

Ferro 75

Piombo 35

Oro 296

Rame 380

Argento 419

Diamante 2100

Tabella 1: Conducibilita di alcuni materiali

Il diamante, proprio per il fatto di non avere elettroni liberi di conduzione, é anche il miglior
isolante elettrico. Allora come mai conduce cosi bene il calore?

PROF. ING. GIULIANO CAMMARATA
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In realta é proprio la sua struttura cristallina perfetta la giustificazione dell'elevato valore di A: i
cristalli, infatti, oscillano perfettamente in modo elastico e cosi possono trasmettere l'agitazione termica
delle molecole da un punto all'altro molto bene.

Pertanto nei cristalli puri la conduzione avviene non piu per via eletfronica bensi per via elastica.

Cio spiega anche perché il ferro conduca meglio il calore dell'acciaio: si ricorda, infatti, che
l'acciaio é una lega del ferro e quindi una composizione di ferro con percentuali di carbonio, zinco,
nichel, cromo, ecc, e pertanto questi componenti ostacolano la conduzione reticolare del ferro e la
conduzione termica ¢é solo elettronica e ad un livello inferiore di quella del ferro puro.

Quanto sopra detto giustifica l'affermazione che A sia una proprieta termofisica dei cotpi e
quindi reperibile in tutti i manuali specializzati. Tutte le proprieta termofisiche (e in genere tutte le proprieta
fisiche) sono catalogate e raccolte in Manuali tecnici specialistici. La conducibilita termica A varia con la
temperatura dei corpi in modo diverso a seconda dello stato fisico in culi si trovano.

In genere, tranne alcune eccezioni riportate nei manuali tecnici, la conducibilita termica A cresce
con la temperatura nei solidi e nei liquidi.

Nei gas l'aumento della temperatura comporta un incremento dell'agitazione atomica o
molecolare e quindi un maggiore intralcio reciproco fra gli atomi o le molecole e quindi A diminuisce.

Fra le eccezioni importanti alla regola sopra indicata si ricorda che /'acqua fra 0 e 4 °C ha densita
maggiore del ghiaccio e anche A maggiore. La relazione [2] pud essere scritta anche in modo piu
comodo, ponendo q" =%, nella seguente forma :

q":—ﬂgz—ﬂgrad(l'):/WT /3]
S

ove si ha:

»

q calore trasmesso per unita di tempo e di superficie (detto anche flusso termico specifico).
Unita di misura [W/#7) o [keal/ (bnr').
La trasmissione del calore per conduzione nei corpi é materia alquanto complessa da studiare al
di fuori del caso limite sopra indicato con il postulato di Fourier.

1.2 EQUAZIONE GENERALE DELLA CONDUZIONE

Allorquando si desidera studiare il problema della trasmissione del calore in un corpo di
geometria non semplice occorre scrivere e risolvere Uequazione generale della conduzione ottenuta da un
bilancio di energia per un elemento di volume interno ad un corpo. Per un generico corpo solido
possiamo scrivere equazione di bilancio dell’energia, come gia indicato in Termodinamica, nella forma:

Energia Entrante — Energia_Uscente + Energia_Sorgente = Energia Accumulata

e quindi, in forma analitica:
0
—| 9™ ndA+ | g™"dv=—/| pudv 4
[a Jq aer /4]

In questa espressione il primo termine rappresenta il flusso termico netto (differenza fra quello
entrante ed uscente) attraverso la superficie del corpo, il secondo termine ¢ relativo all’energia generata
internamente (sorgente) e il secondo membro rappresenta 'energia accummnlata che, per un solido, coincide
con la sola energia interna #. Applicando il teorema della divergenza al primo membro si puo scrivere:

—Lq"- ndA=—[Vvq"dv /5]

* i suole dire che la conduzione ¢ di tipo fononica mutuando l'attributo dal fonone che é la piti piccola quantita di enetrgia
oscillatoria (suono) a data temperatura in un cristallo, in analogia con il fotone che ¢ la piu piccola quantita di energia di
un'onda elettromagnetica (luce).

PROF. ING. GIULIANO CAMMARATA
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Pertanto sostituendo nella [4], tenendo conto che ¢ Vq":V(—i VT) per Fourier, passando ai

differenziali si ha:

" 10T
v g ML /6]
A aor
ove ¢’ ¢ il calore per unita di volume (IW/#’) generato all'interno del corpo, @ ¢ la diffusivita
termica data dal rapporto @ =%,.. Il laplaciano VT puo essere espresso in vari modi a seconda della

geometria di riferimento. Per le geometrie pitt comuni si hanno le seguenti espressioni:

o°T 0T o7

Vﬁén%[+wz+&2 per coordinate rettangolari [7]
2 2 2

VT = g+1£+i2 0 -I; +2 per coordinate cilindriche /8]
or° ror r°o0g° oz

La risoluzione dell’equazione della conduzione non ¢ agevole al di fuori di geometrie semplici ed
¢ oggetto di studi approfonditi che fanno ricorso a metodologie matematiche complesse’.

Oggi si cerca di superare a tali complessita con il ricorso ai metodi numeri approssimati che
possono essere utilizzati su computer da tavolo (vedi §1.2.6).

Qualunque sia il metodo utilizzato per integrare 'equazione occorre potrre correttamente le
condizioni al contorno, in genere spazio-temporali, che possono essere essenzialmente di quattro tipi.

Condizione del 1° tipo (di Dirichlet:)

Occorre conoscere le temperature in tutti i punti della superficie ad un dato istante, cio¢ occorre
conoscere la funzione T{(x,),x,7) per I'istante iniziale;

Condizione del 2° tipo (di Neumann)

Occorre conoscere i gradient; di temperatura in tutti 1 punti della superficie ad un dato istante, cio¢

, oT(X,y.X,7 : L o , ,
occorre conoscere la funzione % per listante iniziale. Se si ricorda il postulato di
n
. . . . . : or
Fourier appare evidente che una tale condizione equivale a conoscere il flusso termico (¢ = —ﬂa—)
n

in ogni punto della superficie.

Condizione del terzo tipo

Matematicamente si esprime nell'essere il gradiente di temperatura proporzionale alla temperatura stessa.
Se si considera il caso di corpo immerso in un mezzo fluido esterno avente temperatura T, e si
ricorda I'equazione di Newton sulla convezione (vedi {4) si intuisce come questa condizione
equivalga a porre il flusso conduttivo uscente dalla superficie pari a quello convettivo scambiato
con il fluido. Si riconosce facilmente il significato fisico di questa posizione. Infatti per la [3] si ha,

anche:
oT
29
on a
q=h(T-T;)

> Ad esempio con il metodo integrale, con il metodo dei complessi o della trasformata di Laplace per 1 casi di trasmissione
monodimensionale non stazionaria, metodi dell’integrale di convoluzione (teorema di Dubamel) per transitori termici di cui sia
nota la tisposta al gradino o all’impulso oppure si utilizzano le equazioni di Sturm-Lionville per i casi piu complessi.

PROF. ING. GIULIANO CAMMARATA
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1.21

28 h-T,)

on

da cui deriva:

QI:—ET+EL
on A A

e quindi la condizione del 3° tipo equivale a imporre che il flusso termico specifico uscente dal
corpo sia pari a quello scambiato per convezione termica con il fluido circostante.

Condizione del quarto tipo:

si tratta di una combinazione della condizione del secondo tipo (di Newmann) tra due corpi solidi a
contatto superficiale. Infatti la condizione in oggetto si esprime dicendo che il gradiente uscente
dal primo corpo deve essere uguale a quello entrante nel secondo corpo, ovvero anche:

|,
on | on
In definitiva la condizione del quarto tipo rappresenta una condizione di congruenza al contorno
nel passaggio fra due corpi.

~4

S

PARETE PIANA

L’equazione della conduzione (vedi [6]) ¢ integrata per uno strato piano indefinito, come

rappresentato in Figura 2, e quindi con la sola dimensione x che fornisce contributo variabile alla
distribuzione della temperatura. Cio porta ad avere il seguente sviluppo:

VT =0 /9]

che integrata due volte fornisce I'integrale generale:

T =ax+b /10]

Le costanti « e b si determinano in base alle condizioni al contorno:
T=T, perx=0
T=T, perx=s

Figura 2: Parete piana indefinita
Effettuando i calcoli si trova:
T1 _Tz

T=—2"2x4T, [11)
S

PROF. ING. GIULIANO CAMMARATA
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che rappresenta una distribuzione lineare di temperatura (nell’ipotesi di A costante) per la parete
piana indefinita nell'ipotesi di A costante (materiale omogeneo ed isotropo). Nella realta le pareti sono
di dimensioni finite e quindi si hanno sempre effetti di bordo da tenere in conto e che in questa sede,
per sola semplicita, si trascurano.

Applicando la [3] si ottiene:

Q"= [12]

la cui derivazione poteva essere fatta direttamente mediante il postulato di Fourier considerato
che le superfici isoterme, essendo la parete indefinita, coincidono con piani paralleli alle facce esterne.

1.2.2 CONDUZIONE DEL CALORE IN UNO STRATO CILINDRICO

Nel caso in cui si abbia uno strato cilindrico (detto anche manicotto cilindrico), come in Figura 3,
'applicazione della [6]) in coordinate cilindriche porta ad avere:

d°T  1dT _
dx* r dr

che puo essere scritta anche nella forma pit comoda da integrare:

1(d( dT
—|—|r—11]=0
ridr\ dr

che integrata due volte conduce all’integrale generale:

T(r)=C,Inr+C, [13]

Le costanti di integrazione C, e C, si determinano mediante le condizioni al contorno (del 1°
tipo) seguenti:

0

T(rl) :Tl
T(rz) :Tz

Risolvendo il sistema e sostituendo nella [13] si ottiene la distribuzione della temperatura nel
manicotto cilindrico:

T()=T,+ 1 T2pp "
InL I
r2

Applicando la [3] si ottiene il flusso termico:

T -T.
0=l z
—~ |n-2%
4 VN

ove /¢é la lunghezza del manicotto, 4 ¢ la conducibilita termica.
Se la differenza s =r,-r, é piccola rispetto ad 7, allora si dimostra che anziché usare la relazione
[14] si puo ancora utilizzare la [3]. Infatti risulta:

I r+s S S
InZ2=In| 2—|=In|1+= |=z=
n n h) h

ove l'ultimo termine rappresenta lo sviluppo in serie di Taylor arrestato al primo termine.
Sostituendo questo risultato nella [14] si ottiene:
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Q= L-T — -1 :Tl_TZ
1 s S S

orlAr,  (2xl)A SA

e pertanto il flusso termico risulta ancora dato dalla [3].

In pratica se lo spessore del manicotto ¢ piccolo esso si comporta come se fosse una parete piana,
come sopra dimostrato.

Cio risulta utile quando si deve calcolare il flusso trasmesso attraverso una parete curvilinea: se il
raggio di curvatura ¢ grande allora si puo considerare la parete piana ed applicare le solite relazioni.

La superficie di scambio termico da prendere in considerazione é quella interna o quella esterna a
seconda il lato di scambio termico che interessa.

Nel caso di uno strato cilindrico di materiale
omogeneo ed isotropo con conducilita termi-
ca A sihaunarelazione del flusso termi-
co specifico che dipende dal rapporto dei rag-
gi esterno ed interno.

Figura 3: Trasmissione per condugione in un manicotto cilindrico

1.2.3 RAGGIO CRITICO

Possiamo immediatamente fare una semplice applicazione dei concetti sopra esposti
determinando il raggio critico di isolamento per un condotto cilindrico. Si abbia un condotto, come indicato
in Figura 4, con raggio esterno pari ad r, e raggio di isolamento 7. Il flusso termico scambiato verso
Pambiente esterno nel quale si suppone il fluido a temperatura # vale:

tl_tf

1 r 1
——In—+
2zlA - r 2zrlh

Q=

Isdarte

Figura 4: Condotto cilindrico isolato

A denominatore si ha la resistenza termica totale somma di due resistenze: quella del condotto

r : . 1
In—, e quella dell’isolante termico, cioé .
r 2zrlh
Poiché la prima resistenza ha andamento logaritmico con r mentre la seconda ¢ con andamento
iperbolico, si puod immaginare che esista un valore minimo dato dalla condizione:

R_df 1 v 1

dr drl2zl2 r  2zrlh

circolare di raggio r;, cioe
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1l valore cercato, detto raggio critico, vale:

A
I =

critico F

La derivata seconda della resistenza totale ¢ positiva e quindi si ha un punto di minimo. In Figura
5 si ha la rappresentazione di quanto detto. In corrispondenza del minimo della resistenza totale, R, si
ha un massimo del flusso trasmesso verso il fluido esterno e pertanto si possono fare due
considerazioni:

Se il raggio totale r (tubo piu isolante) ¢ minore del raggio critico 7, allora un amento dell’isolante

porta ad avere una diminuzione della resistenza totale e quindi anche un incremento del flusso

trasmesso. Questo caso interessa i cavi elettrici per 1 quali si desidera che Iisolante esterno, con

funzioni sia di isolante elettrico che termico, disperda piu potenza possibile per evitare il

riscaldamento del conduttore di rame interno;

Se il raggio totale r ¢ maggiore del raggio critico r, allora un incremento dell’isolante comporta un

aumento della resistenza totale, ossia anche una diminuzione del flusso trasmesso all’esterno. B’

questo il caso dei condotti per acqua calda o fredda e per vapore per i quali si desidera limitare il

piu possibile i disperdimenti verso I'esterno.

R

Figura 5: Andamento delle resistenza

Poiché il raggio critico dipende sia dalla conducibilita termica dell’isolante che dal valore del
coefficiente di convezione esterna, si comprende come il valore corrispondente sia praticamente
imposto nelle applicazioni. Ad esempio per A = 0.032 W/mK (buon isolante termico) ed h =10 W/m?K
(convezione naturale) si avrebbe r, = 0.0032 m.

Pertanto per condotti di diametro maggiore di 6.4 mm si ha convenienza ad isolare (r > r)
mentre per condotti con raggio inferiore a 6.4 mm (tubi piccoli usati, ad esempio, negli impianti
frigoriferi) non si ha convenienza ad isolare e quindi vengono lasciati nudi.

Per far variare il raggio critico si puo agire, per dato isolante (e quindi per dato A) sul meccanismo
di convezione termica, ad esempio, passando dalla convezione naturale a quella forzata che, come si
vedra, produce un incremento di h.

1.2.4 CONCETTO DI RESISTENZA TERMICA PER CONDUZIONE
La [3] puo essere scritta in una forma del tutto equivalente:
T
S
2

del tutto formalmente analoga alla relazione di Obm per la conduzione elettrica:
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ove l'analogia (detta elettro-termica) é fra le seguenti grandezze:
T,-T,, differenza di temperatura, con 1/,-17,, differenza di tensione;
g flusso termico, con 7 flusso di corrente;

s/A,  resistenza termica, R resistenza elettrica.
Pertanto al rapporto:

Rt . S
A
si da il nome di resistenza termica di conduzione.

1.2.5 CONDUZIONE TERMICA NEI MATERIALI IN SERIE E IN PARALLELO

L'analogia elettro-termica pud facilmente portare a trovare la relazione del flusso termico
attraverso materiali in serie e in parallelo. Nel caso di materiali in serie (vedi Figura 6a) si ha g costante
e quindi combinando la [3] per i due materiali si ottiene la relazione:

qll — qll': q2" — T]_—T3 — T]_—T3
S S
Zl + Zz Rtl + th

In pratica se si hanno due o pit materiali in serze si sommano le resistenze termiche come nel caso del
collegamento in serie dei conduttori elettrici.

[15]

Per materiali in parallelo, (vedi Figura 6b), si ha che ¢ comune la temperatura della facce

esterne mentre i flussi termici si sdoppiano in ¢, e ¢, ciascuno dato dalla [3] con pari AT ma con s/4
dato da ciascuno strato. In definitiva si ha la relazione :

T1 _Tz + T1 _Tz
S S
A A

Pertanto nei casi di materiali in parallelo si sommano le ammettenze termiche date dagli inversi delle
resistenze termiche.

:(Tl_TZ) i"'é :(Tl_TZ)(Gl+GZ) [16]

1 SZ

q"=q,"+Q,"=

Nei casi misti di materiali in serie e in parallelo si applicano le regole sopra viste in cascata
partendo dalla faccia piu esterna a sinistra e andando verso la faccia piu esterna a destra.

Quanto sopra detto a proposito della [15] e della [16] riveste grande importanza nelle applicazioni
alla termofisica degli edifici. Infatti se colleghiamo in serie e parallelo strati di materiali aventi
caratteristiche trasmissive molto diverse fra loro si possono avere effetti indesiderati.

sl s2
<S> <—>
T1 T2 T3
N s1
ql ql
q q
Parallel
Serie o araflelo
S2 2
q2 N >2 dg
N 2 <S5 b

Figura 6: Modalita di trasmissione per conduzione in serie e in parallelo
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In particolare, se un materiale ¢ molto piu conduttore degli altri allora il flusso termico si addensa
in esso piu che negli altri. Si ha un effetto di by pass del calore detto ponte termico che risulta molto
negativo, ad esempio, nelle prestazioni termiche delle pareti degli edifici.

Si consideri, ad esempio il caso di una parete avente una finestra inserita nella muratura. Essendo
il vetro molto piu conduttore del calore della muratura conduce meglio il calore e funge da by pass per la
patete.

Poiché la temperatura nelle zone di contatto fra materiali a diversa conducibilita ¢ poco variabile
(per la condizione del 4° tipo) ne consegue che la parete in vicinanza del vetro si porta ad una
temperatura piu bassa di quella in zone maggiormente lontane.

E’ facile, pertanto, che si raggiungano valori di temperatura inferiore alla femperatura di rugiada e
quindi che si formi condensa superficiale interna che produce ammuffimento e decomposizione dei
materiali componenti.

Lo stesso fenomeno si ha a contatto fra la muratura (ancora di piu se isolata) e gli elementi
strutturali in calcestruzzo (notevolmente pit conduttore della muratura) e quindi se non si provvede ad
isolare la zona di contatto si rischia di avere condensa di vapore e quindi danni alle pareti stesse.

1.2.6 PARETE PIANA CON SORGENTE DI CALORE INTERNA

L’equazione generale della conduzione [6] fornisce, con riferimento alla geometria di Figura 7,
I'equazione differenziale:

2 "
(;XI + q7 =0 [17]
con le seguenti condizioni al contorno:
T=T, perx=L
e ancora:
g=0 perx=0

Risolvendo la [17] si ottiene I'integrale generale:
q m
T :—ﬂx2+clx+c2 /18]

Applicando le sopra indicate condizioni al contorno si ottiene la nuova distribuzione di
temperatura nello strato piano:

T=T +g7(L2—x2)

Tp

Figura 7: Strato piano monodimensionale con sorgente interna
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Come si puo osservare (e come indicato in Figura 7) la distribuzione di temperatura ¢ ora
parabolica e non piu lineare, come la [11] indicava nel caso di assenza di sorgente interna.

11 caso qui studiato si puo presentare, ad esempio, studiando la distribuzione di temperatura in un
getto di cemento durante la reazione esotermica di presa, oppure nella generazione di calore per effetto
Foncanlt nelle lamelle di un trasformatore o di una macchina elettrica e nella produzione di calore per
effetto Joule nei conduttori.

In genere si puo affermare che la sorgente interna di calore porta ad avere distribuzioni di
temperatura di grado superiore di uno rispetto ai casi senza sorgenti interne.

1.2.7 CONDUZIONE STAZIONARI BIDIMENSIONALE

Si vuole qui dare un breve cenno alla risoluzione della [6] nel caso di regime stazionario, senza
sorgenti di calore interne e per in caso bidimensionale semplice: una lastra piana rettangolare aventi
dimensioni @ e b e con temperatura esterna pari a T, su tre lati e T, sul quarto lato, come indicato in
Figura 8. La [6] fornisce la seguente equazione differenziale:

o°T oT
2tz =
ox° oy
Per integrare la [19] occorre ipotizzare una condizione di omogeneita della funzione T(x,y)
cercata, cio¢ si suppone che sia possibile scrivere:

0 19]

T(xy)=X()-Y(y) [20]
Sostituendo nella [19] si ottiene 'equazione differenziale:
2 2
1d°X 1d7Y 121]

X dx* Y dy?
Poiché ciascuno dei due membri ¢ funzione di una sola variabile deve necessariamente essere una
costante il valore comune. Indicato con -A” tale costante si ha, dalla [21]:

2

%f+KX=o

X

d?y 22
A% =0

-
Gli integrali generali di ciascuna delle due equazioni differenziali sono 1 seguenti:

X = Asin Ax+Bcos Ax
Y =CshnAy+ DchsAx

T2

T1

Figura 8: Strato piano bidimensionale
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Pertanto per la [20] si puo scrivere:

T(x,y) =(Asin Ax+BcosAx)(Cshnly + Dchsiy) [23]
Le quattro costanti di integrazione (2 per x e 2 per ) si determinano con le condizioni:
T=T,  per x=0
T=T per x=a
T=T, per y=0
T=T, per y=Db

Risulta piu agevole risolvere ponendo @ =T —T, e pertanto la [23] diviene:

0(x,y) =(Asin Ax+Bcos Ax)-(Cshnly + Dchsiy) [24]
e le condizioni al contorno:
0=0 per x=0
0=0 per x=a
0=0 per y=0

0=(T,-T,) per y=b
La prima e la terza condizione comportano B=0 e D=0. La seconda condizione fornisce:
0= ACsin Aa-shniy

ovvero, assumendo Shniy #0:

O0=sinja
per la legge dell’annullamento del prodotto. Questa equazioni ammette soluzioni per:
n
A=-" con N=0,123,.....00
a

Sostituendo in [24] si ottiene:
6=>Y(AC) sin(@j-shn[m) /257
n=1 a a

ove si ¢ escluso il caso #=0 perché non fornisce contributo. Le nuove costanti (AC), si ricavano
con la quarta condizione al contorno, cio¢:

8,=T,-T,= > (AC), sin(n%axj-shn[%bj 1267
n=1

Se ora si confrontano i termini di questa equazione con quello dello sviluppo in serie di Fourier di
6, =T, —T, tra xed a si ottiene:

T,-T,=f(0=3C, 'sin[m]
a
e pertanto la [26] diviene, dopo alcuni passaggi:

o=2(1,-1)3 Y sin(nZXJz::EE%

In Figura 8 si ha anche la rappresentazione grafica delle isoterme e delle linee di flusso.
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Come si vede il problema diviene molto complesso gia per un caso di geometria semplice
(bidimensionale) e regolare. Diventa esplicitamente irrisolvibile per i casi pit comuni della realta e
pertanto occorre utilizzare metodi di calcolo non esatti.

1.2.8 CONDUZIONE IN REGIME VARIABILE

La risoluzione della [6] nel caso di regime variabile porta ad avere equazioni differenziali in
coordinate spazio-temporali di complessa risoluzione. Data la limitazione di tempo del presente Corso
si ritiene di non approfondire ulteriormente gli sviluppi analitici per i quali si rimanda ai testi specialistici
di Trasmissione del Calore.

Si vuole qui sottolineare 'importanza che il transitorio termico (dato proprio dal regime variabile)
ha in vari campi di applicazione fra i quali il comportamento termofisico dell’edificio.

Spesso, infatti, si supporranno, per semplicita di calcolo, condizioni stazionarie (piu facili da
studiare) ma nella realta queste non si verificano mai.

Si pensi, ad esempio, alle variazioni climatiche esterne (che sono le condizioni forzanti per
Iedificio) che risultano variabili durante il giorno (per effetto del cammino solare apparente e delle
condizioni climatiche esterne) e durante i vari mesi dell’anno. Si desidera qui presentare alcuni casi
semplici di transitorio termico che, pero, risultano molto interessanti nelle applicazioni pratiche.

1.2.9 TRANSITORIO DI RISCALDAMENTO E RAFFREDDAMENTO DI UN CORPO
A RESISTENZA TERMICA TRASCURABILE.

Questo argomento, pur se semplificativo di alcuni aspetti termotecnici, ¢ molto importante
perché ci consente di fare alcune considerazioni utili sul piano pratico dei transitori dei corpi.

Supponiamo per il momento di avere il corpo a resistenza termica interna trascurabile’ a temperatura
iniziale T, e che questo sia immerso in un fluido avente temperatura costante (ambiente di grande
capacita termica) T,. Se un corpo ha resistenza termica interna trascurabile (quindi ¢ un ottimo
conduttore di calore, ossia ha A elevato, come, ad esempio nei metalli) allora la temperatura interna del
corpo varia molto poco e si puo assumere che essa si mantenga uniforme (la medesima T in qualunque
punto) in tutto il corpo stesso.

Quest’ipotesi facilita molto i calcoli perché nella [6] non vi ¢ piu il contributo della variazione
spaziale ma resta solo quello temporale che puo essere determinato facilmente con il seguente
ragionamento. Il corpo si raffredda se T(>T, e possiamo scrivere la semplice equazione di bilancio
energetico:

Q — Q, = Accumulo
che in forma analitica diviene:

0-hA(T -T,) = mcd—T
dr

Indicando con @ =T —T, la precedente equazione diviene:

—hAg =mc 46 [27]
dr
che ¢ una semplice equazione differenziale a variabili separabili e a coefficienti che possiamo

ritenere costanti. Integrando si ha:

0odé hA -
i L

¢ Se la resistenza interna di un corpo fosse nulla allora la temperatura sarebbe uniforme. L’ipotesi di resistenza
trascurabile ¢ necessaria per potere assegnare un solo valore di temperatura, con poco errore, a tutto il corpo. Cio ¢ vero se

la conducibilita termica ¢ elevata e se lo spessote ¢ piccolo (R = s/A).
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da cui si ottiene:
(A )
oo .
Ricordando la posizione per la differenza di temperatura si ha:

T=T,+(T-T,)e! /28]

In Figura 9 si ha 'andamento del transitorio di raffreddamento (T; >T,) e di riscaldamento (T; <
T,). La velocita di variazione della temperatura T del corpo nel tempo ¢ data da:

ar _d@-T) _ 1 _ 7).
dz dr (T =T.)

e all’istante T =0 si ha:

Mo 9
mc

dar _d(T-T,) _
dr dr

La tangente all’origine delle curva di raffreddamento, avente pendenza d%z” interseca

hA
-T-T)— 30
mc

Iordinata (T - T,) = 0 in corrispondenza al tempo 7, = m% A detto costante di tempo.

10
10, T T T T T T
8- -
t(t)
T(7)
—_ L _
2 -
o o I I I I I I
01 02 03 04 05 06 07 08
0 . 08,

Figura 9: Andamento del transitorio di riscaldamento e/ o di raffreddamento

Ricordando che we € una capacita termica e 1/hA & una resistenza termica si puo dire che la costante di
tempo ¢ T,= RC, prodotto della resistenza termica per la capacita termica. In pratica si puo studiare il
raffreddamento di un corpo in analogia alla carica/scarica di un condensatore in un circuito RC.

Osservando il diagramma di Figura 9 si puo ancora dire che dopo un tempo pari a T, si ha una
diminuzione del 63.2% del salto iniziale e che dopo 4+5 costanti di tempo il transitorio si ¢ esaurito.

Pertanto il tempo di raffreddamento e/o di riscaldamento del corpo dipende dal prodotto RC:
una maggiore massa e quindi una maggiore capacita termica comporta un maggior tempo di
raffreddamento o di riscaldamento, a parita di resistenza termica.

Qualche insegnamento in piu possiamo ancora avere da questo studio, seppure semplificato, di
transitorio di raffreddamento/riscaldamento di un corpo. L’esponente dell’equazione di raffreddamento
puo scriversi sotto altra forma che lascia intravedere interessanti osservazioni:

pome_pe VoL gy
° hA hA A h

L’ultimo membro ci dice che la costante di tempo ¢ tanto maggiore (per cui si hanno periodi di
raffreddamento e di riscaldamento lunghi) quanto maggiore ¢, a patita del rapporto pe/h, il rapporto
17/ A ciog il rapporto di forma dell’oggetto.

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE 16

L’iglt esquimese ha la forma emisferica e per questo solido il rapporto 17/.A4 ¢ il massimo
possibile: la sfera, infatti, ha il maggior volume a parita di superficie disperdente o, se si vuole, la minor
superficie disperdente a parita di volume.

Pertanto la forma di quest’abitazione ¢ geometricamente ottimizzata per il minimo disperdimento
energetico e quindi per un maggior transitorio di raffreddamento.

Analoga osservazione si puo fare per la forma dei forni di cottura a legna: anch’essi hanno forma
emisferica che consente loro di immagazzinare meglio il calore nella massa muraria e di disperderla il
piu lentamente possibile, a parita di condizioni esterne, rispetto ad altre forme geometriche.

1.2.10 REGIME VARIABILE IN UNA LASTRA PIANA INDEFINITA

Si consideri una lastra piana indefinita di spessore 2L, come indicato in Figura 10. Le condizioni
di geometria indefinita in y e in z comportano la possibilita di descrivere nella sola coordinata x
I'equazione della conduzione:

0T _aT

—_—= 32
ox* ot 72

> <

4_L7 X

Figura 10: Lastra piana indefinita
Ove con « si indica la diffusivita termica del materiale di cui ¢ fatta la lastra. La [32] rappresenta

un’equazione differenziale alle derivate parziali in x e in 7 per la cui soluzione ipotizziamo che si possa
determinare una funzione a variabili separate del tipo:

T(x,t)=X(x)0(7) /33]

con X(x) funzione della sola x e ®(t) funzione solo del tempo.
Quest’ipotesi ¢ valida se vale il principio di omogeneita delle condizione al contorno che sono:

a) =0 per0=x=2L H=H=T.-To
b) >0 per x=0 H=0
c) >0 per  x=2L H=0
Operando la sostituzione della [33] nella [32] si ottiene 'equazione:
aedz—x =X a0
dx’ dr

dalla quale separando le variabili si ottiene:

1dx’> 1do
lar _1de_ 34
X dx aodr 24
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N . . 7 . .
ove si ¢ posto -u* nell'ultimo membro per congruenza fisica’. La precedente equazione equivale
alle due seguenti:

a9 +au’0=0 [35]
dr

€ ancora:
dx?
dx?

Abbiamo trasformato 'equazione differenziale spazio - temporale nella somma di due equazioni
differenziali funzione una del solo tempo ed una della sola ascissa. Gli integrali generali sono:

+u*X =0 /36]

0(r)=Ce ™" [37]

X (x)=C,sen x+C, COSs z1x [38]

Le tre costanti (2 per 'equazione nello spazio ed 1 per 'equazione nel tempo) vanno determinate
mediante le condizioni al contorno ed iniziali. L’integrale generale puo essere scritto, per 'omogeneita
della soluzione posta nella [33], nella forma:

T (x,7)=C,e™*[C,sen ux+C, cos ux]

che puo ancora scriversi nella forma:

T(x,7)=e"[C,sen ux+C, cos ux] 39]

con costanti C_e C_ da determinare con le condizioni al contorno ed iniziali.
La condizione t >0 per x=0 e ® =0 comporta che deve essere C, =0 per T >0.
Per la condizione T >0 per x=2I. e ® =0, scartando la soluzione banale C_ =0, deve essere

sen ulL =0 e pertanto:
2uL =nrx per n=1, 2, ..., ©
da cui derivano gli autovalori:

=
2L

per ciascuno dei quali si ha un integrale particolare della [39]. Ne segue che la soluzione generale ¢
data dalla somma di tutti le soluzioni particolari e pertanto deve essere:

Hy

T(x,7) :icke_(zg “sen (@j [40]
k=1

2L

Per la condizione iniziale T=0 per 0 <x <2L ¢ @ =0, =T, - Ty si ha:

H, =icksen(ykx) [41]
k=1

Se osserviamo la forma della soluzione generale [40] si puo dire che essa rappresenta lo sviluppo
in serie di Fourier della distribuzione di temperatura a primo membro. Pertanto risulta:

1 2L 72
C,=—| H.sen] — [dx 42
k |_ 0 i ( 2L j [ ]

da cui si ha:

7 Cioe per non avere fenomeni divergenti all'infinito.
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2H.
C,=——"|1-cos(kx 43
o=~ 1-cos (k)] [43]
Si osservi che risulta C, =0 per k = 2, 4, 6, .... E pertanto la soluzione generale diviene:
aH, &1 e (K
T(x7)=—"L) Ze [ZJ sen (—ﬂx] [44]
T k=1 2L

conk=1,3575 ....
Nota la distribuzione iniziale di temperatura H; si puo risolvere la precedente soluzione. Ad
esempio se la distribuzione iniziale ¢ di tipo generico f(x) allora la soluzione diviene:

L g kX Y kax
T(x7)= Lkz:;e sen( n jjo f(x)sen( n jdx

sempre con £= 1, 3, 5, ...

Le condizioni iniziali possono esesre diverse da quelle indicate in precedenza che erano del tipo
Dirichlet.

Si possono avere anche condizioni di tipo Neumann o miste. In ogni caso si tratta sempre di
seguire la procedura sopra descritta per pervenire a soluzioni generali valide sempre per geometrie
elementari (strato piano indefinito) valide solo a scopo euristico.

Pertanto non si procedera altre in questa trattazione limitandoci a far osservare come non appena
ci si allontana dalle condizioni geometriche semplicissime (caso monodimensionale) si deve affrontare
un problema molto complesso® non sempre (0 meglio, quasi mai) risolvibile analiticamente in modo
esplicito.

Vedremo, pertanto, nella trattazione dei metodi numerici come superare questi limiti che la
soluzione dell’equazione della conduzione ci pone.

1.2.11 TRANSITORIO TERMICO IN UN MEZZO SEMINFINITO

E’ questo un caso molto importante per 'analisi dei disperdimenti in strati di notevole spessore,
come ad esempio nel suolo. Esso, infatti, puo intendersi come un mezzo seminfinito, cio¢ ha origine
sulla superficie terrestre e si estende in profondita in modo tale da poterlo considerare infinitamente
profondo, come indicato in Figura 11.

Temperatura alla superficie imposta

La [6] diviene:

o°T  oT
— = 45
ox* ot iz
Le condizioni iniziali sono:
T(x,0)=T;
e sulla superficie:
T0,7)=T,

La soluzione della [45] non ¢ semplice a causa della doppia variabilita spazio-temporale.
Considerato lo scopo del corso se ne trascura lo sviluppo analitico e si scrive subito la soluzione:

8 Nei classici testi di trasmissione del calore si possono leggere interessanti capitoli dedicati allo studio di
conduzione in regime transitorio per geometrie semplici bi e tridimensionali. I risultati di queste analisi sono sempre riportati
in forma grafica con abachi adimensionali dalla complessa interpretazione e dal non sempre agevole utilizzo. Questa
trattazione non apporta nulla di nuovo e/o di interessante alle conoscenze dell’Allievo in questa fase di studio. Meglio
spendere qualche parola in piu per affrontare le moderne metodologie di analisi dei problemi termici complessi. E’ cio che
verra fatto nel prossimo capitolo per la conduzione e piu avanti per la convezione e epr lirraggiamento.
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_T-T _
To_Ti

ovee 1= A \/5 ed inoltre:

0

1- \/2;_[0” e dz=1—erf () [46]

2 1 .
erf(n):ﬁjoe dz

la funzione errore di Gauss.

To

T(x,r)

Temperatura iniziale

]

Figura 11: Strato seminfinito—distribuzione della temperatura istantanea

Si definisce funzione errore complementare la funzione:

erfc(n) =1—erf ()

I’andamento della temperatura dato dalla [46] ¢ rappresentato nella seguente Figura 12.

!
o(m) 05+ —
‘4.67810'31 0 l l
0 05 1 1.5 2
0 n 2

Figura 12: Andamento della temperatura in uno strato seminfinito con T imposta

Flusso alla superficie imposto

Se allo strato di Figura 11 si impone che sia:
9"(x,0)=0

e che alla superficie sia:
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qll(O’ T) — qllo
allora 'equazione [45] si puo ancora scrivere nella forma (differenziando rispetto ad x):
o°T o7
a— = 47
x> oxor i
Essendo:
T
q=-22 5]
OX
si puo ancora scrivere:
0°q _ g
a—y =— 49
x> or &
che ¢ formalmente analoga alla [45] e pertanto la soluzione ¢:
q " 2 n _Zz
—=1-—| e " dz=1-erf(y) /50]
T

La distribuzione di temperatura si ottiene integrando la [48] per cui si ottiene:

Qo [~ X
T -T=22| erfc dx
= el )

che fornisce la soluzione:

ar
20y, — [- ¥
T(X)—T- =—”e( 4“]—%-x-erfc(

X
2@) /51]

1.2.12 REGIME PERIODICO STABILIZZATO

Un caso molto importante per le applicazioni pratiche (sia in campo industriale che civile) si ha
quando si applica una forzante (cio¢ una temperatura) variabile in modo periodico ad uno strato piano
seminfinito.

E’ questo il caso, ad esempio, della variazione della temperatura ambientale esterna negli edifici,
della variazione periodica di temperatura all’interno di un cilindro di un motore a combustione interna.

Per studiare questo caso supporremo inizialmente che la variazione di temperatura sia di tipo
sinusoidale e quindi ci si riferisca alla piu semplice variazione periodica.

L’importanza di questo caso si deduce immediatamente se si pensa che una qualunque forzante
periodica puo essere scomposta in una serie di Fourier in termini di seni e/o coseni e quindi in termini
di funzioni periodiche elementari e pertanto la soluzione generale ¢ data dalla somma (se rimangono
valide le ipotesi di linearita del problema) delle soluzioni parziali.

Con riferimento alla Figura 13 si supponga di applicare alla superficie esterna dello strato
seminfinito una variazione di temperatura periodica sinusoidale della forma:

T(0,7) =T, +AT,sinwr
con:

w=2rf pulsazione ed fla frequenza;
T

m

la temperatura media, /°CJ;
AT, la variazione di temperatura massima ; /°C/

Per comodita di calcolo poniamo @ =T =T e pertanto la precedente si pud scrivere:
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0(0,2’) = AT, sinwr

T(O.t

Figura 13: Variazione periodica di temperatura in uno strato seminfinito
I’equazione della conduzione diviene, in regime variabile monodimensionale:
2

00 100

ox* aor
Se ora definiamo la temperatura coniugata:

0(0,7)=AT,cosmwt

possiamo riferirci all’equazione della conduzione per la soluzione coniugata:

0 _100
ox* aor

Deriviamo ora la temperatura complessa data dalla combinazione lineare:

A (X,T) :é(x,1)+ j@(x,r)

soluzione dell’equazione complessa:

con la condizione al contorno:
0,(0,7) = AT e
In forma euleriana la temperatura complessa si scrive nella forma:
0,(x,7)=X(x)ek"

Sostituendo questa espressione nell’equazione differenziale complessa e tenendo conto della
proprieta dell’esponenziale si ottiene:

d2X
dx?

.
—j=X(x)=0
7 X(x)
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con 'ovvia condizione al contorno:
X (0) =AT,
Poiché al tendere ad infinito del tempo la temperatura reale e quella complessa debbono sempre

essere finite allora si deve avere X (oo) # . La precedente equazione differenziale ¢ notevolmente piu

semplice di quella originaria perché ¢ una equazione differenziale ordinaria nella sola X(x) le cui
. . . . . . . . 0 . .
soluzioni dell’equazione caratteristica sono date, per il teorema di De Moivre’ sulle potenze dei numeri

complessi, da:
A A \/z
ik (+J)«/a 1)\ %,

Pertanto I'integrale generale dell’equazione differenziale diviene:
- +',/”f X +'q¢”f X
X (x)=Ae i +A2e(1 e

La condizione della non divergenza della temperatura porta ad avere A, =0 e quindi la soluzione
finale diviene:

(14 ¢ﬂ'f N
X (X) = Ale (i) A
La soluzione complessa completa diviene quindi:

- |—X

6,(x.7)=Ae"’ ”%Xe[j(m) &

Ritornando alla forma trigonometrica si ha:

—x, 7 f ..
0, (x,7)=Ae 2 cos wr—,/ﬂx +jsin| wzr— ’ﬂx
a a

Se vogliamo la soluzione alla forzante reale (coefficiente dell'immaginaria nella forma complessa)
allora dobbiamo interessarci al coefficiente del'immaginario anche della soluzione e pertanto si ha:

0(x,7)= Ale_xﬁsin or—"1x

a

che, per la condizione limite ad ascissa x =0, fornisce:

9(0,1):AToefxmsin o7 — /ﬂx

a

Si osservi che si ha anche ,|— = 2— e quindi la soluzione cercata si puo anche scrivere nella
a a

forma seguente:

¥ Nel caso di numero complesso z=a+ib i ha che ﬁ:iﬁ(cos%+]sin§j. Nel nostro caso si ha:
O+jg :J_r\/E cosZ+jsinZ|=+ f£(1+j)
a a 2 2 2a
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0(x,7)= ATOe_\/VTaX sin| w7 — [~2x
2a
I’andamento della funzione @(X,7) ¢ riportato nella Figura 14.

La precedente ci dice che la variazione della temperatura ad una distanza x dalla superficie ha
sempre lo stesso periodo della variazione di temperatura imposta alla superficie ma di ampiezza
decrescente esponenzialmente con la distanza, essendo tale ampiezza data dalla:

AT, = ATOe‘\WTax

\
\
%'\ [—— =
AT N 7oV 2ma |
| 0! N~ 1 |
L_ \ \\(\»\(512 By L) NN
\ ~~__
\\\ /r:-\;\——_\\\__\
\ s NN e — — — o
\\ \\ // g \\ \ // //\\ 4 /\’\“\ TR -
Uy 77 T\ y — R -
\ \ N NN /// \__-/\é\——./i—J—"-—éfff’ X
Ly I ol
\\\ // /] _ |l_———
AT, >
' | ~Z
| 0| // \\‘::,‘
T ,
’
/ N7y
ATee ¥ 75
L ___1

Figura 14: Andamento delle oscillazioni all'interno dello strato

Lo sfasamento dell’'onda di temperatura cambia con x secondo la relazione:

a)
\’ X |2
Ar—2a _X #_
w 2\ wa
I’onda termica viaggia ad una velocita che ¢ possibile calcolare imponendo che sia:

@
@ty —,]—A4=0
2a
dalla quale si ricava:
A
v="=2wa
2
Pertanto la velocita di propagazione dell’onda termica nello strato dipende sia dalla frequenza

(tramite ®) che dalla diffusivita termica del mezzo stesso (a).
11 flusso termico specifico che attraversa la superficie esterna vale:

o6
= =
q [ax jx:O

E tenendo conto della soluzione sopra trovata si ottiene:
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q(zr) = AAT, 2 sin (a)r + Zj
a 4

Pertanto anche il flusso termico ¢ petiodico ed ¢ sfasato di m/4 rispetto alla temperatura. Se
integriamo la precedente su un semipetiodo nel quale il flusso termico ¢ positivo (da T=-n/4® a
1=3n/3w) si ottiene 'energia immagazzinata dal corpo:

@ (agw - T 24
:JAT,/— sin| wr+ = |dr = —=AT,
Q 0 aj—%m ( g 4) ‘ Jwa 0

Ne segue che sebbene 'ampiezza del flusso termico sia maggiore per elevate pulsazioni 'energia
termica immagazzinata nel semiperiodo ¢ tanto maggiore quanto piu piccola ¢ la frequenza
dell’oscillazione di temperatura della forzante esterna.

Le applicazioni delle relazioni qui esposte sono numerose nella Termofisica degli edifici.

Le pareti esterne, infatti, si possono considerare strati di spessore tale da considerare valide le
ipotesi di spessore seminfinito.

Un’onda termica che possiamo assimilare alla variazione periodica sinusoidale (che si ha tutti i
giorni fra il di e la notte) porta alla trasmissione all'interno degli edifici con velocita data dalla

2

V=—=+/2ma ¢ con sfasamento dato dalla A7 = Ly .
7, 2 \wa

Anche 'ampiezza del’onda subisce 'attenuazione e pertanto si conclude che pareti di grande
spessore e con materiali non conduttori attenuano e sfasano molto (come avviene nelle antiche
abitazioni con mura spesse o nelle chiese con mura spesso oltre gli 80 cm).

Viceversa una parete avente poca massa ¢ buon conduttrice (come sono le pareti in calcestruzzo
o le pareti di materiale leggero oggi molto utilizzate nell’edilizia corrente) porta ad attenuazioni e
sfasamenti modesti: la variazioni termiche esterne si trasmettono in breve tempo (entro 0,52 ore)
allinterno degli ambienti, diversamente dalle pareti spesse e pesanti che ritardano di alcune ore la
trasmissione dell’onda termica.
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2 METODI AVANZATI PER LA CONDUZIONE TERMICA

Lo studio della conduzione termica e in particolare la risoluzione dell’equazione generale della
conduzione nei casi concreti richiede notevoli sviluppi matematici che non sempre si concludono
positivamente. Gia con forme reali diverse da quelle geometricamente elementari si hanno sviluppi
matematici notevoli con risultati espressi da serie di funzioni che portano inevitabilmente ad errori di
troncamento.

Allo stesso modo i fenomeni transitori non risultano agevoli da trattare giacche alla complessita
derivante dalla forma geometrica si aggiunge anche la condizione transitoria (presenza del 2° membro
nell'equazione della conduzione) che porta ad avere una variabile di integrazione in piu.

Si vedranno in questo capitolo alcuni metodi che definiamo avanzati perché solitamente
richiedono strumenti matematici tipici dei corsi supetiori di Awalisi Matematica.

Tali metodi, tuttavia, sono ancora applicati a casi semplici e concreti per non appesantire
eccessivamente la trattazione.

Va tuttavia osservato che proprio le osservazioni sopra riportate sulla complessita della soluzione
per i casi reali ha portato oggi a sviluppare metodi di risoluzione alternativi (vedi i metodi numeri per la
conduzione) che utilizzano algoritmi semplificati, ma con errore controllato, di possibile utilizzo in
programmi di calcolo. Il grande sviluppo della trasmissione di calore degli ultimi decenni ¢ dovuto
proprio a questi algoritmi.

2.1 METODO INTEGRALE

Questo metodo, la cui validita ¢ generale e si applica anche per la convezione termica, consente di
risolvere 'equazione generale della conduzione sia per casi lineari che non lineari.

La soluzione che si ottiene ¢ di solito approssimata ma ¢ importante precisare che 'equazione
integrale alla base di questo metodo ¢ di per sé esatta mentre la tecnica risolutiva porta ad avere
approssimazioni.

Questo metodo ¢ stato originariamente utilizzato da von Karman e da Poblhausen per risolvere i
problemi della convezione termica (integrazione delle equazioni della conservazione della quantita di
moto e dell’energia) ma si applica molto bene anche a tutti i problemi che obbediscono ad equazioni di
tipo diffusivo come, ad esempio, nella conduzione non stazionaria nei solidi.

Landahl ha usato questo metodo nel 1953 anche in Biofisica ed in seguito vari ricercatori lo
hanno utilizzato per numerosi problemi pratici, specialmente di tipo non lineari, in transitorio termico.

Figura 15: Strato piano seminfinito

Si consideri lo strato piano seminfinito di Figura 15 e si supponga che inizialmente sia a
temperatura uniforme T..
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AlPistante T=0 si vari la temperatura della faccia esterna (x=0) con il valore T, e questo valore sia

mantenuto costante anche per 1>0. Assumendo proprieta termofisiche costanti, 'equazione della
conduzione in regime variabile monodimensionale (la sola dimensione considerata ¢ la x) diviene:

T _1aT
ox* aor

con le condizioni limiti:
T(x,0) :Tp

lim, . T(x,7)=T

X—00

con « diffusivita termica della lastra. Definiamo ora una quantita 0(t) detta profondita di penetrazione
o anche strato termico in modo tale che siano soddisfatte le seguenti condizioni:

oT (5,1)
OX

In pratica per valori di x oltre §(7) il solido ¢ ancora alla temperatura iniziale T; e pertanto non si

T(é‘,'r):'l'i e =0

ha flusso oltre questa profondita. Integriamo I'equazione della conduzione da 0 a 8(t) ottenendo:
5(r) O°T 1 po(r) OT
J‘ ()_ZdX:_J- 0ol
0 OX a’ or
Il termine a primo membro diviene:
[90T g | T
o X oX|_s OX

Flusso=0

_or
<0 OX

x=0

Il termine a secondo membro puo essere riscritto applicando la regola di Leibnitz:

o'(y) =11, ()= 1 [(@(y)y)- @ (0)]+ T [B(Y).¥]- B'(Y)

(24

che per a(y) e B(y) costanti diviene:

o'(y)=["t,(xy)

Pertanto si ha:

r(r)a—-rdx:i E(T)T(x,r)dx—T(é,r)d—a
o Or dz o — —dr

Per quanto detto sulla definizione dello strato 6(t) si ha anche:

J"s(’)a_de _4 g (x,7)dx—T, ds
o OJr dz 7o dr
L’equazione della conduzione integrata diviene, allora, per effetto degli sviluppi sopra esposti:
_or =1[ir(r)T(x,z’)dX ~T, d_5:|
X, aldz-o dr

che puo ancora essere scritta nella forma:

Gl T TJe=a S
T

or

x=0

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE 27

Questa ¢ detta equazione di bilancio energetico in forma integrale e rappresenta un modo diverso di
rappresentare i fenomeno della conduzione: non piu in forma differenziale ma in forma integrale
rispetto al volume di controllo fra la supetficie iniziale e lo strato di penetrazione a profondita ().

Si osservi che questo risultato poteva immediatamente essere dedotto scrivendo il bilancio
energetico nello strato fra x=0 ed x=9(7) e cio¢:

d
= pc—(T-T
s pCdT( |)

9T
dx

_[_,dT
<0 dx

e quindi integrando fra 0 e O(t) si ottiene la precedente eguazione integrale. Si osservi che questa
equazione ¢ del tutto esatta e rappresenta un diverso modo di scrivere 'equazione generale della
conduzione. In questo caso, infatti, il bilancio non ¢ piu effettuato per un elemento di volume ma per
un volume finito (detto volume di controllo) compreso fra la faccia esterna (x=0) e lo strato di penetrazione (a
profondita x = (7). La soluzione di questa equazione, tuttavia, non ¢ agevole poiché, come si puo
osservare facilmente, si hanno due incognite contemporaneamente 8(t) e T(x,1). E’ proprio nel
tentativo di voler risolvere questa indeterminazione che si introducono errori di calcolo che sono perd
di piccola entita.

In definitiva assumiamo di conoscere la distribuzione di temperatura T(x,T) e risolviamo
Iequazione integrale per trovare 8(t). Poiché il profilo di temperatura non ¢ a prioti noto siamo
costretti ad immaginalo sulla base di osservazioni sperimentali o per analogia con casi similari. E’ questa
la limitazione del metodo. Nel caso in esame si supponga di avere una distribuzione polinomiale della
temperatura, cio¢ supponiamo che sia una distribuzione quadratica del tipo:

T(x,7)=a+bx+cx’

I coefticienti polinomiali sono calcolabili imponendo le condizioni al contorno gia indicate.
Si ottengono allora i seguenti valori:

a:Tp , bZZ% , C:'%

Ne segue che il profilo di temperatura ¢ dato dalla relazione:

)

11 profilo reale di temperatura non ¢ parabilico ma si discosta poco da questo andamento, come si
vedra fra poco. Ora possiamo risolvere 'equazione integrale:

d () oT
d_Z'J.O [T(x,r)—Ti]dx=—a8—T

x=0

essendo T(x,T) nota. Sostituendo ed effettuando 1 calcoli si ottiene:

poiché §(0)=0, la precedente equazione fornisce:

o =+/12ar

Ora anche la distribuzione di temperatura ¢ univocamente determinata.
11 flusso alla superficie (x=0) ¢ dato dalla relazione:

_ }“(Tp _Ti)

i) 1A
i X)o N3 ar
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La soluzione esatta porta al risultato:

T(L)_Ti =erfc

e

e il flusso alla superficie iniziale ¢ dato da:
1 A (Tp —Ti )

N=—_P Y

Un confronto con la soluzione approssimata ottenuta con il metodo integrale porta ad valutare
Perrore finale che risulta pari al 2.3% e quindi del tutto accettabile nelle applicazioni pratiche. La bonta
del metodo integrale deriva dal fatto che esso si propone come un algoritmo generale per la risoluzione
di problemi complessi anche non lineari.

Qualora si fosse ipotizzato un profilo di temperatura cubico, iterando lo stesso metodo visto in
precedenza, si sarebbe ottenuta una soluzione approssimata con un errore del 6% rispetto alla soluzione
esatta. Va detto che non sempre si dispone di una soluzione esatta con la quale paragonarsi ed ¢ per
questo motivo che il metodo integrale risulta valido.

Esso, infatti, ci permette di ottenere risultati validi (cioe¢ con approssimazione accettabile) anche
nei casi difficili dove la soluzione teorica (esatta) non ¢ possibile trovare. Questo metodo consente di
ottenere soluzioni anche per problemi non lineari quali, ad esempio, il caso di conducibilita termica
dello strato variabile o condizioni al contorno non lineari.

Si rimanda alla letteratura tecnica specializzata per lo studio di questi casi.

2.2 METODO DELLA TRASFORMATA DI LAPLACE

Un metodo efficace per la soluzione di problemi in transitorio termico monodimensionale ¢
quella dell’utilizzo della Trasformata di Iaplace cio¢ di una trasformazione di variabili da reali a complesse
ma con la possibilita di risolvere in modo apparentemente piu semplice i problemi monodimansionali.

2.2.1 DEFINIZIONE DELLA TRASFORMATA DI LAPLACE

Brevemente si ricorda che questa trasformata ¢ definita nel campo dei numeri complessi dalla
relazione:

F(p):£(f(7)):jo e ™ f(t)dr

ove F(p) ¢ la trasformata di Laplace e p ¢ una variabile complessa. La trasformata esiste se I'integrale
sopra indicato converge per alcuni valori di p. In particolare debbono essere soddisfatte le seguenti
condizioni:

La funzione f{7) ¢ continua o continua a tratti in qualunque intervallo T,<t<t; con 7,>0;

limt" f (T) =0 per ntale chesia 0 <n <T;

la funzione f{7) ¢ di ordine esponenziale y per t — 0.

Ad esempio, si puo facilmente calcolare la trasformata di Laplace per casi semplici quale la
funzione lineare 7 (con T >0). Infatti si ha:

© 1
— P, —
E(z')—J.O e ”dr= 7
per p>0. Allo stesso modo si ha per f(t)=1:

£(1)= Jwe“"dr _1
° Y
per p>0. Per f(t)=e”" si ha:
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£(e“f) = j: e“e Pdr =

29

1

p-a

pet p>a. Allo stesso modo si procede per f(T)=sin(®t) che fornisce £(sin®wt)=wm/(p?*+®?) con
»>0. Ed ancora £(cos®t)= p/(p>+®?).

Laplace transforms
Transform )
zo, Fig g =M
I ﬁ 1
2 L '
h P
1 jre—1
= - | =
3 oA T
4 - L
Vo Jar
5 ; — g
& — 1 ho1 23 S S TR
- ar Py {n— 1y '
T . f_ p sin ar
" pz i az [l
g = sinh at
-
140 p'z—iLE:l- cosh ar
11 Lﬂz—zﬁﬁ: { sin v
12 {_p—'P; : .:"1}1 1 cos e
13 —':pz 2HP ‘}‘ I sinth aif
— o
14 H f cosh gt
5
] ﬁ 5in @F — ar cos arf
16 {p_ZT}rTZ'}; af eosh af = ginh ar

Tabella 2: Tabelle delle trasformate di Laplace — Parte 1°

Sulla base della linearita delle definizioni sopra indicate si ha:

E[C.1,(z)+C,f,(7)|=CE[ f,(7) |+ C,E[ f,(z) ]

Nei manuali specializzati (vedasi anche il corso di Teoria dei Sistews) si hanno tabelle che
forniscono le trasformate di Laplace per un grande numero di funzioni.
Si definisce anche la trasformata di Laplace delle derivate, cioe:
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E(%jz pF(p)— f (0)

per T > T,. Analogamente si ha per la trasformata di Laplace di un integrale:

e[ 1()|=5F (p)

p
Transform ;
no. f®) Sy (>0
3
17 pTdf—ﬁ sin af cosh at — cos at sinh at
2
18 p—f—ﬁJ’;; sin af sinh at
19 _\/,,Tlﬁ Jolat)
1
20 ﬁ Iylat)
21 '—.,a—.,' tJy(at}
(p2 + a2)in
22 a—_’_%}m tlofar)
a
23 T o tha)
24 = +paz)m tho(ad)
—xJpTs ——— s e A2
25 e—xvpla 2{1‘"1)”23 T4ar
. "
26 i i) - itar
vpla wf
e'l’\'m X:
27 = erfc [ 2—(‘") ”z:l
i | B
& o ole 2(%) et - o]
e-x\pla +2 T - 2ita
29 = f+ Zacrfc[Z(a()l-’-‘J x(m) e—Xfdar
-alp sin 2Vat
30 E—‘T
Pz za
31 e~y cos 2vat
p St
' —(—"—J'p]" 2) In ¢

Tabella 3: Tabelle delle trasformate di Laplace — Parte 2°

Oltre alla trasformata diretta di Laplace si definisce anche la trasformata inversa, cioe:

f(z)=£7[F(p)]

e quindi deve essere:
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© —pt
[Jemf(t)dr=F(p)
Nei manuali si hanno tabelle gia predisposte che consentono di trovare sia le trasformate dirette
che le inverse.
Per trovare la trasformata inversa di una funzione non presente in tabella si cerca di scomporla in
somma di funzioni semplici delle quali ¢ facile conoscere le trasformate di Laplace. Un metodo molto

seguito (vedi Teoria dei Sistemi) ¢ la scomposizione mediante il polinomio di Heaviside. Si dimostra, infatti,
che vale la relazione:

D(p) s—-a s-b

ove A, B, ... sono determinati mediante le relazioni:

N(p) A+ B

N(p)(s-a)
ST
N(p)(s-b)
""" |,

e cosi via per gli altri fattori. Noto lo sviluppo di Heaviside si calcolano le trasformate inverse
poiché ogni funzione fratta ¢ facilmente invertibile mediante le tabelle.

Transform ;
no. fw) 0 >0
s ol "

13 _sinh px X4 2 2 (=1 sin 22X nxt

p sinh pa a & n a a

sinh px 4 (=1Y" . (2a — Dwx siis (2n — D=t
# P cosh pa T &w—-1"  2a 2
5 oush px. £+E§(_mcosn—'§sin"-—ﬂ

p sinh ps a & =n a a

cosh px 4 (=)' @n-Dax (1= Dt
% p cosh pa 1+:'"__|2n—lm"i 2a o 2a

oo

37 M H 2 (- l)nne__nl,lm,l sin nzx

sinh a\/,', a2 - a

= - g

18 cosh xVp 12 -3 (-1r'en - 1e-@a- et cog 2n - )yxx

cosh a{p a =
39 sinh x\p. x,2 i (=" 2 i BTX

p sinh a+fp g’ weom a

cosh x/p 1+ 49 D g it cop 2= Dnx
. p cosh a\fﬁ r"_12n -1 2a

Tabella 4: Tabelle delle trasformate di Laplace — Parte 3°
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2.2.2 APPLICAZIONE AL CASO DELLA PARETE PIANA

Si consideri una parete piana di spessore 2L, avente proprieta termofisiche costanti, alla
temperatura iniziale T, . All'istante T=0 si cambia la temperatura delle facce esterne portandola al valore
T, e tale valore sia mantenuto costante per tutto il tempo di evoluzione del transitorio.

Posta P'origine nella mezzeria della parete, 'equazione della conduzione diviene:

FT_ter
ox* aor
con le condizioni iniziali:
T(x,0) =T,
oT (0,
09 _,
OX
TL,r) =Ty

Applichiamo il metodo delle trasformate di Laplace trasformando ambo i membri della

precedente equazione:
2
{(Z0)-1¢(2)
OX a \or

Per le proprieta della trasformata di Laplace sopra citate si ha:
o°T | _dT
el el
OX dx
avendo indicato con T la trasformata di Laplace di T

T=T(xp) :£[T (x,r)] = j:e’p’T (x,7)dt

e ricordando che questa dipende solo da T ¢ non da x. Inoltre:

E(Z—T]: pT (x, p)-T,

T

Pertanto I'equazione della conduzione trasformata diviene:

d’T p F_ T
dx> a a
Le condizioni al contorno sono ora date da:
dT(0,p)
dx
_ Tw
T(Lp)=-

L’avere trasformata I'equazione della conduzione nel piano (x,p) ha portato all’eliminazione del
tempo e quindi ad avere una equazione differenziale nella sola variabile x. Integrando si ottiene:

T (X, p) =C, cosh(mx)+C, sinh (mx)

ove si € posto #?=p/a e C, e C, sono le costantl di integrazione che si determinano con le
condizioni al contorno sopra indicate. In particolare per x=0 si ha C,=0 e per x =L si ha:

_ Ti _Tw
pcosh(mL)

l=
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pertanto si ha:
'F(x, p)zl_ ToT, cosh (mx)
P cosh(mL)

Per trovare la funzione temporale occorre ora invertire la trasformata di Laplace sopra ottenuta.
Dal confronto con la Tabella 4 si ottiene:

© (-1 N (2n-1)’7%a . on—1
T(x7)=T ~(T,-T,)11+ 2 (-1 Vi | o] (2017 X
72 2n+l 2 L
che corrisponde alla soluzione trovata con i metodi tradizionali.

2.2.3 APPLICAZIONE ALLO STRATO SEMINFINITO

Il metodo delle trasformate di Laplace si applica vantaggiosamente anche per lo studio dello
strato seminfinito gia visto in precedenza. I’equazione della conduzione, ponendo 0=T(x,7)-T;, ¢:

do_100
oxX* aor
con le condizioni al contorno:
0(x,0) =0
000,0)=T,-T,=0,
lim,,, 60(x,7)=0
La trasformazione dell’equazione differenziale della conduzione porta ad avere:
49 _Pg_g
dx* a

con le condizioni limiti:

— 17
0 (X, p):?W

lim,_,, 8 (x,p)=0
La soluzione dell’equazione trasformata porta all'integrale generale:
0 (x p)=Ce ™ +C,e™

con C, e C, costanti di integrazione e 7? =p/a. Le condizioni al contorno portano ad avere C,=0
ed inoltre ¢:

Pertanto si ha:

e_(x’ p) g™ e—x\/pTT

0, p p

La trasformazione inversa, mediante la Tabella 3, fornisce il risultato:

0l

che coincide con la soluzione esatta di Blaszus.
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2.3 USO DELLE FUNZIONI ORTOGONALI DI STURM - LIOUVILLE

Si dicono ortogonali le funzioni che rispettano la regola:

_[¢ Jw(x)dx=0 per m=n

con w(x) detta funzione peso. Una tipica funzione ortogonale ¢ la funzione trigonometrica si7(x) per
la quale risulta, ponendo la funzione peso pari ad 1:

L. (Mmr . [ nhm
I sin| — x |sin| ——x [dx=0 per n=m
0 L L
si hanno numerose altre funzioni che godono della proprieta dell’ortogonalita fra le quali anche la
funzione cos(x) e alcune finzioni di Bessel.

Queste funzioni sono di grande importanza per la soluzione di una categoria di equazioni
differenziali dette di Sturm — Liouville. Esse sono definite dalla relazione:

%{p(x)%}{q(xﬁﬂw(x)]y:o

con le condizioni al contorno del tipo:

aly(a)+,81dyd—(:):0 con o +p#0

azy(b)+,82d>;—(xb):0 con o +p7#0

Le soluzioni delle equazioni di Sturm — Liouville si dimostra che appartengono alla famiglia di
funzioni ortogonali come sopra definite. Le serie di Fourier e le trasformate finite di Fourier rientrano
in queste classi di funzioni ortogonali. Cosi, ad esempio, I'equazione differenziale, di tipo Sturm —
Liouville:

2
((jj Z+22y:O
X

con condizioni al contorno:
2(0)=0
J(IL) =0

¢ soddisfatta dalla funzione:
= . nhr
= A sin—x
n=1 L
ove si ha:
= —j sm — xdx

Analogamente alle serie di Fourier basate sulle funzioni seno e coseno si hanno le serie di Hanke/
basate sulle funzioni ortogonali di Besse/ [(Ar) . Queste funzioni sono importanti per la risoluzione di
problemi in coordinate cilindriche. Infatti le equazioni generali di bilancio portano ad avere equazioni
differenziali della forma:

erZ_R+ dR +(2%r* =v*)R=0
dr dr

con le solite condizioni al contorno. La soluzione generale di queste equazioni differenziali ¢ del
tipo:
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R(r)=AJ, (Ar)+BY, (4r)

con [ (Ar) e Y, (Ar) funzioni di Bessel di ordine v.
La serie di Hankel utilizza le funzioni ortogonali di Bessel ed ¢ della forma:

=2 A3 (r)
ove 1 coefficienti A4, sono dati dalle relazioni (del tutto analoghe a quelle della serie di Fourier):

I0r° f(r)d, (A,r)rdr

T
IO J% (A,r)rdr

Con la stessa tecnica si possono utilizzare le Trasformate finite di Fourier (dirette ed inverse) per la
risoluzione delle equazioni differenziali del tipo Sturmz — Liouville.

N A A A A A
VRVEVAVAVEY

Figura 16: Grafico della funzione J,(x)

Figura 17: Grafico della funzione J,(x)
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10 20 0 40

-0.2

-0.4 }

Figura 18: Grafico della funzione ]0(\/x)

Nella Figura 16 si ha 'andamento della funzione J,(x) mentre in Figura 19 si ha 'andamento della
funzione Y, (x). Si osservi come questo tipo di funzioni (J,(x) e Y, (x)) siano ad andamento oscillante e
smorzato.

In Figura 17 si ha Pandamento della funzione J,(x) che appare ancora di tipo oscillatorio
smorzato, come la J(x). In Figura 18 si ha 'andamento di]o(\/x).

Analogamente in Figura 20 si ha 'andamento di Y,(x) che appare ancora oscillatorio e smorzato
come la Y (x).

AAAAAA/
\/\/vvvvv

-0.2

Figura 19: Grafico della funzione Y )(x)

0.4
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AV RTAVATAVA®

-0.2 f

Figura 20: Grafico della funzione Y ,(x)
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Le funzioni di tipo I,(x) ed I,(x) e le funzioni K (x) e K,(x) sono con andamento smorzato, come
riportato nella Figura 21 e nella Figura 22. Queste funzioni sono le analoghe delle funzioni esponenziali
smorzate (del tipo e™).

10(x)
11(X)
X
Figura 21: Grafico della funzione 1,(x) e 1,(x)
KO(X)
K1(x)

X
Figura 22: Grafico della funzione K,(x) e K,(x)

Si rimanda ai testi specializzati per ulteriori approfondimenti sull’argomento.
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3 METODI NUMERICI PER LA CONDUZIONE

Si ¢ potuto osservare nei capitoli precedenti come la soluzione dell’equazione generale della
conduzione sia molto difficile e complessa non appena si affrontano geometrie che non siano quelle
elementari esaminate. Anzi si puo senz’altro affermare che la soluzione analitica esatta per i casi reali
non ¢ ottenibile sia per la complessita dell’equazione del calore sia per la complessita della geometria da
affrontare.

Oggi esistono metodologie risolutive dei problemi di conduzione che possono essere utilizzate
nell'ambito di codici di calcolo elettronici anche di larga diffusione. Fra i metodi utilizzati si hanno
quelli alle differenze finite e agli elementi finiti. Considerate le finalita del presente corso si fara cenno
brevemente ai metodi semplificati alle differenze finite rinviando il lettore ai testi specializzati indicati in
bibliografia.

3.1 METODI ALLE DIFFERENZE FINITE

Alla base di questi metodi vi ¢ la sostituzione approssimata, nelle equazioni differenziali che
derivano dall’equazione generale della conduzione, delle differenze infinitesime con differenze finite.
Questo porta ad ottenere, in genere, un sistema di equazioni algebriche che puo essere affrontato e
risolto con 1 metodi classici dell’Analisi Matematica.

Naturalmente questa sostituzione non ¢ indolore e comporta sempre l'introduzione di un errore
nella precisione del calcolo. I risultati ottenibili con queste metodologie sono oggi molto affidabili e con
un errore che puo (per guanto compatibile con la precisione del computer utilizzato) essere controllato mediante
un’opportuna scelta dei parametri di calcolo e dell’algoritmo di risoluzione. Per la formulazione delle
differenze finite si puo utilizzare lo sviluppo in serie di Taylor come qui riportato'”:

2 (42 3/ 43
T(xi+h):T(xi)+h(d—T] +h— d_'zl' +h— d_'I; F v [52]
dx ;2 dx" ) 3 dx

Si ha anche
dT h?( d°T h®(d°T
T(x—h)=T(x)-hl — | +—| — | ——| —= | +.rrrre-. 53
(6 =h)=T(x) [dxji 2 dx® ) 31 dx® ) B
Dalla [52], troncando al secondo termine, si ha:
dT)  T(x+h)-T(x)
— | =— ~+0(h 54
(dX Ji h ( ) o
e dalla seconda, con analogo procedimento:
dT T(X-)—T(X-—h)
— | =— ' +0(h 55
(dx ji h (") B2

Le due ultime relazioni rappresentano delle eguaglianze fra i primi membri (derivate della temperatura
caleolate nel punto 7) e il secondo membro nel quale compaiono rapporti di differenze finite e un termine,
detto ermre, del tipo 0(h) cioe del primo ordine.

10 Vale la pena osservare che la [52] ¢ una identita e quindi il primo membro ¢ ¢guale al secondo membro e viceversa.
Ma ¢ facile convincersi che questa identita ¢ solo teorica ed ¢ normalmente accettata dal nostro cervello per la sua gia citata
grande capacita di astrazione matematica. B’ praticamente impossibile, infatti, sommare infiniti numeri e quindi 2/ secondo mentbro
non ¢ di fatto risolvibile. In genere un problema che pone una simile indeterminazione genera soluzioni non esatte oggi definite
caotiche. Alla luce di quanto appena detto appare evidente che la risoluzione numerica che qui si sta affrontando non ¢ una
mera semplificazione calcolistica bensi una rivoluzione di pensiero profonda: un problema correttamente posto in modo ideale ma non risolvibile
nella realta trova una modalita risolutiva che appare non formalmente corretta ma che risulta capace di produrre una solugione reale. In
definitiva I’approssimazione che qui si introduce non ¢ una ignoranza metodologica ma una necessita risolutiva conseguente
all'indeterminazione effettiva che lo sviluppo di Taylor pone.
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Se conoscessimo lerrore'’ 0(h) potremmo utilizzare le differenze finite a secondo membro senza
commettere errori. Purtroppo 0(h) dipende dagli sviluppi degli altri termini (znfinitz) delle serie che sono
stati trascurati e non possono essere calcolati senza effettuare tutti i calcoli (znfiniti) necessari.

Pertanto se trascuriamo 0(}) si puo solo scrivere:

dar ~T(xi+h)—T(xi)
- &
€ ancora:
dT) T(%)-T(%~h)
(55 7

Si hanno segni circa-eguale e non piu eguale e pertanto se sostituiamo 1 primi membri con i secondi
membri (differenze finite) commettiamo certamente un errore che ¢ dellordine 0(}). Le due ultime
relazioni si possono scrivere, utilizzando una simbologia tipica dell’analisi numerica, nella forma piu
comoda e compatta:

dT) _T.-T,
_ E 1+ 1 58
( dx ji AX B
€ ancora:
dT) _T,-T.,
— === 59
( dx j I o

Sono queste due forme possibili di sviluppo alle differenze finite dette, rispettivamente, la [58]
differenze finite in avanti (o anche forward) e la [59] differenze finite all'indietro (o anche backward). E possibile
anche ottenere una terza forma facendo la differenza delle [52] e [53] sempre arrestate al secondo
termine; si ottiene:

T(x+h)=T(x —h
dx /. 2h
che viene scritta in forma simbolica nella forma:
dT T.,-T,
- ~ i+ i—i 67
( dx ji 2AX 61]

detta differenge finite centrali. Allo stesso modo utilizzando le [52] e [53] con sviluppo arrestato al
terzo termine si, facendo la somma membro a membro:

(((jji'lz'jl :T(xi +h)+T(hx2i —h)-2T (Xi)+0(h2) 527

Ne consegue che, a meno di errori proporzionali a 0(/92) si puo scrivere:

(dZT) _T(x+h)+T (% —h)-2T (%)

dx’ h? (65

In forma simbolica si puo ancora scrivere:

(d ZT j Ti+1 +Ti—1 — 2Ti

[64]

ax® )~ AX?

11 In realta non potremmo mai conoscetlo con precisione perché, come detto in precedenza, dovremmo sommare
infiniti terminil
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che esprime, a meno dell’errore 0(4), la derivata seconda, calcolata nel punto 7 in funzione delle
differenze finite. Abbiamo adesso predisposto lapparato matematico necessario a trasformare
I'equazione della conduzione:

VT +q_:£8_T
A aor

in forma algebrica alle differenze finite.

3.2 DIFFERENZE FINITE NELLA CONDUZIONE STAZIONARIA

[65]

Si abbia un corpo nel quale si desideri studiare la distribuzione della temperatura, ossia conoscere
come varia T(x,),3,7). Si suddivida il corpo (che per semplicita qui raffiguriamo nel piano (x,y)) con un reticolo
avente passi Ax e Ay nelle due direzioni. Con riferimento al reticolo alla Figura 23 e partendo dal nodo
centrale di figura (zndicato con 7 pedici i,)) si puo riscrivere la [6] nella forma esatta, supponendo di essere in
regime stazionario e in assenza di sorgenti di calore interne:

oT L OT _

PN + Y 0 [66]

Figura 23: Reticolo piano per il metodo alle differenze finite

Per trasformare la [66] in equazione alle differenze finite si deve utilizzare la [64] sia per la direzione
x che per la direzione j.
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In pratica si hanno le seguenti posizioni, perle derivate prime nella forma forward:

el Ti+lj -T j
- 67
OX AX 1671
T..-T .
QE i,j+1 i,]j [68]
oy Ay
€ ancora:

2 T 2T
a -|2- ~ i+1,] |—l,21 i,j [69]
OX AX
T _Topa+Tya—2T,

- ~ J+l rJ21 v /70]

oy Ay

per le derivate seconde.
Sostituendo la [69] e la [70] nell’equazione [606] si ottiene:

2(1+ﬁ)Ti,j :Ti+1,j +Ti—l,j +PlijatPlija
ove si ¢ indicato con:
AX
p-l
Ay
il fattore di reticolo.
Qualora B=1 si ottiene la relazione:
T = Ti+l,j +Ti—1,j +Ti,j+1 +Ti,j—l
(] 4

che fornisce immediatamente il valore della temperatura nel punti (4/) note che siano quelle dei
quattro punti ad esso adiacenti (vedi Figura 23).

Questo suggerisce il procedimento di calcolo, sia manuale che automatico, che occorre seguire
per la determinazione delle temperature nei punti di un corpo:

si traccia un reticolo con passi trasversali e longitudinali eguali (Ax = 4y);

si fissano le temperature iniziali al contorno (condizione del 1° tipo) o si fornisce qualunque altro
tipo di condizione al contorno (ved: pin avanti);

si calcola, per ciascun punto interno del reticolo prefissato, la temperatura come media delle
temperature dei punti adiacenti;

si calcola la differenza (errore) fra il valore ora calcolato e quella del ciclo precedente (zranne per il
primo ciclo di calcolo nel quale, invece, si memorizza il valore calcolato e si azzera l'errore per il punto esaminato);

calcolate le temperature e gli errori per tutti i punti del reticolo si confronta I'errore di ciascun
punto con quello massimo che si desidera ottenere: se per tutti i punti si ha un errore calcolato
inferiore a quello massimo prefissato allora si possono fermare le iterazioni altrimenti si riprende
dall'inizio e si procede fino a quando la condizione di errore massimo si ¢ verificata.

Va precisato, pero, che l'errore non puo essere fissato a piacere senza tenere conto della
precisione di calcolo che si puo raggiungere sia con lo strumento di elaborazione utilizzato sia in
conseguenza dei passi di reticolo scelti.

Qualora si desidera avere una precisione maggiore occorre raffittire il reticolo e viceversa.
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Se la precisione di calcolo del computer non consente precisioni elevate'” ¢ bene limitare errore
massimo desiderato, ad esempio si puo cercare una precisione del decimo di grado o al massimo del
centesimo di grado (seconda cifra decimale!) altrimenti si rischia di avere tempi di calcolo inaccettabili e
soluzioni irraggiungibili.

La determinazione della temperatura nei punti del corpo puo essere ottenuta iterativamente con
algoritmo indicato ovvero si puo anche scrivere un sistema di equazioni, una per ciascun punto
incognito, e risolvere il sistema in unico passo di calcolo.

Non si pensi che questa soluzione sia migliore della prima e che con essa si possa trascurare quanto detto a
proposito dell’errore di calcolo. La risoluzione di un sistema algebrico di grandi dimensioni (@ seconda dei casi si
va da poche centinaia a migliaia di equazioni da elaborare) porta intrinsecamente il problema della precisione di
calcolo sia per il tipo di rappresentazione numerica utilizzato (i singola o in doppia precisione) sia per la
precisione massima di calcolo consentita (mumero di byte utilizzato dal processore).

Inoltre la stessa risoluzione del sistema di equazioni utilizza metodi iterativi interni alle librerie di
calcolo (ad esempio il metodo della triangolarizzazione,....) che sono fortemente condizionati dalla precisione
di calcolo utilizzata nel senso che i risultati finali sono dipendenti da questa precisione.

Se consideriamo un sistema di 1000 equazioni (relativo a 1000 punti interni al corpo) e si fa
riferimento al metodo di Cramer per la risoluzione allora il determinante del sistema sara la somma di
1000 termini ciascuno composto dal prodotto di 1000 elementi di righe e colonne diverse della matrice
del sistema. Se ogni numero della matrice ¢ composto da tre cifre pit due decimali ne risultera che i
1000 prodotti saranno dellordine di 10" e quindi certamente superiori alla massima
rappresentazione interna di qualsivoglia computer.

Pertanto ¢ bene normalizzare la matrice in modo da avere numeri avente parte intera di una cifra
e parte decimale di cinque cifre. Il problema de//'overflow numerico sussiste ancora. Meglio utilizzare la
rappresentazione scientifica del tipo X.XXXXXFE#YY ma anche in questo caso 'esponente YY ha un
limite massimo che dipende dalla precisione (ad esempio 223 per la doppia precisione nei computer da tavolo).

Qualunque sia il metodo di risoluzione che si intende adottare occorre sempre considerare con
molta attenzione 1 problemi di calcolo che ne derivano in relazione alla precisione consentita dal
computer utilizzato. Non si commetta 'errore di credere che il computer esegue sempre in modo esatto
1 calcoli: si rischia di commettere errori grossolani ed avere spiacevoli sorprese.

3.3 FORMULAZIONE DELLE CONDIZIONI AL CONTORNO

Se le condizioni al contorno sono del primo tipo (di Dirichlef) allora basta conoscere la
temperature di tutti i punti che ricadono sulla superficie esterna del corpo da studiare. Puo succedere,
pero, che anche in questo caso si possano incontrare difficolta nell’applicare 'equazione della
conduzione per la tipologia della forma geometrica esterna del corpo.

In generale per determinare le condizioni al contorno (ma anche per arrivare alle equazioni alle
differenze finite vere e proprie) si puo seguire il metodo dell’ equazione di bilancio termico scritta alle
differenze finite.

12T computer digitali lavorano sempre con numeri binari e con essi cercano di rappresentare tutte le grandezze che
possono elaborare. La precisione di calcolo che ¢ possibile raggiungere dipende dal numero di bit (¢fra binaria che assume valori
0 o0 1) che il computer puo elaborare per ogni numero. Di solito i bit vengono raggruppati in gruppi di otto detti byte. Nei
computer da tavolo (del tipo Personal Computer) il numero di byte utilizzati per i calcoli va da 4 (singola precisione) a otto (doppia
precisione). E’ chiaro che al crescere dei byte per rappresentare ogni numero reale cresce anche 'occupazione della memoria di
calcolo (RAM) utilizzata e pertanto si ha sempre un compromesso fra la precisione e 'occupazione della memoria. Con le
tipologie prima indicate le precisioni che si possono ragionevolmente raggiungere sono di due + tre cifre per la singola
precisione e tre + cinque cifre per la doppia precisione. In pratica /Zusieme dei numeri reali esterni non trova una corrispondenza
binnivoca con linsieme dei numeri rappresentati nel computer che sono sempre finitd Pertanto ¢ perfettamente inutile cercare una
precisione di calcolo che non ¢ raggiungibile con il sistema di calcolo utilizzato. Nel caso si richieda una precisione eccessiva
(¢ quindi irragginngibile con il caleolo) si avra un ciclo senza fine e quindi occorre sempre insetire un controllo interno al ciclo
stesso che consenta di uscire qualora si sia raggiunto un numero massimo prefissato (ad esempio 20) di iterazioni. Con i
computer di classe piu elevata si possono oggi raggiungere precisioni altrettanto piu elevate. E” questo il caso dei computer
di grandi dimensioni (supercomputer o mainframe) che utilizzano normalmente 128 o 256 bit (64 byze!) per i calcoli.
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Si considert il caso indicato in Figura 24 nella quale si ha la rappresentazione schematica di un
corpo lambito da un fluido avente temperatura T e coefficiente di convezione /. Consideriamo il
volume'” tratteggiato (corvispondente a mez30 reticolo adiacente alla superficie lambita dal fluido).

Possiamo scrivere per questo volume (detto d7 controllo, vedi Figura 24) il bilancio energetico: il
calore uscente da esso per conduzione, in regime stazionario e senza sorgente di calore interna, ¢ pari a
quello entrante nel fluido per convezione termica, cio¢ si ha:

T, -T. T.a-T T .,-Ti,j
EAXMJJﬁMJJ&Lj = hAx(Ti - )
AX 2 AX 2 AX ‘
Sviluppando questa uguaglianza e ponendo:
. AX
Bi=h— 71
h [71]
detto Numero di Biot'* si ottiene la relazione desiderata di bilancio energetico:
T .= 1 T, 1 T, T, BIT
i,j_2+Bi i—l,j+§( i T i,j—1)+ Iy [72]

Anche questa equazione ¢ scritta in forma algebrica e puo essere utilizzata per risolvere problemi
aventi condizioni al contorno del 3° tipo (conduzione pin convezione). In genere le condizioni al contorno
possono essere di complessa definizione (anche geometrica) in funzione della forma del corpo, della
tipologia di scambio (e quindi del tipo di condizione al contorno). Nella seguente Tabella 5 si hanno alcuni
casi, fra i piu usuali, per i quali si riportano le equazioni esplicite per la determinazione delle
temperature ai nodi di contorno.

3.4 CONDUZIONE STAZIONARIA CON SORGENTI DI CALORE

E’ un caso direttamente derivato dall’applicazione dell’equazione di Poisson:
aZT aZT q m
—t—t+—=
ox" oy A
Le uniche differenze nella risoluzione di questo caso si hanno nella necessita di aggiungere ¢’/ A4
alle equazioni del tipo gia viste in precedenza. Si lascia al lettore lo sviluppo.

3.5 CONDUZIONE STAZIONARIA IN GEOMETRIA CILINDRICA

0 /73]

L’equazione di Laplace e di Poisson in geometria cilindrica divengono, rispettivamente:

O°T 10T &7
—+=-—+—=0 74
o’ ror o072 [74]

€ ancora:

0T 10T 07T q"
—+-—+—+—=0 75
o ror ozt A 73]
Sostituendo gli sviluppi alle differenze finite delle derivate prime e seconde espresse in funzione
di 7 e di g (si lascia al lettore la rielabornazione nelle nuove variabili) la [75] (piu generale della [74])

diviene:

13 Si suppone uno spessore unitario del corpo in esame. Del resto abbiamo gia detto di rappresentare solamente
una schematizzazione bidimensionale per chiarezza espositiva.

14 Non si confonda il numero di Bio# con il numero di Nusselt (NU = "), di questo numero adimensionale si
patlera per la convezione termica) che sembra formulato in modo analogo a Biot. Nel primo caso (Bio?) ci si rifetisce ad un

coefficiente di convezione 4 del fluido e ad un coefficiente di conducibilita termica A unitamente al fattore geometrico Ax
del corpo solido. Nel secondo caso (INussels) tutti 1 parametri sono riferiti al fluido nel quale avviene la convezione termica.
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temperatura
£

Figura 24: Condizione al contorno del terzo tipo — Convegione esterna

tettteetatts

1

1

Tb ::EE1E_+';I(1; 4‘Té)

1

1

T, =§Tl +=(T,+T,)+

4

q" AX
24

Tabella 5: Condizione al contorno per conduzione stazionaria
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3.6 CONDUZIONE IN REGIME VARIABILE MONODIMENSIONALE

Si vuole ora brevemente fare un cenno alle metodologie di calcolo numerico applicate al caso
della conduzione in regime variabile. L’equazione da risolvere ¢ sempre la [65] che per regime in unica
dimensione x diviene:

oT o°T
E:ay [76]

Pertanto ricordando lo sviluppo allindietro della derivata prima dato dalla [59], ora scritta in
funzione del tempo 7, si puo scrivere :

(6Tj Tt =T
or At
Il simbolismo utilizzato ¢ il seguente: il pedice 7 indica il punto nel reticolo lineare (caso

monodimensionale) e P'apice ;j indica listante di tempo per cui ; ¢ listante attuale e j+7 ¢ listante
successivo.

[77]

m

Lo sviluppo della derivata seconda (dato dalla [64]) ora diviene:

T Tl -2 +T),

= 78
ox® ) (Ax)° e
L’equazione della conduzione si scrive quindi nella forma:
ij - _ij ~a ij+1 — 2ij 2+ ij—l [79 ]
At ( Ax)

Risolvendo rispetto alla temperatura T * si ottiene I'equazione esplicita:
TJ* = (1-2AF0) T+ AFo(T), +T.).) /80
in cui AFO= aA%A )2 ¢ detto numero di Fourier del reticolo.
X

La relazione [80] ci dice che la temperatura nel punto 2 al tempi j+7 ¢ funzione della temperatura
nei punti 7, m+1 ed -1 al tempo J.

In definitiva si ha una incongruenza di calcolo dovuta alla diversita nel riferimento temporale a
due istanti diversi. Cio comporta la possibilita di avere zncongruenze numeriche che non trovano riscontro
nell’evoluzione del fenomeno conduttivo.

In pratica puo aversi il caso che la temperatura nel punti » intermedio fra »-7 ed #+1 possa non
seguire il Secondo Principio della Termodinamica e quindi avere temperature corrispondenti decrescenti in un
verso o nell’altro.

Per evitare questa incongruenza (che, si ripete, ¢ solo matematica) occorre, nella [80], imporre che i
coefficienti delle temperature di tutti i termini a secondo membro siano positivi. Poiché il numero di
Fourier ¢ positivo per definizione deve essere:

1-2AF0>0 [81]
e quindi deve essere:
AFo=27 <05 182]

(Ax)

Quest’ultima condizione impone una scelta del passo spaziale Ax e del passo temperale A7 non
piu in funzione della precisione di calcolo desiderata ma anche in funzione della diffusivita termica a del
corpo in esame: tanto maggiore ¢ A7 tanto maggiore puo essere Ax e viceversa.
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In termini pratici questo significa che, in condizioni transitorie, il passo spaziale Ax ¢ fortemente
dipendente dal tipo di materiale e dal passo temperale e questo pud comportare un raffittimento

notevole di Ax con conseguenti appesantimento del calcolo complessivo.

3.7 CONDUZIONE IN REGIME VARIABILE BIDIMENSIONALE

La trattazione del caso transitorio bidimensionale segue da vicino quanto visto nel paragrafo
precedente.
L’equazione della conduzione ora ¢ nella forma:

oT o°T 07T
—=a| —F+— [83]
or ox® oy
In forma numerica alle differenze finite diviene:
Tnf;l _Tnf,n ~ aTrrLl,n +Trrf—1,n +Trr{,n—:; +Trr{n+l - 4Tnfn [84]
At (Ax)

nella quale i pedici 7 ed 7 indicano le coordinate di reticolo Ax e Ay e I'apice j e j+7 indicano il
passo temporale. Ordinando i termini si ottiene I'equazione:

T = (1-4AF0)T,), + AFo(T,)

mn — m-1,n

T T + Ty /85]

m+1,n m,n+
ove & ancora AF0 =23A7 , € si ¢ scelto, per semplicita, Ax = Ay.
(Ax)
Ricordando quanto detto nel §3.6 la condizione di congruenza numerica (cioé che i coefficienti delle
temperature a secondo membro debbono essere non negativi) ¢:

1-4AF0o>0 dacui AFOS% /86]

La scelta del passo temperale (dati Ax e @) deve essere fatta secondo la [86] e non piu liberamente.
Cio comporta quasi sempre un notevole appesantimento del calcolo.

La formulazione delle condizioni al contorno per il caso non stazionario puo ancora essere fatta
con il metodo del bilancio energetico gia llustrato.

Si tralascia in questa sede lo sviluppo che puo essere trovato nei manuali specializzati di
Trasmissione del Calore.

3.8 METODO GRAFICO DI BINDER SMITH

La [82] suggerisce una semplificazione che trova applicazione nella risoluzione grafica della [80].
Se poniamo la condizione limite:

AF0=0.5
si ottiene dalla [85] la semplice relazione:
i Tl 4T
T 1 “mA m+1 87
m 5 [87]

Pertanto la temperatura al tempo j+7 ¢ la media aritmetica delle temperature all’istante ; dei punti
contigui al punto 7.

In Figura 25 si ha la rappresentazione grafica dei primi tre intervalli di tempo nel transitorio di
una striscia (problema monodimensionale) avente una temperatura iniziale sul lato a sinistra.
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3.9 USO DEI CODICI DI CALCOLO

Oltre al metodo alle differenze finite, sopra esposto, si hanno vari metodi fra i quali si cita quello
agli elementi finiti. Il metodo di soluzione delle equazioni alle derivate parziali (PDE) con il metodo agli
elementi finiti ¢ del tutto generalizzato e viene applicata alla soluzione di qualsivoglia problema
matematico e fisico.

Esistono numerosi software commerciali che seguono questa metodologia di soluzione e che
contribuiscono a risolvere numerosi problemi reali ben lontani dalla semplicita dimensionale descritta in
precedenza.

Applicare un qualsivoglia metodo numerico significa rinunciare ad ottenere la soluzione esatta
negli infiniti punti del dominio ma accontentarsi di una soluzione approssimata in un numero finito di
punti (che saranno chiamati nodi) individuati con criteri che dipendono dal metodo numerico prescelto.
Il processo con cui si individuano 1 nodi nel dominio ¢ definito “discretizzazione”.

A conclusione della procedura di discretizzazione si perviene sempre ad un sistema di equazioni
lineari la cui soluzione consente di ottenere valori approssimati dell'incognita nei nodi. Come si vedra,
con il metodo agli elementi finiti tale sistema ¢ ottenuto utilizando formulazioni di tipo integrale del
principio di conservazione espresso tramite l'equazione differenziale che si vuole risolvere ed
approssimando a tratti la variabile incognita in modo tale che 'equazione stessa risulti soddisfatta
mediamente in opportuni sottodomini detti elementi. I’applicazione del metodo comprende i seguenti
steps:

il dominio ¢ discretizzato, cioé suddiviso in elementi che non devono sovrapporsi né lasciare

buchi; il numero e la collocazione dei nodi negli elementi determina poi la tipologia degli elementi

stessi;

in base al tipo di elemento vengono scelte opportune funzioni di forma (o di interpolazione) per
Iapprossimazione della variabile incognita all'interno e lungo 1 contorni degli elementi, cioé nelle
posiziono non nodali;

per ogni elemento viene formulata un’equazione di tipo matriciale basata su una forma integrale
dell’equazione differenziale da risolvere;

le equazioni di ogni elemento vengono poi “assemblate” per formare un sistema globale di
equazioni lineart;
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il sistema globale viene risolto per determinare i valori nodali delle incognite considerate.

Formulare un modello, oppure semplicemente scegliere tra quelli disponibili quello che, con il
minimo di complessita, sia in grado di riprodurre in modo soddisfacente I'evoluzione temporale ¢ la
distribuzione spaziale delle variabili termofisiche in una determinata distribuzione di flusso termico ¢ un
compito tutt'altro che banale. E' necessario, innanzitutto, definire quali siano le proprieta fisiche che
caratterizzano il comportamento di materiali e acquisire poi conoscenza fenomenologica degli effetti
(l'osservazione visiva ne ¢ una fase fondamentale); cio comporta l'uso di strumenti e nozioni della fisica
e dell'analisi matematica e richiede infine, e soprattutto, cautela e consapevolezza nell'adozione delle
ipotesi e delle approssimazioni che ¢ indispensabile adottare.

L'avvento e la diffusione dei calcolatori nel mondo scientifico e tecnologico hanno contribuito,
come gia evidenziato in precedenza, allo sviluppo e alla crescente consapevolezza del concetto di
“approssimazione”: concetto che investe, ad esempio, la teoria dell'approssimazione numerica della
soluzione di un sistema di equazioni, ovvero di un modello matematico, con il quale si intende
descrivere il comportamento di un determinato sistema fisico. In questo ambito, in mancanza di una
soluzione analitica, o esatta, del modello matematico, si accetta di conoscerne una soluzione
approssimata che possieda il livello di accuratezza ritenuto sufficiente.

Ma il concetto di approssimazione interviene pesantemente anche nel processo che porta alla
formulazione del modello fisico (dal quale discende, poi, quello matematico), che quasi mai puo riprodurre
per intero la complessita del mondo fisico reale. Infatti il problema che si incontra, ancor prima di
pensare ad un modello fisico, consiste nel definire quale sia il Jvello di scala della realta.

Il mondo fisico reale puo essere infatti descritto a vari livelli, a partire da quello subatomico e
passando successivamente a quelli atomico, molecolare, microscopico, macroscopico (quello alla scala
dimensionale della meccanica classica) e infine astrofisico (planetario o galattico). Ma non sempre un
modello, per risultare efficace, deve necessariamente contemplare la totalita dei livelli di scala della
realta (quello della meccanica classica ne ¢ appunto un chiaro esempio). In pratica, il problema si
traduce quindi nel definire quale sia il #znimo livello di scala della realta che debba essere preso in
considerazione affinché un modello possa rappresentare la realta a/ /ivello di scala desiderato.

Tuttavia, per definire le proprieta fisiche microscopiche (o statistiche) delle sostanze fluide
gassose, che intervengono nel modello di continuo deformabile, pur non considerando necessariamente
le scale subatomiche, ¢ necessario pero dedurle a partire dalla scala atomica o molecolare. E cio ¢
dovuto semplicemente al fatto che tali proprieta fisiche microscopiche dipendono proprio dalla
struttura atomica e molecolare: dipendono infatti, sia dal tipo, sia dal moto degli atomi, che ¢ governato
essenzialmente dalle equazioni di Boltzmann.

Solo basandosi sulle scale molecolari ¢ quindi possibile definire, ad esempio, la temperatura di un
gas come misura dell'energia cinetica media delle molecole, la pressione come risultato degli urti delle
molecole sulle pareti di un recipiente, la viscosita attraverso la diffusione della quantita di moto
prodotta dall'agitazione termica, e cosi via (in modo analogo si possono ovviamente definire le
proprieta fisiche statistiche delle sostanze fluide liquide). A livello di scala molecolare, le variabili
fondamentali del problema (e del modello fisico) sono quindi le masse e le velocita delle singole
molecole mentre, a partire dal livello microscopico, le variabili del problema (e del modello fisico)
diventano, ad esempio, la temperatura, la densita, la pressione e la viscosita, definibili attraverso medie
delle variabili del modello al livello della scala dimensionale inferiore.

In generale, possiamo affermare che ogni livello di scala della realta ¢ compiutamente
rappresentabile in funzione di un determinato insieme di variabili fondamentali e che misure delle
proprieta medie di tali variabili consentono di definire le variabili fondamentali al livello di scala superiore,
immediatamente successivo.

Si rinvia ai testi specializzati 'approfondimento di questi metodi di calcolo e si vuole qui
presentare qualche esempio.
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Distribuzione di temperatura in un isolatore contenente due tubi di acqua calda

La geometria ¢ ancora semplice anche se non risolvibile con procedure analitiche tradizionali. Si
tratta, nel piano, di una circonferenza esterna (isolante) contenente due circonferenze affiancate interne
(tubi). L’equazione differenziale da risolvere ¢:

div(—Agrad (T))=0
Le condizioni iniziali sono: T= 273 K per la zona esterna (isolante), 323 K per la tubazione a

sinistra e 353 K per la tubazione a destra. La griglia di calcolo ¢ la seguente:

n4

04

Figura 26: Formazione della griglia di calcolo per lesempio considerato

La distribuzione della temperatura ¢ data nella seguente figura

tep
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Figura 27: Curve isoterme per l'esempio analizzato
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Figura 28: Distribugione spaziale della temperatura
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Figura 29: Distribugione del flusso
Numerosi altri esempi potrebbero essere qui presentati. Va considerato che i problemi di sola
conduzione sono relativamente semplici nel panorama dei codici di simulazione commerciali. Questi
sono orientati alla soluzione di problemi di CFD (Computer Fluid Dynamics) molto piu complessi di quelli
esposti in questo paragrafo.
Si parlera di questi codici di calcolo piu avanti.
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4 ALETTE

Uno dei dispositivi piu utilizzati nello smaltimento del calore in dispositivi meccanici e/o
elettronici sono le alette costituite da lamine di materiale buon conduttore poste sopra la superficie di
un corpo che si vuole raffreddare in aria o in un fluido gassoso.

E’ importante osservare subito che, come si dimostrera piu avanti, le alette risultano convenienti
solo quanto lo scambio di calore all’esterno della superficie da raffreddare ¢ attuato in aria o in un
fluido aeriforme generico. Questo, infatti, per le sue caratteristiche termofisiche determina modalita di
scambio per convezione peggiori di quelle che si avrebbero con un fluido liquido e pertanto le alette
consentono di migliorare lo scambio globale.

Per studiare il comportamento delle alette occorre idealizzare il problema come raffigurato in
Figura 30. Sia questa idealizzata come una sbarra di segiome rettangolare attaccata ad una parete a
temperatura T,.

Laletta sia sottile e 1a conducibilita termica del materiale elevata in modo che si possa ritenere a resistenza
termica trascurabile e quindi descrivibile con un solo valore di temperatura per ogni sezione x.

SO —

X

Figura 30: Schematizzazione di una aletta

Per la generica sezione ad ascissa x ed x + dx, detta S la superficie e P il perimetro, si puo scrivere
che il flusso termico di conduzione alle ascisse x ed x + dx valgono::

dt

=18 /887

X

qx+dx =-AS d_T

X+dx

Sviluppando in serie di Tay/lor il secondo membro della precedente si ottiene:

2
Oyoq = —AS ‘3—T _2s 9 o

X ax?| *

X
Pertanto il bilancio termico (a regime stazionario) della striscia elementare di ampiezza dx ad ascissa
x ¢ il seguente:
2
d-T

X2

A8 = dx=hP(T T, )dx

Semplificando e ponendo 0 =T — T} ed ancora :

hP
28
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si puo scrivere:

d?e
— = m?’9=0
dx
Nellipotesi di proprieta termofisiche e geometriche costanti la precedente si puo ritenere una
equazione differenziale del secondo ordine, omogenea a coefficienti costanti il cui integrale generale ¢:

6= Ae ™ +Be™ /89]

con A e B costanti di integrazione da calcolare con le ipotesi di condizione al contorno da
definire ancora. Possiamo ipotizzare tre casi.

4.1 BARRA INFINITAMENTE LUNGA

In questa ipotesi la temperatura nella sezione terminale della barra si porta in equilibrio con quella
del fluido e pertanto risulta:

G, =T,—t, per x=0
€ ancora
0=0 perx—oow
Pertanto la [89] diviene:
6=6,e™

Quindi la differenza di temperatura iniziale diminuisce esponenzialmente. Il flusso termico che la
sbarra smaltisce nel fluido ¢ allora pari, a regime stazionario, al flusso che esce dalla parete all’ascissa
x=0 e cioe:

q =-AS g—t = ASmg, =~/hPAS 6,
X x=0

Senza la presenza dell’aletta la stessa parete avrebbe disperso, attraverso la superficie S il flusso:

q, =hSé,
La convenienza dell’aletta si ha quando si verifica:
4 >0
ovvero anche:
ASméE, >hSé,

ossia quando M >%. Ricordando lespressione di 7 deve anche essere AP>hS . Pertanto la

convenienza dell’utilizzo dell’aletta si ha quando il materiale ¢ un buon conduttore (grande A) ovvero il
coefficiente di convezione / ¢ piccolo. In pratica si puo anche scrivere:

l>h§
P

pet cui essendo il rapporto /P omogeneo ad uno spessore fittizio /, si puod ancora scrivere:
L 1

A h

Quindi la resistenza di conduzione 1,/ A deve essere infetiore alla resistenza di convezione 1/ h.
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4.2

4.3

SBARRA CON TERMINAZIONE FINALE ADIABATICA

In questo caso le condizioni al contorno sono:

G, =T,—t, per x=0
€ ancora:
—ﬂd—g =0 perx=L
dX x=L

La soluzione dell’equazione generale fornisce le costanti:

emL
A= 00 emL + e—mL
eme
B=26
0 emL +e—mL

e quindi la soluzione diviene:

cosh[ m(L-x)]

° cosh(mL)
11 flusso termico uscente dalla parete all’attacco della sbarra vale:
déo
q =—4S v AmSé, tanh (mL )
x=0

La convenienza dell’aletta si ha quando questo flusso risulta superiore a quello senza aletta.

SBARRA DI LUNGHEZZA FINITA (CASO GENERALE)

Le condizioni al contorno divengono:

G, =T,—t, per x=0
€ ancora:
—Ad—g =hSO  perx=L
dx|,_,
Le costanti di integrazioni divengono:
) emL+LemL
A=20 Am
2 h
cosh(mL)+—senh(mL
(mL)+—senh(m.)
e _Leme
g5 Am
2 h
cosh(mL)+—senh(mL
(mL)+—senh(m)

Pertanto la soluzione generale (detta di Tex Bosh) diviene:

cosh[m(L—x)]+/{:nsenh[m(L—x)]
0 =6,

h
h(mL)+—senh(mL
cosh(m )+ﬂmsen (mL)
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11 flusso termico all’attacco dell’aletta vale:

h
—+tagh(mL)
g =152~ imse, Am_
dxl,o 1+-—tagh(mL)
Am

con il solito confronto si puo stabilire la convenienza dell’aletta.
4.4 EFFICIENZA DELLE ALETTE

Si definisce efficienza delle alette il rapporto fra il flusso effettivamente scambiato e quindi
uscente dalla parete con I'aletta e quello che si avrebbe nelle condizioni ideali con temperatura di aletta
pati a quella della base di attacco, cioe:

&= qreale
qideale

Nel caso di aletta con flusso trascurabile all’estremita (caso 2, generalmente realizzato con buona
approssimazione nelle condizioni reali) si ha:

_ ASg,mtanh(mL) tanh(mL)
- hPLG, oomL

In Figura 31 si ha 'andamento dell’efficienza per alette rettangolari. Per le alette sottile si ha:

0999, 1 T T T T

08~

02

02, o 1 1 1 1

005, m

Figura 31: Efficienza di una aletta rettangolare

mL: L.L
\j;té'

e quindi I'efficienza ¢ tanto maggiore quanto minore ¢ la lunghezza I e quanto maggiore ¢ il suo

spessore 20 e quanto maggiore ¢ la conducibilita A del materiale e quanto minore ¢ il coefficiente di
convezione termica 4. Nota efficienza dell’aletta si calcola facilmente il flusso reale mediante la
relazione:

Oreate = € " Uigeate = € h Sgo

Se si prende in considerazione la soluzione di Te Bosh si ha:

tanh(mL) + -
AM

E =
mL+h/{'tanh(mL)

il cui andamento ¢ riportato in Figura 32.

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE 55

4.5 PARETE ALETTATA

Nel caso che una parete di superficie A con 7 alette sia immersa nell’'ambiente, detta € I'efficienza
delle alette, il flusso totale disperso vale:

q=h[(A-nS,)+enS |(T,—T;)

avendo indicato con 4, I'area totale della superficie, S, la superficie di attacco di una singola aletta,
S, 1a superficie di scambio di una aletta, T', la temperatura della superficie e T; quella dell’ambiente.

1019, 12 T T T T

n(mL,A,h,L)

06 [~ -

04~ -

0201 g, L L I I
0

0.15, my

Figura 32: Efficienga di una aletta rettangolare con soluzione esatta

Per la validita di questa relazione occorre assicurarsi che la distanza fra le alette sia superiore (di
almeno il doppio) a quello dello strato limite che, per valori correnti in aria, ¢ di 2+3 mm.

4.6 ALETTE ANULARI

Si consideri una superficie circolare come indicato in Figura 33 e si faccia I'ipotesi di piccolo
spessore, H, rispetto alla lunghezza netta dell’aletta L=r,-r,.

Nell'ipotesi di resistenza termica delle alette trascurabile si puo immaginare che il campo termico sia
monodimensionale e che pertanto la distribuzione della temperatura sia funzione solo del raggio 7, cio¢
sia T =T{r).

La sezione trasversale dell’aletta ¢ .4, =2 7 » H e la superficie relativa al tratto di lunghezza dr vale
dA.= 2 nr dr.

11 flusso trasmesso ad ascissa r vale:

dT dT
=—AA —| =—A27xrH —
O A dr|, dr|,
e che quello ad ascissa r + dr vale:
qr+dr =_//i"6\+dr d_T =_227Z'(r+dr)H d_T
dr r+dr r+dr

ove, sviluppando in serie di Taylor si ha:

dT dT d2T

—_— =—| +— dr

dri.g dr| dro|

e che il flusso disperso per convezione termica dalla aletta vale:

dg, =h(T -T,)dA

Pertanto il bilancio termico di una striscia 4r ad ascissa r ¢ dato da:
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qr = qa + qr+dr

e quindi, sostituendo le espressioni precedenti e riarrangiando 1 termini si ha:

2 J— J—
d (Tsz)+1d(T Tf)_2 h (T-T,)=0
dr rdr AH

Abbiamo, quindi, una equazione differenziale di Besse/ di ordine gero la cui soluzione generale ¢:

T T, =Cl,(mr)+C,K, (mr)

ove si posto, al solito:

rl

Figura 33: Rappresentazione di una aletta circolare di spessore costante
2h
m= f—
AH

K, la funzione di Besse/ modificata di prima specie;

e si sono indicate con:

I, la funzione di Besse/ modificata di seconda specie.

Le costanti di integrazione vanno determinate con le condizioni al contorno:

T(r) =T,
alla base di attacco e ancora per r=r,:
dT
.. =—AA—| =0
o =2

r=r,

cio¢ supponiamo che all’estremita delle alette il flusso sia trascurabile (come gia visto per le alette
rettangolari).

L’andamento della soluzione ¢ rappresentata in Figura 34.
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Figura 34: Distribuzione della temperatura nelle alette cilindriche

L’efficienza di un’aletta anulare ¢ data in Figura 35 al variare del rapporto dei raggi.

100 priggnz s wn s vmevmmsim , ................... I......;....I.....I

:=1.05,15,2,3,4,5

1
1
H

20

15 2 25

i
1
L2% ik A"

Figura 35: Efficienza alette anulari
4.7 PROFILO OTTIMIZZATO DELLE ALETTE

In precedenza si ¢ visto il caso semplice di profilo rettangolare delle alette.

In effetti al crescere della distanza dalla parete il profilo rettangolare non consente le migliori
condizioni di scambio poiché presenta la stessa resistenza termica di conduzione pur con profilo di
temperatura che decresce esponenzialmente dalla parete di attacco.

Uno studio piu approfondito consente di dimostrare che la sezione migliore ¢ quella con profilo
iperbolico, cioe con andamento rastremante verso la fine delle alette, come illustrato dal secondo profilo
in Figura 36.

Questa sezione consente anche di ridurre al minimo il materiale presente nelle alette.

Nelle applicazioni pratiche si preferisce costruire le alette con profilo #iangolare per le minori
difficolta costruttive che queste presentano e per la poca differenza rispetto a quella iperbolica.

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE 58

Figura 36: Profilo rettangolare, iperbolico e triangolare
4.8 APPLICAZIONI NUMERICHE AL PROBLEMA DELLE ALETTE

Con 1 codici di simulazione gia visti in precedenza ¢ possibile risolvere i problemi relativi alle
alette. Ad esempio per una sezione di tubo con flangia raffreddata esternamente, con equazioni gia
indicate nei precedenti paragrafi, da aria porta alle seguenti soluzioni.

1 1 1 1 1 1 L L L L L L

e-2 1 1 L L 1 L 1 1 1 1 1 1 1 1 1

0.1 niz 0.14 014 0.18 0.z

Figura 37: Griglia di calcolo

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE

B-4

o

Figura 39. Distribugione del flusso per un tubo flangiato
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b
temp
max 373.0
r 372.0
q 370.0
P 365.0
1 360.0
k 358.0
] 356.0
1 354.0
h 352.0
o 350.0
f 348.0
€ 346.0
d: 344.0
¢ 342.0
b 340.0
a 338.0
nun 337.7
fhoxdm
max 6.67
v 6.60
u 6.30
t G.00
g 5.70
o 4.50
n 4.20
m 3.90
1 3.60
Iz 3.30
i 3.00
1 2.70
h 2.40
o 2.10
f: 1.80
e: 1.50
d: 1.20
C: 0.90
b 0.60
a 0.30
min 0.07
Scale = E4
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5 LA CONVEZIONE TERMICA

Uno dei problemi tecnico-scientifici in assoluto piu complesso da studiare ¢ la convezione
termica. Con questo termine si suole definire wn insieme di fenomeni di trasporto di massa ed energia per mezzo
di un fluido riscaldato (o raffreddato).

La convegione termica é stata originariamente studiata da Newson che ne ha proposto una
formulazione funzionale ancora oggi utilizzata nella pratica. Newson non aveva i mezzi di osservazione
che oggi noi possediamo e pertanto non poteva rendersi conto della complessita del problema della
convezione termica.

In particolare Egli non si accorse dello strato limite (vedi Figura 40) meccanico e termico che si
formava fra fluido non disturbato e parete.

Corrente fluida indistrubata

\AL w W
o e~
“a\‘a\o\'\«\\\e .
Zona di effetto
Strato limite laminare >g=7/ della parete

PARETE FISSA Substrato laminare

Figura 40: Formazione dello strato limite dinamico sopra una lastra piana

La convezione termica nasce dall'azione congiunta di trasporto di materia e di energia. Il termine
convezione deriva dal latino comvebo che significa trasporto. Senza materia in movimento non si puo avere
convezione termica ma solo conduzione. La convezione termica puo essere di due tipi:

Convezione termica naturale:

Il movimento di materia si origina per effetto del solo campo di temperatura esistente fra zone
diverse di un sistema termico. Se consideriamo una piastra piana verticale di materiale conduttore
qualunque (ferro, rame, alluminio,...) portata ad una temperatura T . Si supponga che questa piastra sia
immersa in un fluido (aria, acqua,..) avente una temperatura T; < T, (vedi Figura 41).

Per effetto della temperatura T, dell'energia termica passa per conduzione dalla piastra al fluido
che si scalda rispetto alla temperatura iniziale T;e pertanto si dilata. Cio porta ad avere una diminuzione
di densita del fluido caldo rispetto a quello freddo e quindi si genera, per effetto della forza di gravita
che agisce sempre verso il basso, un alleggerimento termico che fa spostare il fluido caldo verso I'alto e
quello freddo verso il basso e quindi un moto rotatorio orario che ¢ il flusso convettivo propriamente
detto.

Il moto rotatorio orario é generato dalla forza di gravita che sposta piu in basso il fluido freddo
rispetto a quello caldo. Questo spostandosi porta con sé la maggiore energia interna dovuta alla
maggiore temperatura e pertanto si ha il trasferimento di calore dalla piastra al fluido freddo come
effetto finale della trasmissione di calore. E' bene ricordare che nella convezione naturale il movimento del
fluido avviene per il solo effetto della forza di gravita sugli strati di fluido a diversa densita;

Convezione forzata

Il movimento del fluido avviene non solo (o anche non pin) per effetto dell'alleggerimento zermico
sopra descritto ma per l'azione meccanica di una macchina sul fluido (ad esempio una pompa o una ventola).
Pertanto il fluido non si sposta piu in relazione alla distribuzione di temperatura e all'azione della forza
di gravita bensi per azione meccanica esterna. Ne consegue che il movimento del fluido puo essere
pilotato come si desidera nelle zone ove si vuole avere lo scambio termico.
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Se si riprende l'esempio del radiatore termico domestico dianzi proposto si vede facilmente che
senza azioni esterne si ha il movimento dell'aria riscaldata dalla piastra secondo traiettorie che
dipendono solo dalla geometria del sistema e dalle differenze di temperature.

Se, invece, si utilizza una ventola a monte della piastra ecco che l'aria riscaldata puo essere inviata
dove si vuole e in quantita desiderata. Si ha, cosi, la convezione forzata. In entrambi 1 casi (naturale o forgata)
la convezione si presenta come una somma di fenomeni complessi associati sia al campo di velocita
(spostamento delle masse di fluido) che al campo di temperatura (direttamente e indirettamente legato al campo di
velocita).

Si tratta sempre di fenomeni molto complessi che rappresentano una delle problematiche piu
ardue di tutta la Scienza e la Tecnica. Queste problematiche non sono limitate solamente agli scambi
termici, come questo capitolo puo far pensare, ma a numerosissimi campi della tecnica, della biologia,
della meteorologia, armamenti militari, ....

Praticamente ogni campo scientifico ¢ interessato dai problemi convettivi e la loro risoluzione ha
sempre avuto caratteri strategici prevalenti su tutti gli altri. Data la limitatezza di questo corso di
Trasmissione del Calore si cerchera di semplificare al massimo la soluzione di queste problematiche con
metodologie di studio semplificate.

Nella realta lo studio della Convezione Termica ¢ sempre stato un argomento arduo, difficile, ostico
e che solo in parte trova soluzione oggi con lutilizzo di codici di calcolo costosi e complessi che
richiedono le maggiori risorse in assoluto rispetto a qualsivoglia applicazione software.

Convezione termica confinata

Se il fluido si trova allinterno di un volume delimitato da pareti fisiche, ad esempio in un
condotto, allora la convezione termica si dice confinata.

Lo spessore dello strato limite termico, come pure quello dinamico, ¢ al massimo pari alla
distanza fra le pareti a diversa temperatura.

In questo caso le condizioni di conservazione della massa impone che ci sia una circolazione
interna (vedi anche quanto si dira sulle cavita termiche) fra le stesse pareti.

Convezione termica aperta

In questo caso si ha una parete e la convezione termica avviene in uno spessore di strato limite
termico indefinito e sempre crescente.

Si puo avere anche convezione termica in assenza della stessa parete ma in presenza di fluidi a
diversa temperatura (ad esempio una corrente di aria calda che incontra una corrente di aria fredda o anche un getto di
vapore che trascina aria fredda in moto convettivo, come avviene nei getti e nei pennacchi dei quali si dira nel prosiegno).

La convezione aperta interessa molto la climatologia e le applicazioni impiantistiche ambientali.

5.1 EQUAZIONE DELLA CONVEZIONE TERMICA

Newton ebbe il grande merito di semplificare la grande complessita del problema (non sappiano se
coscientemente o non) scrivendo per la convezione termica la seguente legge di definizione:

AQ*=hS(T, -T)Ar /90]
ove si ha il seguente simbolismo:
AQ* quantita di energia trasmessa per convezione termica. Unita di misura /J/ o [kcal];
h é il coefficiente di convesione. Unita di misura [W/ (n7°C)] o [keal/ (bn' °C)];
A superficie di scambio termico. Unita di misura in /#/};

T,-T, differenza di temperatura fra piastra e fluido (o viceversa se T>T,). /K] o [°C];

At tempo intercorso, unita di misura /s/ o /h].

Si ¢ usato il termine di definizione perché questa legge in realta definisce univocamente il coefficiente di
convezione nella forma:
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*

hz—AQ
S(I'p—Tf)Az'

In pratica, come meglio si vedra piu avanti, non conosciamo /4 se non mediante il rapporto
indicato a secondo membro. E questo perché le modalita di scambio termico non sono univoche, nel
senso che una stessa parete con le stesse distribuzioni di temperatura superficiale e con lo stesso fluido
puo dar luoghi a scambi di calore diversi a seconda della geometria e topologia assunta.

Ecco perché la legge di Newton ¢ importante: essa ha semplificato la definizione analitica di un
fenomeno complesso con una semplice introduzione di un cogfficiente di convegione noto il quale si puo
conoscere il flusso termico effettivamente scambiato. Possiamo definire questo anche un coefficzente di
zgnoranza, anche alla luce di quanto si dimostrera nel prosieguo.

11 coefficiente 4 non ¢ una proprieta termofisica ma dipende da un grande numero di fattori fra i
quali si ricordano:

le proprieta fisiche del fluido: densita p, viscosita dinamica u (vedi pin avanti), calore specifico a
pressione costante ¢, coefficiente di conducibilita termica 4,
la differenza di temperatura fra i corpi;

N . . . . . g . 1 . . .
la velocita del fluido  se in convezione forzata o il coefficiente di dilatazione" cubica B del fluido se si
¢ in convezione naturale;

la geometria della scambio termico che puo essere rappresentata da un parametro geometrico (ad
esempio il diametro di un condotto, la distanza fra due piastre,....).

Per rendersi conto che / varia con la configurazione geometrica, come sopra accennato, a parita
di tutto il resto, si consideri I'esempio dato in Figura 41.

/\X
Tp

Rdilod Wdadta

Audo rondsubeto

Rree

Srato linite termco Tt

Figura 41: Schematizzazione della convezione termica fra parete e fluido

Se la piastra si suppone calda e il fluido, per esempio aria, freddo si ha convezione (cioé si ha
movimento di fluido per via naturale) se la piastra é orizzontale in basso o verticale o con un angolo di
inclinazione qualunque.

Non si ha convezione termica se la stessa piastra, a pari temperature e condizioni del fluido, si
pone orizzontale ma in alto rispetto al fluido (ad esempio un soffitto caldo) perché il fluido dilatato é gia in
alto rispetto a quello freddo che si trova in basso.

15 Si definisce coefficiente di dilatazione di un corpo, come si ¢ visto in Termodinamica Applicata, il coefficiente

1(ov

L =—| — | cioé la variazione relativa di volume al variare della temperatura e pressione costante. Questo coefficiente &

p
proprieta termofisica dei cotpi e lo si pud trovare nei manuali tecnici specializzati. Per un gas ideale esso vale 1/T (con T

temperatura assoluta) e quindi per i gas si puo ritenere [ circa pari al suddetto valore.

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE 63

Quindi non é possibile conoscere il coefficiente di convezione dati i soli parametri
termofisici del fluido e le temperature di scambio: occorre specificare anche la geometria di
scambio e cio rende di fatto lo studio della convezione termica molto complesso.

Se si fa riferimento al flusso termico (AQ*/ A1) (omogeneo ad una potenza [/ s]=/W)), la [90] si puo

ancotra scrivere:
AQ=hSAT

ove AT ¢ la differenza di temperatura (maggiore meno minore) fra corpo e fluido.

La suddetta relazione, pur nella sua grande semplicita, non ci consente di affrontare la convezione
termica con la stessa semplicita con la quale abbiamo affrontato la conduzione termica poiché 4, come
gia detto, non ¢ una proprieta termofisica reperibile nei manuali per 1 vari materiali.

Questo coefficiente deve essere determinato, sperimentalmente o analiticamente, per tutte le
configurazioni di scambio che si intende utilizzare. Oggi si dispongono di migliaia di relazioni per il
calcolo di 4 e sempre pit questo numero cresce con 'aumentare dei casi reali di scambio studiati. Per il
flusso termico specifico ¢” = AQ/ S si ha la relazione:

q"=h-AT 91]
5.2 RESISTENZA TERMICA PER CONVEZIONE

Con ragionamento analogo a quanto visto per la conduzione termica, riscrivendo
opportunamente la [91], si puo definire una Resistenza termica di Convezione data dalla seguente relazione:

con il solito simbolismo visto in precedenza. Mediante la resistenza termica per convezione ¢
possibile risolvere qualsiasi problema di trasmissione del calore fra strati in serie e in parallelo.

5.3 TRASMITTANZA TERMICA

Si consideri la situazione indicata in Figura 42 ove si hanno due fluidi separati da una parete, ad
esempio si puo considerare un muro esterno che separa 'ambiente interno (e quindi l'aria all'interno di
esso) dall’ambiente esterno (cwe dall’aria esterna). Considerando una situazione a regime stazionario si ha,
essendo tutti gli elementi disposti in serie, che il flusso termico é costante sia nel fluido 1, che negli
strati di parete e poi nel fluido 2. Applicando quanto ¢é stato detto per la trasmissione del calore in serie
si puo scrivere la seguente relazione :

quznzﬁﬂ:T

To—Th

p2

Ty _ T T,
S Sz 1

h, A 4 h,

Applicando la regola del componendo ai secondi membri si ottiene infine la seguente relazione:

pl

T -T
g2 [92]
h 4 4 h
e il termine:
K=; /93]

¢é detto trasmittanza termica.
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Tpl TR T
T1

™
Al A2

\\{
| s s2 | T2

Figura 42: Trasmissione del calore fra due fluidi separati da una parete composta.

A denominatore si hanno le sommatorie delle resistenze termiche per convezione interne alla
parete, per conduzione e per convezione esterne alla parete. Dalla [92], tenuto conto della [93], si puo
scrivere:

q"=K-AT
e per il flusso totale attraverso la parete:

AT
1,55
Sa2)

5.4 LE EQUAZIONI FONDAMENTALI PER LA CONVEZIONE

q

Per affrontare lo studio della convezione termica occorre prima predisporre I'apparato fisico
matematico per la piena descrizione fenomenologica. Troviamo, quindi, le eguazioni descrittive dei
fenomeni fisici fondamentali che interessano la convezione termica e per fare cio applichiamo,
pertanto, i principi fondamentali della Termodinamica e della Meccanica dei Fluidi.

5.41 CONSERVAZIONE DELLA MASSA
11 principio di conservazione della massa porta a scrivere, per un sistema aperto:

m, —m, -0 dm
ory,

In forma integrale possiamo scrivere:
- 0
~[ pV fidA=—[ pdv
A ot v
Ricordando il teorema della divergenza di Green si puo ancora scrivere:

. - 0
—|div( pV JdV =— | pdV
Ovvero anche, in forma differenziale:

diV(pV):Z—'j [94]

Introducendo l'operatore derivata sostanziale dato da:
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D o 0 0 0
— = —4+U—+V—+W—
Dr or ox oy oz

allora la [94] st puo scrivere nella forma:
D -
ZP oV N =0 1957
Dr
Questa ¢ detta eguazione di conservazione della massa in forma differenziale.
5.4.2 CONSERVAZIONE DELL’ENERGIA

Il primo principio della Termodinamica per un sistema aperto in forma integrale puo essere
derivato da quanto gia visto per sistemi aperti con scambi di materia in corrispondenza a tubi di flusso
finiti. Con riferimento alla Figura 43 si puo scrivere il bilancio:

2 2
W o W : oE
m1[71+gzl+ p1V1+e1]+Q_L_mz[ 22 +0z, + PV, +ez]+Qsorgente = 8;

ove risulta, per 'accumulo a secondo membro:

OE, 0 W
=— | dm|—+Qgz+u+e
ot GTMU 2

In forma integrale la precedente equazione puo essere scritta nella forma:
w’ - -0
~[| h+=-+gz | pV fidA - [G" fidA + [ qdV —L=—[epdv 96]
A 2 A v ory,

ove si ha:

ALDEBNIRNE Q

Figura 43: Sistema aperto con flussi localizzati

2
w 7 o= . .. R .
—J(h+7+ ngpV ndA scambio totale (quantita entrante meno quantita uscente) di

2
W
metalpia (h + > + gzj della massa elementare;

- J. g™ ndA scambio termico totale di calore (entrante meno uscente);
A
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J.QdV generazione interna di calore, con ( potenza termica generata
v

per unita di volume;

L Potenza meccanica totale scambiata (somma del lavoro positivo
e del lavoro resistivo);

0 . : . . . .
a—IepdV accumulo di energia nel sistema con e energia specifica dell’unita
T

di massa del sistema.
Se ci si riferisce alle condizioni di regime permanente possiamo scrivere:

2
—j(h+w?+ngp\7-ﬁdA—jq"-ﬁdA+jqu=L [97]
A A \%

Possiamo ancora applicare il zeorema della divergenza ma lo sviluppo risulta piuttosto lungo poiché
occotre tenere conto del lavoro fatto da tutte le forze agenti sull’elemento di volume, fra le quali le

tensioni normali © e tangenziali T.
La forma finale dell’equazione dell’energia, riferita all’entalpia, ¢:

oh oh oh o(,0T) of,0T op op op .
p—+pU—+N—=—|A— |+—| A— |+| —+U—+W— |+ uD+(
or OX oy ox\_ ox) oy\ oy or  OX oy

ove si ha:
(6u av]2 {(aujz [avﬂ 2[au asz
O =pu| —+—| +2|| — | +| = | |-=| —+—
oy dx OX oy 3l ox oy

detto zermine dissipative. In forma simbolica la precedente equazione dell’entalpia si puo scrivere:

Dh Dp .
—=V(AVT )+—+ud+ 98
Po. (AVT) D, THP+ /98]

Ricordiamo ora che vale la relazione (vedi Termodinamica Applicata):

dh = cpdT +(V—T —
0

ov
d
Tp}p

che puod ancora essere scritta facendo apparire la densita p=1/v:

|1
dh=c,dT +| =-T[ =22 | |dp
yo, oT

p

E, infine, tenendo conto della definizione del fattore di dilatazione termica:
p3{2) 22
viar J, p\aTl J,

1
dh=c,dT +;(1—,[>’T)dp

si ha:

per cui la [98] si puo scrivere nella forma:
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DT Dp .
C,—=V-(AVT )+ [T —+ud+
i~ (AVT)+pT o, THD+H]
Nel caso di fluidi a comportamento incomprimibile e nel caso che D%T sia trascurabile la
precedente equazione si puo scrivere, in forma semplificata:

pcp%:V-(lVT)+y®+q

Se il mezzo ¢ omogeneo ed isotropo (A = costante) allora si puo ancora scrivere:

pcpﬂzsz + 1D+
Dz

Nel caso in cui il zermine dissipativo sia trascurabile'® e non ci sia generazione interna di calore ¢&:
DT
2
pC,—=AVT
Dz

Le ultime due equazioni dell’energia sono molto utilizzate per lo studio della convezione termica.

54.3 EQUAZIONE DELL’ENTROPIA PER SISTEMI APERTI

L’equazione di Clausius per 1 sistemi chiusi vista nel corso di Termodinamica Applicata ¢:

ds =§ +6S
T

Per un sistema aperto in forma integrale questa diviene:

irreversibile
Reale

{%‘;—?+Jpsir,dv —!\ps\ﬁﬁdA:a—ivjpsdv

Questa equazione risulta utile nella pratica quando si vuole ottimizzare Pefficienza dei sistemi
termodinamici nel senso di determinare le condizioni di minore produzione di entropia. Una
applicazione tipica si ha nell’ottimizzazione progettuale degli scambiatori di calore.

5.4.4 CONSERVAZIONE DELLA QUANTITA DI MOTO
La legge di conservazione della quantita di moto, di Newton, in forma finita ¢ data da:

oM,
or

Per derivare la forma differenziale occorre considerare, fra le forze in gioco, anche le tensioni

F+M,—-M, =

normali G e tangenziali T che agiscono sull’elemento di volume oltre alle forze di volume (ad esempio il
peso, le forze elettromagnetiche, ..) X, Y, Z.

Poiché la precedente equazione ¢ vettoriale occorre effettuare il bilancio nelle direzioni di moto
Ad esempio per la direzioni x si ha 'equazione:

00, _p 97y _0(pu) O(pv)u
oXx ox oy OX oy

che puo essere semplificata per I'equazione di continuita [95] nella forma:

0 07, ou ou ou ou
X+—(ox—P)+ =p| —+U—+V—+W—
OX oy or oX oy 0z

X+

16 Per velocita piccole tispetto a quelle del suono nel mezzo a pari condizioni p ¢ si dimostra trascurabile.
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Analogamente per la direzione y si ha:

Y+£(o* —p)+%— ﬂ+u@+v@+wﬂ
ox\ 7 x P 2 2

e per l'asse z si ha:

0
2+ (0, p)+ 22
Per eliminare gli sforzi ¢ e T dalle precedenti equazioni si ricorda che per i fluidi newtoniani gli
sforzi sono proporzionali ai gradienti di velocita (legge di Newfon) con costante di proporzionalita pari
alla viscosita dinamica.

Lo sviluppo (sostituzione degli sforzi con relazioni funzioni dei gradienti di velocita) porta alle
equazion: di Navier — Stokes :

ou 2 (ou ov ow

O =2U——— M| —+—+—
ox 3 \ox oy oz

v_2 (o ov ow

oy oz

—oy N <
Tw =S T3

ow 2 (ou ov ow
Op =2U———H| —+_—+—
oz 3" \ox oy oz

ou  ov  ow
oy o0z oX

Sostituendo queste equazioni nelle precedenti equazioni di conservazione della quantita di moto
si ottiene I'equazione vefforiale simbolica:

Txy =Tyx =Tyz =Tx =/J(

p[[))—vz—vmyv?\hlf [99]
T

Questa equazione descrive in modo completo i fenomeni meccanici dovuti al moto delle
particelle di fluido ed ¢ fondamentale per lo studio della convezione termica.

5.5 EQUAZIONI DELLO STRATO LIMITE

E’ noto che il moto di un fluido sopra una superficie porta alla formazione dello strato limite,
vedi Figura 44, all'interno del quale la velocita del fluido risente della presenza della parete per effetto
delle forze viscose.

Si ricordi che si definisce strato limite dinamico 1o spazio nel quale si ha una variazione di velocita
fini al 99% di quella indisturbata, al di fuori dello stesso strato limite.

Per effetto dei fenomeni di aderenza si possono fare alcune ipotesi semplificative per le equazioni
di bilancio viste in precedenza.

In particolare si puo assumere che siano valide le assunzioni che:

La velocita longitudinale u sia molto maggiore delle altre due componenti v e wy
Che il gradiente di velocita a%y sia molto maggiore di tutti gli altri gradienti delle altre componenti di velocita
rispetto a qualungue asse;

Che il gradiente di temperatura T oy sia molto maggiore di tutti gli altri gradienti di temperatura a%x e

YVer
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In queste ipotesi le equazioni di Navier — Stokes portano ad avere componenti di sforzi normali G
nulli in tutte le direzione mentre gli sforzi tangenziali non nulli sono:

au

TZX = TXZ = /’l
oy
pdilod vWaodta
tubdeto
Rdilod Hadta
laninare

>

Srato Tuderto
| Srato Lanirere >\
| |
| |
! ! Irizio Mto tubderto

Figura 44: Profili di velocita nello strato limite sopra una lastra piana
Inoltre se il fluido si suppone incomprimibile la sua densita, p, non varia e pertanto 'equazione di
continuita diviene:
ou  ov
- — =
oX oy

I’equazione della quantita di moto nella direzione x diviene:

ou ou lop o4
fV—=——=

u— V—
ox gy pox 0oy

mentre la proiezione sull’asse y porta ad avere:

®_o
oy

Infine 'equazione dell’energia, con il termine dissipativo u®, nello strato limite si semplifica nella
forma seguente:

0

orT  oT o4 ou
U—+V—=a—5+V| —

ox oy oy oy

Queste ultime tre equazioni (nel piano) rappresentano le cosiddette eguagioni dello strato limite che
descrivono compiutamente tutta la fenomenologia (meccanica e termica) della convezione termica.

L’integrazione di queste equazioni non ¢ affatto semplice e rappresenta uno dei problemi piu
complessi di tutta la Scienza e la Tecnica. Queste equazioni descrivono fenomeni complessi 1 piu vari,
dalla meteorologia terrestre, alle correnti marine, agli scambi convettivi di tutti 1 corpi, ...

Si osservi come le equazioni di continuita e di quantita di moto consentano di risolvere il campo
di moto (# e ») mentre 'equazione della temperatura fornisce il campo termico, 7.

La risoluzione delle prime due equazioni puo essere considerata indipendente dalla terza fino a
quando non si abbia parametri (p e p) dipendenti dalla temperatura.
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Cio non sempre si verifica e in particolare con la convezione naturale si ha proprio questa
dipendenza (ipotesi di Bussinesque) e pertanto le tre equazioni risultano accoppiate e non possono essere
risolte separatamente, con aggravio notevole dei calcoli.

Pertanto possiamo considerare disaccoppiati le equazioni meccaniche da quella dell’energia solo
per la convezione forzata mentre per quella naturale questa separazione non ¢ piu possibile.

5.5.1 IL COEFFICIENTE DI CONVEZIONE TERMICA

Scriviamo qui di seguito le equazioni dello strato limite:

Si puo immediatamente osservare che in esse non compare il coefficiente di convezione termica h. Come
mai? In effetti queste equazioni descrivono i fenomeni fondamentali che costituiscono il fenomeno
complesso della convezione termica: il fluido si riscalda, si sposta e trasporta con sé I'energia interna
(fenomeno di trasporto). Se vogliamo determinare 4 occorre considerare che 'equazione di Newton ¢
una semplificazione macroscopica della complessita dei fenomeni suddetti. Newton pose in relazione la
temperatura della parete e quella del fluido indisturbato mediante la nota equazione:

q"=h(T,-T;)

Va ancora considerato che la parete trasmette il flusso:

oT
o 2=
q [ay]y=0

—2{%} : =h(T,-T,)

%)
h=—— 220 [100]

(Tp —Ti )

Quindi se si conosce il gradiente di temperatura nel fluido all’attacco della parete (per y=0) allora
¢ possibile calcolare il coefficiente /. Pertanto la risoluzione delle equazioni dello strato limite e in
particolare del campo di temperatura (per altro dipendente da quello di velocita) porta al calcolo di 4 mediante
la relazione precedente.

Deve allora essere:

e pertanto risulta:

5.5.2 1 PARAMETRI DI SIMILITUDINE

Se si trascura effetto del gradiente di pressione nell’equazione della quantita di moto e del
termine dissipativo nell’equazione dell’energia allora le equazioni dello strato limite divengono:
ou ov
+—=0

o oy

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE 71

U—+V—=vV— B)

Appare evidente Iidentita formale delle ultime due equazioni che hanno a primo membro il

termine convettivo ua—+v— relativo, rispettivamente, alla velocita in direzione del moto, #, ¢ alla
X

temperatura e a secondo membro il termine di attrito o di flusso di conduzione entrambi con analoga
. 17
forma matematica .
Si osserva ancora che il gradiente di pressione dipende dalla geometria di scambio e non dalle

caratteristiche dello scambio convettivo. Ad esempio, per il moto all'interno di condotti circolari a%x

R 1u? . .
¢ dato dalla relazione di Wezssbach P Ve faE p . Pertanto quanto detto sul formalismo matematico
puo ancora ritenersi valido in presenza del gradiente di pressione.
11 termine dissipativo, invece, dipende dal campo di velocita e pertanto la sua presenza costituisce
una differenza formale non trascurabile. Sorge spontanea la domanda se sia possibile modificare queste
equazioni per renderle adimensionali. Ponendo:

X y
X*==:y*=2
L ¢ L
\"
T ; VE=—
uZX) uoo
TH_ T-T,
T,-T,
p*= P 2
PU,
allora le equazioni dello strato limite, A), inizialmente scritte divengono:
ou* ov*
—+—=0
oX*  oy*

UGTIO TRN g Wi
ox*  Re oy*

ax* ay*

Lor* oT* 1 o°T*

u +V = 5
OX* oX* Re-Proy*

con 1 numeri adimensionali di Reynolds e di Prandt/ definiti, come ¢ noto, da:

Re:—pWsz—L
7] 14

Pr:Cp_'u:K
A a

17 Proporzionalita, tramite ¢ e v alla derivata seconda della velocita e della temperatura.
p > p

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE 72

Queste nuove equazioni sono ora adimensionali e consentono di risolvere il campo di velocita
adimensionale, #* e /¥, e di temperatura, T*.
In genere si hanno funzioni del tipo:

u*= u*(x*, y*,dL, Rej
dx*

v*=v*(x*, y*,dL,Rej
dx*

E ancora per la temperatura adimensionale:

*=T *(x*, y*, dp ,Re, Prj

dx*

*
Si ricordi che dp AX* dipende dalla geometria, come pure la lunghezza di riferimento L. Se si

applica la relazione [100] per il calcolo di 4 allora si ha:

hel _ Nu,. =(8T—*] =f (Re, Pr,di*,x*j
A oy -0 dx

11 valore medio di h,. dipende da:

Nu =1IL Nu,.dx*= f (Re, Pr,dij
L -0 dx*

*
con Nu numero di Nusselt. Per data geometria e quindi per assegnato dp AX* si ha il legame

funzionale:
Nu = f (Re,Pr) [101]

Questa relazione ¢ molto importante perché ci indica un legame funzionale fra il numero di
Nusselt (che contiene /) e i numeri adimensionali di Reynolds e di Prandtl. 11 numero di Prandtl ¢ anche
dato dal rapporto fra la viscosita cinematica (detta anche djffusivita meccanica) e la diffusivita termica.

5.5.3 ANALISI ADIMESIONALE PER LA CONVEZIONE FORZATA

I’analisi adimensionale mediante applicazione del teorema di Buckingam'® trova esattamente gli
stessi risultati visti sopra con 'adimensionalizzazione delle equazioni dello strato limite. Non sfugge
certamente il significato fisico del precedente sviluppo: partendo dalle equazioni costitutive della
convezione termica (forgata) si ¢ pervenuti alla definizione del legame funzionale fra le grandezze
termofisiche in gioco presenti nei numeri adimensionali Nz, Re e Pr.

Ancora dalle equazioni di Navier - Stokes per lo strato limite per la convezione forzata si ha che la
velocita del fluido ¢ imposta esternamente mediante un circolatore del fluido e pertanto si osserva che
il coefficiente di convezione 4 ¢ funzione delle seguenti variabili:

h=h(p, 1, w,1,c,, 1) [102]

Si possono scrivere le seguenti relazioni dimensionali:

[=([L]

18 1> Analisi Adimensionale di Buckingam fornisce una semplice procedura matematica per semplificare il numero di
variabili indipendenti nello studio di un problema complesso. Essa viene attuata indipendentemente dalla conoscenza del
fenomeno fisico e, pur se semplice nella trattazione, fa perdere di vista il reale significato delle grandezze in gioco. Per il
teorema di Buckingam (o teorema pi-greco) si dimostra che se una grandezza k dipende da m altre variabili e se ¢ possibile
scegliere n variabili indipendenti allora la variabile k si puo porte in funzione di m-n gruppi adimensionali.
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[h]=[MT 6]
Ipotizzando una relazione di tipo monomia' del tipo:
h=Cp* 1" Wlc: A" [103]
si ottiene I'equazione di congruenza:
[MT20 | =c[ML*T[MUT T LT (L] [T 20 T [MLT %0 ] 104

da cui ¢ possibile ricavare il sistema di congruenza dimensionale:

0=-3a-b+c+d+2e+f per L
l=a+b+f per M
[105]
-3=-b-c—-2e-3f per T
—l=—e-f per 6

Ancora procedendo come per la convezione naturale, risolto il sistema per 6-4=2 variabili
arbitrarie scelte come indipendenti si ha che la [104] diviene:

A pw Y[ Gou )
]

si perviene ad una relazione fra tre gruppi adimensionali e piu precisamente fra i numeri di
Nusselt, Prandtl e Reynolds, gia introdotti in precedenza.
Il legame funzionale ¢ del tipo:

Nu=C-Re"- Pr" [107]
o piu in generale della forma
Nu = f (Re,Pr) [108]

Nel prosieguo sono fornite alcune tabelle utili per il calcolo dei coefficienti di convezione termica
sia in regime forzato che naturale.

5.6 CONVEZIONE IN REGIME TURBOLENTO

Le equazioni dello strato limite A) cosi come sono scritte valgono per regimi laminari nei quali si
possono individuare con precisione i percorsi e le velocita delle particelle di fluido in movimento. La
cosa non risulta semplice nel caso di moto turbolento a causa della imprevedibile casualita del moto.

Ogni particella in un dato istante, infatti, puo spostarsi liberamente in ogni direzione ma il valore
medio in un periodo temporale congruo deve avere una componente media della velocita non nulla

solo nella direzione di moto e cioé deve essere U0 , V=w=0.

Seguendo una metodologia di studio suggerita da Prandtl ¢ possibile scrivere, in ogni istante:

19 In realta non ¢ necessario supporre che il legame funzionale sia monomio. Si dimostra che il procedimento resta
valido anche per relazione di tipo polinomiale. Si ¢ preferito utilizzare la forma monomia per semplicita espositiva.
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u=u+u'
V=V+V'

W=W+W'
T=T+T"
p=p+p’

avendo indicato con gli apici i valori fluttuanti e con il sopra segno i valori medi di ciascuna
grandezza. Le equazioni dello strato limite A) con le precedenti sostituzioni possono essere risolte
tenendo presente che, statisticamente, si hanno le seguenti eguaglianze:

|:O

S 20 B
X or or

U+V=U+V

e pertanto divengono:

Ponendo:

con &y la diffusivita meccanica del vortice e ancora:
—_ T
—V'T'=¢, —

oy

con & detta dffusivita termica del vortice si puo ancora scrivere:
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che sono le nuove equazioni dello strato limite per il regime turbolento. Come si puod osservare
adesso le incognite sono passate da tre (#,,1) a cinque (42,1, &, &) pur avendo sempre tre equazioni a
disposizione.

Ne segue che la soluzione del campo dinamico e termico non ¢ piu possibile con le sole
equazioni costitutive C) ma ad esse vanno aggiunte altre due equazioni che definiscono le diffusivita del
vortice meccanica, &, ¢ termica, &, Queste equazioni sono di solito sperimentali, come si vedra nel
prosieguo con i profili universali di velocita e di temperatura.

5.6.1 NUOVA TEORIA SULLA TURBOLENZA

Per oltre un secolo si ¢ associato alla parola furbolenza 11 significato di caotico nel senso classico di
indeterminazione ossia di incapacita a gestire in modo rigoroso fisico — matematico il problema.

Quando un problema si presenta in modo non direttamente risolvibile o quanto meno gestibile
con le conoscenze del momento allora 'Uomo cerca trovare sempre una via alternativa che consiste nel
definire un modello pia semplice che riduce la complessita del problema e che quindi porta ad avere
risultati utili anche se si ¢ perso il legame diretto fra causa ed effetto.

L’idea di Kutadelaze di definire le variabili turbolente come somma di un valore medio e di un
valore istantanemanecte variabile (come fatto nel precedente paragrafo) ¢ certamente stata utile ad
affrontare e risolvere un problema che nell’ottocento non era risolvibile con le conoscenze dell’epoca.

Pur tuttavia questa procedura ha di fatto posto un velo all'intelligenza dei ricercatori di diverse
generazioni perché ha impedito loro, per una sorta di pigrizia mentale, di ricercare una soluzione che
avesse un legame diretto con il fenomeno complesso della turbolenza.

In pratica la metodologia di Kutadelaze non risponde alle domande piu dirette ed elementari che
un ricercatore si deve porre: perché avviene la transizione dal moto laminare al moto turbolento?

In effetti la Statistica ci insegna che il valore medio di una variabile nasconde tutta la statistica di
ordine superiore che essa puo presentare focalizzando I'attenzione solo sul primo momento statistico, il
valore medio. Le fluttuazioni non sono piu prese in considerazione e con esse la storia evolutiva del
fenomeno legato alla variabile fluttuante.

Se osserviamo il pennacchio di fumo che si origina da una sigaretta accesa, ad esempio, possiamo
notare che all’inizio (nel tratto piu vicino al focolare) si ha un andamento ordinato e laminare.

Successivamente, ad una certa distanza dal focolare, si comincia ad osservare una prima
oscillazione (vedi Figura 45) di relativamente piccola ampiezza cui seguono altre oscillazioni di
ampiezza crescente.

Figura 45: Pennacchio originato da un focolare in basso
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Quando queste oscillazioni superano determinati valori che dipendono dalle condizioni evolutive
(tipo di fluido, temperatura del focolare, distanza, ....) allora si ha linizio della formazione di veri
vortici caratteristici del moto turbolento.

Se consideriamo un segmento di pennacchio e consideriamo le forze agenti ai suoi estremi allora
lo possiamo schematizzare come un’asta soggetta ai carichi di punta. E’ noto che questa condizione di
carico porta all'instabilita e quindi alla flessione quando la rigidezza flessionale (EI) dell’asta ¢ inferiore
ad un valore limite caratteristico per la geometria, 1 vincoli e i carichi.

La stessa cosa possiamo pensare per il segmento di pennacchio: quando, allontanandosi dal
focolare, viene sottoposto a forze esterne alle quali non puo resistere ecco che esso si flette e da quel
momento iniziano le oscillazioni che sfociano nella turbolenza.

Le considerazioni appena accennate sono oggi sviluppate dai vari ricercatori ottenendo eccellenti
risultati e un grande avanzamento della conoscenza nelle problematiche della turbolenza che comincia a
non apparire pit come un moto caotico e quindi non descrivibile in modo esatto ma come un evento
perfettamente deterministico che ¢ possibile studiare con le metodologie solite).

Ancora una volta la banalizzazione della realta e il velo mentale che da questa ne deriva ha portato
per oltre un secolo a ritenere risolto un problema che invece ¢ ancora tutto da studiare e risolvere. 11
modello semplificato di Kutadelaze ¢ da ritenere solo un semplice surrogato della realta, un modello
comunque distante anche se ci ha consentito di pervenire a risultati importanti nella ricerca.

C¢ da fare un confronto metodologico con quanto si ¢ verificato per il coefficiente di
convezione: Newton supero la complessita del fenomeno definendo, in modo puramente apodittico, 4
come rapporto fra flusso termico specifico e differenza di temperatura e cosi siamo andati avanti per
secoli. Allo stesso modo Kutadelaze semplifico il problema della turbolenza con le equazioni dei valori
medi. Entrambe le posizioni si scostavano molto dalle equazioni costitutive del fenomeno ma,
dobbiamo riconoscerlo, non era possibile fare altrimenti nei momenti storici in cui tali problemi sono
stati posti ed affrontati.

Oggi siamo in grado di risolvere le equazioni costitutive di Navier Stokes mediante I'utilizzo di
potenti computer e sofisticati programmi di calcolo (alias mediante algoritmi di calcolo opportuni)
senza i quali poco potremmo fare. Lo stesso dicasi per lo studio della turbolenza.

5.6.2 LA DIFFUSIVITA MECCANICA TURBOLENTA

Con riferimento alla Figura 47 si immagini una particella di fluido alla distanza y dalla parete in
moto turbolento all'interno dello strato limite dinamico. La velocita media longitudinale ¢ pari a
U(X,y) mentre quella trasversale ¢ nulla. Se questa particella passa nello strato (y — /), con / lunghezza
media statistica di scambio fra gli strati di fluido, allora la velocita media diviene U(X,y—I). Questa
distanza ¢ detta lunghezza di mescolamento e definisce il percorso all'interno del quale la particella di fluido
mantiene ancora la sua identita. La fluttuazione #’ provocata da questa migrazione nel livello (y — /) ¢
dello stesso ordine di grandezza e puo essere scritta nella forma:

|u’~T(x, y)—U(x,y—I)~I%u

Allo stesso modo si puo pensare che la fluttuazione »’ sia dello stesso ordine di grandezza e che

ancora si possa scrivere:

or
oy

Allora la diffusivita meccanica del vortice, &, puo essere posta proporzionale a:

€M~Iza—u
oy

Misure sperimentali suggeriscono che la /Junghezza di mescolamento ¢ proporzionale alla distanza
dalla parete e cio¢ che sia:

vi~I
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l=xy

con K=0.4 determinato sperimentalmente da won Karman. Pertanto sostituendo nella
precedente relazione si ha:

on
oy

che ¢ I'equazione classica della rappresentazione della diffusivita meccanica del vortice e che ¢ stata
utilizzata dai vari ricercatori per risolvere il problema della chiusura delle equazioni dello strato limite.

&y =K2y2

5.6.3 LA DIFFUSIVITA TERMICA TURBOLENTA

Quando le particelle si spostano da un piano ad un altro (quindi con variazione di v’) trasportano
anche la loro entalpia.

" Rrticdla2 Ut
L
Vv
T U \_  Profilo di
Rarticdla 1 W‘ra
Rarete >

Figura 46: Lunghezza di mescolamento termica

Con riferimento alla Figura 46 si puo osservare che le fluttuazioni generate dal mescolamento
turbolento dipendono dalla lunghezza media di mescolamento, / e che si puo scrivere:

) = | T
|T '| =T|y——=|-T|y+=|=-l a

2 2 oy

11 trasporto di entalpia corrispondente ¢ dato da:
(9")'=pc,v'(T+T")
Il valore medio temporale di questo flusso (turbolento) vale:
(qlly)I:pCpVIT'

In pratica il fluido a coordinate y inferiori cedono calore al fluido a coordinate y maggiori e

pertanto nasce un flusso termico apparente dovuto agli effetti di mescolamento per la turbolenza. Tenendo
conto dell’espressione di T” trovata in precedenza si ha:

RV - — 0T
(q y) = pc,v'T z_pCpl|V|E
Ponendo:

a =I\v]

detta diffusivita termica turbolenta, si puod ancora scrivere per il flusso turbolento:
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TRy — — 0T oT
(q y) =pc,v'T z_pCpI|V|E=_pCpa[E

In definita il flusso termico totale (conduttivo piu turbolento) ¢ pati a:

. oT
qy ==pC (a+at)5

come visto per 'equazione dell’energia in moto turbolento. E’ opportuno osservare che la
diffusivita termica del vortice non ¢ una proprieta termofisica del fluido, come ¢ invece la diffusivita
molecolare @, ma dipende dal cazmpo di moto, come la viscosita dinamica turbolenta.

Per l'analogia del meccanismo di turbolenza sopra descritto e cioe¢ per lequivalenza del
meccanismo di trasporto della quantita di moto e dell’entalpia, si puo supporre (ma non sempre ¢ cosi)
che sia:

Pr, = ~1
&

t
Questa ipotesi semplificativa ¢ spesso assunta da diversi ricercatori come base di partenza per le
loro teorie.

5.7 PROFILO UNIVERSALE DI VELOCITA

Se si considera il moto di un fluido sopra una lastra piana si osserva che la distribuzione della
velocita, a partire dalla parete, varia secondo un profilo tipico indicato in Figura 44.

Si puo subito osservare che il fluido per aderenza molecolare ha velocita nulla in corrispondenza
della parete e che questa velocita va sempre piu crescendo fino a raggiungere la velocita che il fluido
aveva all'imbocco della lastra piana.

La distribuzione della velocita all’interno dello strato limite ¢ di grande importanza ai fini del
calcolo del fattore di attrito e dei coefficienti di scambio termico.

Nel caso di moto /laminare il profilo di velocita puo essere determinato integrando le equazioni di
Navier Stokes all'interno dello strato limite dinamico e pervenendo ad un profilo di tipo parabolico o
assimilabile ad esso.

Ben diverse, come si ¢ visto nel paragrafo precedente, sono le condizioni quando il moto diviene
turbolento. In questo caso, infatti, la velocita istantanea di una particella puo andare in qualunque
direzione, in modo del tutto casuale.

In Figura 47 si vede come una particella ad ordinata y che si sposta nel piano ad ordinata y +dy
scambia con la analoga che scenda nel piano y (per conservazione della massa) la quantita di moto:

Ap=dm(u,*—u,’)
ed analogamente I'energia:
de=c,dm(T",-T")

Ne deriva che la turbolenza fa nascere due effetti nuovi: un rallentamento degli strati veloci per
effetto dell’assorbimento di quantita di moto degli strati piu lenti ed uno scambio di entalpia fra
particelle di strati a diverse temperature.

L’esigenza di risolvere le variabili U, V e T nonché €y € &, con tre sole equazioni di Nawvier
Stokes: ha generato il cosiddetto problema della chiusura nel senso che, oltre alle equazioni suddette
occorre conoscere altre relazioni, solitamente di tipo sperimentale, per la determinazione delle djffusivita
del vortice meccanica e termica.

Un metodo elegante e proficui per risolvere questo problema ¢ quello dei cosiddetti profili
universali di velocitd e di temperatura che qui si richiama brevemente.
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CGna dla gratolinite

u
Farticdla 1

Farete

Figura 47: Scambio di quantita di moto e di energia fra particelle in moto turbolento

Con riferimento alla Figura 44, si definiscono le seguenti grandezze:

ove T, ¢ lo sforzo di attrito alla parete, y la distanza dalla parete, # la velocita del fluido a quella

distanza e v la viscosita cinematica. I’equazione della quantita di moto del sistema C) in vicinanza della
patete, ove U =0eV =0, portano ad avere, trascurando gli effetti del gradiente di pressione:

0 ou

0=—|(v+ey)—

oy

ovvero, integrando una prima volta:
ou T,
(v+é&y )— |=costante=—
oy P

Allora integrando nuovamente e tenendo conto delle posizioni sopra fatte si ha la relazione:

ey dy’
u _.[o &y
1+

14

che ¢ possibile integrare se si conosce il rapporto fra la diffusivita del vortice, ey, e la viscosita
cinematica.

Si osservi che la variabile y* ¢ una sorta di numero di Reynolds calcolato per la distanza y dalla
patete con riferimento alla velocita »” detta velocita di parete. 1a y* & detta anche numero di Reynolds di parete.
Van Driest ha trovato sperimentalmente la seguente relazione:

p &
1
2 |2

, oy
fn Ll akzyt |16 A
v 2
con K=0.40 ed A=0.5 e pertanto I'integrazione fornisce i seguenti risultati
b <5 ur=y+
y+>40 w=1/K In(y+) +C

e nell'intervallo 5+ 40 si ha un andamento complesso rappresentato in Figura 48. Il vantaggio del
profilo universale di velocita ¢ quello di essere rappresentato in forma adimensionale e di valere anche per
moto allinterno di condotti chiusi.
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241
et = (r,/0)'/?
20
Strato turbolento o
logantmico
164
3 VR ]
I \‘I
+
2 124 ! 7
7

Equazione (7.3)

8 Dati ottenuti per il moto su
lastra piana o nei tubi.

0 T T T
1 10 100 1000

y*t =y fy

Figura 48: Profilo universale di velocita

Tramite questo profilo, calcolata la y* si calcola la #* e quindi la velocita vera # del fluido alla
distanza y dalla parete. Conoscere la distribuzione della velocita al variare della distanza dalla parete ¢
particolarmente utile nel moto turbolento dove la casualita del movimento genera fenomeni di
diffusivita meccanica e termica fittizi, cio¢ dovuti allo scambio di quantita di moto e di energia fra
particelle provenienti da strati diversi.

5.8 PROFILO UNIVERSALE DI TEMPERATURA

Se la lastra piana ¢ riscaldata uniformemente, vedi Figura 49, allora oltre al profilo di velocita
dinamico si forma anche un profilo di temperatura. Lo strato limite termico puo avere sviluppo simile o
anche diverso da quello dinamico in funzione delle caratteristiche del fluido. Procedendo allo stesso
modo visto per il profilo di velocita si osserva che 'equazione dell’energia delle C) in prossimita della
parete fornisce:

oz% (a+e,)

oy

che integrata una prima volta diviene:
'q s

(a+e, )ﬂ = costante=
oy PCy

che integrata ancora una volta, tenuto conto delle posizioni adimensionali fatte in precedenza,
produce la relazione:

T-T,=-1 v dy
pC, 0 a+e,

ove ¢” ¢ il flusso termico specifico applicato alla parete, p e c, cono la densita e il calore specifico
del fluido, @ e g, rispettivamente la diffusivita termica molecolare e la diffusivita termica turbolenta
generata dalla miscelazione delle particelle di fluido provenienti dai vari strati nello strato limite
turbolento.
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Figura 49: Profili di velocita e di temperatura per moto su lastra piana riscaldata
La precedente relazione viene adimensionalizzata nella forma:
PCV y* dy*

T =(T,-T) e o 1

ove T, ¢ la temperatura di parete, Pr ¢ il numero di Prandtl del fluido (Pr = Vv/a) e Pr, =&um/ & il
numero di Prandtl turbolento.

110-1 Pre =09

Strato Pr
1004 logaritmico
904
80+ Sottostrato
70 4

T+ 604 10

Dati per acqua Pr = 5.35

40 - an = "
304
204 1
07
10
— 0,03
0 T 1 M 1 T T L T 1
1 2 1 6 8 10 20 40 60 B0 100

Figura 50: Profilo universale di temperatura

Nota la relazione di [Van Driest per il rapporto &,/ Vv, la precedente relazione puo essere integrata
per vari valori di Prottenendo le curve di Figura 50 detta profilo universale di temperatura.

Lutilizzo di queste curve ¢ del tutto simile a quello del profilo universale di velocita e risulta
estremamente utile per conoscere i profili reali di temperature negli strati limiti termici in regime
turbolento.

In Figura 50 si puo osservare la dispersione sperimentale dei dati per il valore Pr = 5.
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Analoghe dispersioni si hanno per altri numeri di Prandtl, in ottimo accordo con le curve teoriche
sopra determinate. Quando si assume Pr, =1 e Pr =1 allora si puo dimostrare che gli stati limite di
velocita e di temperatura coincidono.

Negli altri casi si ha una diversificazione sensibile che porta anche ad un allontanamento delle
ipotesi sopra descritte. Si hanno varie teorie che cercano di risolvere il problema della chiusura per i casi
piu comuni della tecnica e si rimanda ai testi specializzati per ulteriori approfondimenti.

5.9 ALTRE SOLUZIONI DEL PROBLEMA DELLA CHIUSURA

Come si ¢ sopra detto, molti ricercatori hanno cercato di risolvere il problema della chiusura delle
equazioni dello strato limite turbolento affrontando sperimentalmente la determinazione delle due
diffusivita del vortice. In Tabella 6 si ha una rassegna delle equazioni proposte, ivi compresa quella di
Van Driest vista in precedenza.

5.9.1 ANALISI DEGLI ORDINI DI GRANDEZZA

Le equazioni dello strato limite A) o B) consentono di ottenere molte informazioni con semplici
considerazioni degli ordini di grandezza.

Summary of Longitudinal Velocity Expressions for the Inner Reglon
of a Turbulent Boundary Layer (after Kestin and Richardson [15])

ut(y") Range References
ut-y* 0 <y*< 116 Prandtl and Taylor [13]
u = 25Iny*+ 55 y'> 116
u -yt 0<y'<$5 von Karman [16]
u'= S5iny*— 3.05 S<y'<30
u*=25Iny*+ 55 y'>30
u”= 14.53 tanh( y~* /14.53) 0 <y*<275 Rannie(l7]
u'=25Iny*+ 55 y'>215
du* 2

—_—- all y* van Driest [18]
' 2 + . ‘/2

DT 14 {1+ 4y 21 - exp(—y* /4" ))

k=04 At=26

u'=25In(1 + 04y") all y* Reichardt [19]

+78[1 — exp(—y"'/11)

=(y"/1)exp(—0.33y")]

du” 1 s .

dy’ 14 ntuty’ [l-ﬂp(—nzu'y')] gl TR
n=0.124

u'=278mIny'+ 38

y'=u'+ AlexpBu'— 1 — Bu'— ¥(Bu*)? all y* Spalding [21]
- X(Bu*) - &(Bu")*) A = 0.1108

(last term in u** may be omitted) B=04

Tabella 6: Altre soluzioni del problema della chinsura

Ad esempio possiamo facilmente vedere che lo spessore dello strato limite, 0, ¢ proporzionale
alla distanza x dal bordo di attacco ed inversamente proporzionale al numero di Reynolds
corrispondente. Sostituendo ai valori indicati dalle equazioni differenziali le grandezze massime

cotrispondent, cioe sostituendo # con #, ¢ x con O allora 'equazione di continuita fornisce:

u, Vv
X O

e I'equazione della quantita di moto:
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OVVEro:

avendo indicato con Re, = Uw%'

Con lo stesso procedimento si puo dimostrare che il fattore di attrito dipende dall’energia cinetica
specifica e dal numero di Reynolds.

Infatti possiamo scrivere, per 'equazione di Newton:

-1/2
ou u u, X -
To=u— | mu—2=pu’.| 2=| =~pui-Re %,
oy ). o v
y=0
Questo risultato ¢ confermato anche dall’analisi adimensionale e dai dati sperimentali. 11 fattore di
attrito di parete, C,, puo essere facilmente calcolato in base ai risultati sopra trovati. Risulta, infatti:

s

- pUZ
2

Cy

e pertanto, combinando i risultati precedenti:

Cfx ~ RexflIZ

5.10 SOLUZIONE DI BLASIUS DELLE EQUAZIONI PRE STRATO LAMINARE

Consideriamo le equazioni dello strato limite nella forma B). La soluzione analitica esatta non ¢
affatto agevole da trovare. Blasius ha proposto una soluzione, all'inizio del 1900, basata sul metodo della
similitndine”.

Se si osserva la Figura 51, infatti, si puo dedurre che i profili di velocita a distanze variabili
dall’imbocco siano fra loro simili. Si pone allora, ricordando quanto sopra trovato per lo spessore dello
strato limite O, la variabile di similitudine nella forma:

n=2=2 [Re,
o X
La soluzione contemporanea delle equazioni di continuita e della quantita di moto non ¢ agevole
e pertanto si cerca di ridurre le due equazioni differenziali ad una sostituendo le variabili # e » con:

w2V .- v

oy OX

La funzione y & detta funzione della traiettoria’ e la posizione precedente verifica immediatamente
I'equazione di continuita essendo:

20 Gli anglosassoni indicano questo metodo con il termine sizzilarity.

2V Ovvero streamfunction.
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Figura 51: Similitudine dei profili di velocita

u, N _Oy Oy

X Oy oyox  oxdy

L’equazione di continuita fornisce:

ou ou_ o
U—+v—=v—
ox oy oy
e sostituendo le precedenti relazioni:
oy oy _oydy _ Oy
oy oyox  ox oy’ oy’

Le condizioni al contorno sono ora le seguenti:

a_w =0 per y=0
oy
w=0 per y=0

-~ —>u, per y— o

Ponendo ora:

w(x%y)=(uvx)" f(n)

con f(n) funzione incognita allora 'equazione differenziale precedente diviene:

2f"+ ff"=0 [109]
ove si hanno le nuove condizioni al contorno:
f'=f=0 per 7n=0

f'>1 per n—ow

84

L’equazione [109] ¢ ora nella sola variabile /e puo essere risolta con sviluppi in serie ottenendo 1

valori della seguente Tabella 7. Si osservi che vale la relazione:

df
u=u, —
dn

e quindi che il rapporto:
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u _ df

u, dy

deve variare da 0 a 0.99 per la stessa definizione di strato limite.

Voo i u a2y T df :
=19,/ = I(n) e an? Y e (ndn )2
0 0 0 0332 0

04 0,027 0,133 0331 0,013
08 0,106 0,265 0327 0,053
12 0,238 0,394 0317 0,117
16 0420 0,517 0297 0,204
20 0,650 0,630 0267 0,305
24 0922 0,729 0228 0,414
28 1231 0,812 0,184 0,521
32 1,569 0,876 0,139 0,617
36 1,930 0923 0,098 0,696
40 2306 0956 0,064 0,758
44 2692 0976 0,039 0.801
48 3085 0,988 0022 0,829
4918 3,202 0,990 0,018 0,833
5.2 3,482 0,994 0011 0,843
56 3,880 0,997 0,005 0,352
6,0 4280 09% 0,002 0,857

Tabella 7: Soluzione dell’equazione di Blasius
Dalla Tabella 7 si ricava che per d%ﬂ =0.99 si ha n=0.419.

Pertanto lo spessore dello strato limite vale:

X
Re

X

0=4.92

Inoltre, sempre dalla stessa Tabella 7 si ricava:

2
(d fzj ~0332
dn o

pertanto si puo calcolare il coefficiente di attrito, Cy, dato da:

ﬂ(auj

Y )y d?f

C, = 0 2| =
P, dn

2

Il valore medio del coefficiente di attrito per la lunghezza L. della lastra vale:

j Re, '* =0.664Re, '’
n=0

— 1L _
Cy :E.[o C,dx=2C, =1.328Re, v

5.11 SOLUZIONE DI BLASIUS DELLO STRATO LIMITE TERMICO

Si puo procedere allo stesso modo di quanto fatto nel paragrafo precedente per determinare
Pandamento dello strato limite termico e calcolare il coefficiente di convezione termica.
L’equazione dell’energia:
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puo essere riscritta in funzione della nuova variabile:
_ T-T,
T,-T,
ed assumendo che, per la stessa similitudine del profilo dello strato limite termico, sia:

0=0(1)

con 1M variabile di similitudine sopra indicata. La sostituzione porta ad avere la nuova equazione
differenziale:

0

2
OI62'+ﬂfd—9=0 [110]
dp® 2 dp

ove Pr ¢ il numero di Prandtl del fluido. Le nuove condizioni al contorno sono:

0(0)=0 ; O(w)=1

Nel caso che sia Pr=1 la precedente equazione differenziale ¢ formalmente identica a quella

derivata dall’equazione della quantita di moto ove si sostituisca @ = d%ﬂ e quindi con riferimento alla
Tabella 7 st ha, per n=0:
do

—| =0.332Pr®
dn o
Infine il coefficiente di convezione termica ¢ dato da:
h 3 qll __Z(Too_Tp)d_e &
Tp -T, Tp -T, dn =0 X
e quindi:
,U 13
h,=4,/— -0.332-Pr
VX
ovvero anche:
h, x

X

Nu, == =0.332Re,"? Pr®

11 valore medio del coefficiente di scambio termico per la lunghezza L della lastra ¢ dato da:

_ 1 L ﬂ, u 1/2
h == hdx=0332%Pr" (ﬂj
Lo L

14

J'L dx

0 y/2

=2h,_, =0.664Re"? Pr'’®

5.11.1 ANALOGIA DI COLBURN
Confrontiamo 1 numeri locali di h, e Cg allora si puo scrivere:

C
7” =0.332Re™"?

Nu, =0.332Re,"* Pr’®
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Combinando le due relazioni e definendo:

St = h, _ Ny,
pcu, Re Pr
allora si ha:
St =0.332Re, “?Pr?*
ossia:

St Pr2’® = Cx
X 2

che ¢ la correlazione di Colburn. Essa assume grande importanza nella pratica perché lega il numero
di Nusselt (nel quale ¢ presente 4) con il coefficiente di attrito, Cj, di piu agevole determinazione
sperimentale. Pertanto da una campagna di misure meccaniche del coefficiente di attrito si possono
conoscere 1 valori del coefficiente di convezione.

5.11.2 LA TEMPERATURA DI RIFERIMENTO

Per l'applicazione delle relazioni sopra trovate occorre calcolare le proprieta termofisiche alla
temperatura di film data dalla media aritmetica fra la temperatura di parete e quella del fluido
indisturbato:

5.12 SOLUZIONE PER STRATO LIMITE TURBOLENTO DI UNA LASTRA

Per una lastra piana si ha il passaggio dal moto laminare a quello turbolento quando il numero
locale di Reynolds supera 5-10°. Nasce cosi lo strato subliminare e poi lo strato turbolento totalmente

sviluppato. Al di 1a di 4-10° si ha certamente il moto turbolento sviluppato. Lo spessore dello strato
limite turbolento ¢ dato dalla relazione:

X

X

11 coefficiente di attrito vale:

C, =0.0592Re, "
11 valore locale del numero di Nusselt vale:
Nu, =0.0296 Re *'° Pr/®

valida per 0.6 < Pr < 60. Il valore medio del coefficiente di convezione ¢ dato dalla relazione:

1

T Xjam L
hL = E( 0 hlam,xdX + leam hturb,xdx)

Assumendo una tranSiZiOﬂC per RCZS 1 05 allora la precedente relazione porta ad avere:

x,lam

Nu. =(0.664Re, " +0.037(Re, “*~ Re”*san ) P

che si puo ulteriormente ridurre a:
Nuy =(0.037Re, **~871)Pr”

valida per 5-10°< Re <10° e per 0.6 < Pr < 60.
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5.12.1 STRATO LIMITE SU SUPERFICI CILINDRICHE

Nel caso in cui si consideri il deflusso di un fluido sopra superfici cilindriche, vedi Figura 52,
allora occorre considerare una forte variabilita delle condizioni locali al variare dell’angolo 6.

Punto di Punto di distacco
ristagno - o
Strato limite

Figura 52: Deflusso sopra superfici cilindriche

1l flusso si mantiene laminare fino a quando Re < 2-10° dopo di che diviene turbolento. Inoltre
per valori elevati di Rep, si ha il distacco della vena fluida per un angolo pari a circa 140°. La forza di
trascinamento esercitata dal fluido sulla superficie apparente del condotto cilindrico ¢ data dalla
relazione:

pw’

F, =CpS

ove Cp ¢ il fattore di drag dato dalla Figura 53. Il coefficiente di convezione locale varia con

I'angolo O secondo quanto rappresentato in Figura 54. Il valore medio sul contorno circolare ¢ dato
dalla relazione:

1/4
Nup = 0.4(ReD1’2 +0.06 ReD2’3)Pr°-4 (&J
H,

valida per 10 < Re < 10° e per 0.6 <Pr<300e0.25< ,u% < 5.
S

Nel caso di banchi di tubi si utilizza la relazione:

r

S

Nuo =C Re," Pr*® (Ei]

con C, m ed n variabili a seconda della geometria e in particolare si ha:

. —

100  —— .

B 4

4015

20 AN - = 5. - et

N

]

8 T 1

6 1

cp 4 =
I

2 [ ~ N 2

8& vt e

6 1

0.4 L
~02+—+ 4 . N s

0.1 .- ,J,J ..... - J,;,L

10='2 46 3002 46 1912 46 1022 4 6103 2 461097 463985 2 46 406

VD
Re = e—
o v

Figura 53: Fattore di Drag
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C=0.4 per tubi sfalsati e Rep, < 2:10°
M:0'6 113 113 113 [13
C=0.022 per tubi sfalsati e Rep, > 2:10°
M:0'84 113 113 113 [13
C=0.27 per tubi allineati e Re, < 2-10°
M:0'63 113 113 [13 [13
C=0.021 per tubi allineati e Re, > 2-10°
M:0'84 113 113 113 [13
La caduta di pressione vale:
2
Ap=fNpL™ 7

con fe Z dati dagli abachi di Figura 55 e Figura 56.

800 T = | T T
.h:w)/.{/{‘\ T

700 "z\a \

B ]

| Rep = 2,19 x 10

R

1,7
4 0 x

v
S

kl

(2
‘gs
400§ {03

1,01
X o8
300 )
W 71 x
- 08
200

— 1

100

0 | 1 1 | =
0 40 80 120 6 160

Figura 54: Numero locale di Nusselt

40 O 0 L5 T e L
10 7T
2 RN=10*[TRe D ma
SLH S -~ l 1
10 PL=51/D Tl ] “05' !
6 = I —1% 1 H o]
g Pr=Sr/D 1 -
¢ \\ Pr=p 1
2 0,1 +
0,1 1 10
! =r . (Pr=1)/(PL—1)
06 L = 1,25
04 N 1 ——
o ] 2,00 [Tt
02 T —
2,5
0,1
0,06
10! 10? 10° 104 10% 108
R‘D,m-x

Figura 55: fe Z per passo quadrato
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10? O Il 1T L LIl
18 a
16
S, m
sol N\ - Sp z 4 _\I\Q -
—  12}-dos
\ — ]_0 +—
! A \‘\\ Sp= ISIT 04 06081 =
N -Pr = 1,20 Pr/PL
10° $ I
Y — 1
q2,0 2,5 \.‘EE~E
1!
10! 10* 107 10¢ 10% 108

Rep cvax

Figura 56: f e Z per passo triangolare
5.13 CORRELAZIONI UTILI PER LA CONVEZIONE FORZATA

Nelle prossime figure sono raccolte alcune correlazioni (sia sperimentali che teoriche) derivate
per la convezione forzata. Ciascuna di queste correlazioni ha un campo si validita che ¢ segnalato
nell’ultima colonna delle tabelle.

Corr. n. Correlazione Regime di moto  Note
6(z) = 4.92z/ Rel® laminare  lastra piana, valori locali
Cy, = -Q-%E:;- laminare  lastra piana, valori locali
Re,/

Nuz = 0,332 Rel/2Prl/3 laminare  lastra piana, temp. uniforme
Pr> 0,6

Nuz = 0,332 Re};/2 prl/3. laminare  lastra piana, con zona di estensione

1= (£)3/4]—1/3 ¢ non riscaldata, temp. uniforme

T
Cy, = L 3123 laminare  lastra piana, valore medio
Re L/

Nuj = 0,664 Re}llz prl/3 laminare  lastra piana, valore medio
temp. uniforme

Sty Pr2/3 = % laminare  lastra piana, valori locali,
temp. uniforme

Cy, = 0,0592 Re,,:1 i turbolento lastra piana, valore locale
5-10% < Re; < 107

Nuz =0,0296 Re‘;/5 pri/3 turbolento lastra piana, valore locale
temp. uniforme
0,6 < Pr < 60, 5-10% <Rey <107

Nuz =0,0296 Re‘,l:/5 Pri/3. turbolento lastra piana con zona non

- (5/2)9/10]_1/9 riscaldata di estensione ¢

Tabella 8: Correlazioni per convezione forzata
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Si consiglia di controllare sempre questi campi prima di applicare qualunque correlazione
proposta. Le tipologie prese in considerazioni sono numerose e consentono di risolvere numerosi
problemi pratici. In ogni caso occorre sempre ricordare che Pobiettivo principale ¢ il numero di Nusselt,
Nu, nel quale ¢ definito il coefficiente di convezione 4 cercato.

L’uso delle correlazioni adimensionali risulta molto comodo, anche se all’inizio un po’ forviante,

perché in questo modo ci si svincola dal sistema di misura e dalle caratteristiche geometriche e
topologiche dello scambio convettivo.

- ER.

Correlazione Regime di moto Note
f=64/Re laminare  moto complet. sviluppato in tubi circolari
48
Nup = o laminare  moto complet. sviluppato in un tubo circo-
» lare con flusso termico costante
Nup = 3,66 laminare  moto complet. sviluppato in un tubo circo-
lare con temper. di parete costante
D=3, 15 0,04(G2)73 aminare  regione di ingresso termica, moto sviluppa-

pato, tubo circolare, temp. parete costante

Tabella 9: Correlazioni per convezione forzata

Nu= 0.037(Re';’/5 —871) Prt/3 turbolento lastra piana, valore medio,
temp. uniforme

5.10% < Rep < 108
0,6 < Pr< 60

e 0,074 1742

= ——— — laminare ¢ lastra piana, valore medio
5L = R 1/5 Rep,
e’ z

turbolento  temp. uniforme
5-10° < Rey, < 10°

Nu =0, 036(Re‘;’/5 —9200) Pr0:4% . laminare e lastra piana, valore medio
_(1‘_39)1/ 4 turbolento  temp. uniforme
P
g 10% < Rey, < 5,5 10°

0,7 < Pr< 380

Nugy = 0,453 Rel,/2 pri/3 laminare  lastra piana, valore locale
flusso termico uniforme

Nugz = 1,04(Nuz) T, =cost laminare  lastra piana., va.lor.c locale
flusso termico uniforme
(Pr>0,7)

Nup = (0,4 Re})/2 +0, 06 R02D/3)- moto trasversale su cilindro

-Pr°'4(“—°°)1/4 0,672 Pr<300;10< Rep <10°

Ha

0,25 < poo/ts < 5,2

0,62 Re}!” Pr!/3

F-ul) =0,3+ 1+ (0,4/ Pr)2/3]l/4 . molo trasversale su cilindro

Rep \5/8 2 7
'[H'(Eoytﬁ) I31a15 102 < Re < 107, Pep > 0,2
Nup = CRe Pr°'35(%¥‘3)" banchi di tubi in moto

trasversale (v. par. 7.2.3)

v 0.8 p 0,4 banchi di tubi in moto
Nup = CRep” Pr ncl
P Y parallelo (v. par. 7.2.4)

Tabella 10: Correlazioni per convezione forzata
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5.14 CONVEZIONE TERMICA LAMINARE NEI CONDOTTI

E’ di grande interesse lo studio della convezione termica all'interno di condotti circolari (o
assimilabili). Si tratta, infatti, di un vasto campo di possibili applicazioni industriali al quale ¢ opportuno
dedicare maggiore attenzione.

Con riferimento alla Figura 57 si puo osservare che lo strato limite dinamico cresce dall'imbocco

fino al congiungimento sull’asse del condotto. La lunghezza corrispondente ¢ denominata /unghezza di
imbocco e si dimostra che, per il regime laminare, vale la relazione:

% _0.05Re,
D

Figura 57: Strato limite dinamico in un condotto circolare

Nu= ().037(Re1/5 —-871) Pr'/3 turbolento  lastra piana, valore medio,
temp. uniforme .
5-10° < Rey < 10°

0,6 < Pr < 60
_C-f L= -(#{-‘:— i laminare e lastra piana, valore medio
ReL/ Rey turbolento  temp. uniforme .
5.10% < Reg < 10°
Nu=0, 036(Re'}/5 —9200) Pr245 . laminarc ¢ lastra piana, valore medio
'(ﬁf)l/ 4 turbolento  temp. uniforme
P
. 10° < Rey, < 5,5 108
0,7 < Pr < 380
Nug = 0,453 Ret/? Pri/3 laminare  lastra piana, valore locale
flusso termico uniforme
Nuz =1,04(Nuz)T, =cost laminare  lastra piang. valorg locale
flusso termico uniforme
(Pr>0,7)
Nup = (0,4 ReL/2 +0,06 Regn/a)- moto trasversale su cilindro
-Pr""‘(ﬁ‘ﬁ)”4 0,672 Pr<300;10< Rep <10°
B 0,25 < poo /s < 5,2
. 1/2 1/3
Nup =0,3 + 0.62Rep }:r/s]l/d . moto trasversale su cilindro
" [1+(0,4/Pr)?
i+ (——ReD i 102 < Re < 107, Pep > 0,2
282000
Nup = C Relj Pr035( el )" banchi di tubi in moto
: Pr s
‘ trasversale (v. par. 7.2.3)
Nup =C Re%‘s pro4 banchi di tubi in moto

parallelo (v. par. 7.2.4)

Tabella 11: Correlazioni per convezione forzata
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Ove x, ¢ la lunghezza di imbocco anzidetta e Rey, ¢ il numero di Reynolds riferito al diametro del
condotto. La velocita media del fluido puo agevolmente essere calcolata mediante la relazione:
. m 1 2
u=— :—Iu(x, r)ds =—eru(x, r)rdr
pS Sy R<Jo

Nel caso di moto laminare il profilo di velocita nel regime sviluppato ¢ di tipo parabolico e
rimane costante lungo la direzione di moto.

Cio significa che deve essere »=0

e 0u/ox=0. Per ricavare il profilo di velocita possiamo
utilizzare equazione della quantita di moto delle A) riscritta in coordinate cilindriche:

ou ou  1ldp va[auj
U—+V—=—"—T4——|Tr

ox or pdx ror\ or

In base alle considerazioni che sono »=0 e au/ OX =0 allora si ha:
1dp_10(
udx ror\ or

uo| L 9P r’+C,Inr+C,
4ud

Le costanti di integrazioni si calcolano con le condizioni al contorno:

(u) =0 ; (%LO:O

(&)

che ¢ I'equazione del profilo di velocita cercata. Per =0 si ha la velocita massima:

Ne segue:

2
umalx = _R_(d_pj
4u\ dx

Si osservi che il rapporto fra la velocita media e quella massima vale, per quanto trovato in

precedenza:
u I ?
mx =2|1-| —
7] R

Per la relazione di Darey — Weissbach 1a caduta di pressione specifica vale:

dx 0?
—dp=¢&—2—=_
p ész

pertanto, anche in base all’espressione della velocita media dianzi calcolata, possiamo calcolare il
Jattore di attrito:

{a)
P

Uz
P2
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e quindi: £ =——-
Re,
=" TNup =1,86(G2)!/3(£2)"M laminare
Kp
f =0,184/ Re%2 turbolento
% = —1,8log |(¢/3,7D)} 11+ urbolento
/

6,9
Rep
Nu = 0,023 Re®:8 Prl/3 turbolento
Nu = 0,023 Re?® Pr® turbolento
n = 0, 4 riscaldamento
n = 0, 3 raffreddamento

0,14
Nu = 0,027 Re:8 Prl/3 (p_m) turbolento
Bp

N (f/8)RePr

U=

1,07+12, 7,/ /8(Pr2/3-1)

(R turbolento

Ky
n = 0, 11 riscaldamento con T} uniforme
n = 0, 25 raffreddamento con 7T} uniforme
n = 0 flusso termico uniforme o gas

D

Nu = 0,036 Re?/3 Pr1/3(7)0.055 turbolento
Nu = 5+ 0,025Pe};® turbolento
Nu = 4,82 + 0,0185P¢?827 turbolento
Nu = 3,3 +0,02Pe%3 turbolento
Nu = 6,3 + 0, 0167 Re?35 Pr0.93 turbolento

Regione di ingresso termica e fluido-

dinamica, tubo circolare, temp. pa-

rete costante 0,48 < Pr < 16700
Hp

Tubi lisci, moto compl. svil. 2 -

10* < Re < 3-10°

tubi scabri Re > 2 - 104

tubi lisci 0,7 < Pr < 160 Re >
104, L/D > 60
tubi lisci 0,7 < Pr < 160 Re >
10%, L/D > 60

tubi lisci 0,7 Pr < 16700
Re > 10%, L/D > 60

tubi lisci o scabri 10* < Re < 5
108 0,5 < Pr < 200

10< L/D < 400

metalli liquidi, tubi circolari flusso
termico unif. alla parete
metalli liquidi, tubi circolari, flusso
termico uniforme alla parete 3,6 -
102 < Re < 9,05-10°% 102 <
Pe < 10%, L/D > 60

metalli liquidi, tubi circolari tempe-
ratura uniforme L/D < 60, Pe >
100

metalli liquidi temp. parete uniforme
tubi circolari Pr < 0,03

Tabella 12: Correlazioni per convezione forzata
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Anche lo strato limite termico si sviluppa all'interno del condotto con andamento simile a quello
delle velocita. La lunghezza di imbocco termica, x,, puo essere calcolata, nel caso di parete riscaldata (T

imposta) fin dall’inizio, con la relazione:

X _0.033Re, Pr
D
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Nel caso di flusso imposto fin dall’inizio vale la relazione:

X _0.043Re, Pr
D

I coefficienti di convezione possono essere calcolati, nei due casi di q°= cost e di T=cost,
mediante le relazioni:

Nu, =4,36 per q"' = cost
e:
Nu, =3.66 per T=cost
Nella regione di ingresso, con strato limite termico ancora non stabilizzato, si hanno le relazioni:
X
Re.PrR " l

con Gz =ReD PI’%'

Una correlazione valida nel caso di contemporaneo sviluppo degli strati limiti dinamico e termico
¢ la seguente (Sieder — Tate):

0.14
Nu=186(Gz)"*| £n
Hp
0.14
valida per TO=cost, per 0.5 < Pr < 16700, 0.0044 < % <075 ¢ per (G2)” % -
P P

5.141 CONDOTTI A SEZIONE NON CIRCOLARE

In questo caso si opera con le stesse relazioni viste per i condotti circolari ma con un diametro
equivalente (ai fini della portata™) dato dalla relazione:

4.5
eq= C

passaggio

D,

bagnato

ove con S

o 1 i0tende l'area di passaggio del fluido e con C,

il contorno bagnato.

agnato

E’ sempre bene applicare alla lettera questa definizione, specialmente in quei casi nei quali I'area
di passaggio ¢ virtuale (cio¢ formata da piu contorni) come, ad esempio, per il flusso all’esterno dei
condotti negli scambiatori di calore, come illustrato in Figura 58.

In questo caso l'area di passaggio ¢ virtuale ed ¢ pari al prodotto dei passi longitudinale e
trasversale diminuita di 4 quarti di area dei condotti circolari e il contorno bagnato ¢ pari a 4 quarti di
circonferenza dei condotti:

B L-T-zD?/4
& 7D

Allo stesso modo si calcola il diametro equivalente per una sezione rettangolare.

D

22 In alcuni casi (vedi reti tecnologiche pet le quali si rimanda la volume 3°) si definisce un diametro equivalente a

(a . b)0,625

parita di perdite di pressione. L’espressione ottenuta ¢ notevolmente diversa ed ¢ data da: deq.PP =13
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O O O

O O O

Figura 58: Caleolo del diametro equivalente per uno scambiatore di calore

In Figura 59 si hanno due casi: un condotto rettangolare con lati dello stesso ardine di grandezza
ed un condotto con una dimensione prevalente sull’altra.

Figura 59: Diametro equivalente per condotti rettangolari

Applicando la definizione di diametro equivalente si ha:
_A(B-A)
“2(B+A)

Nel caso di sezione ristretta (a destra della Figura 59) allora essendo A << B si ottiene:
4(B-A) 4(BA
_A(BA)_a(e)

2( B+ A) 2B

Quindi una sezione rettangolare ristretta ha un diametro equivalente pari alla somma delle
dimensioni minori e cio risulta penalizzante per le perdite di pressione secondo la relazione di Darcy
Weissbach:

2
—Ap=¢ DLW? p
eq
Al fini degli scambi termici, pero, la presenza di spigoli acuti cambia le modalita operative e in
particolare si osserva che il coefficiente di convezione si annulla in corrispondenza degli spigoli.
In Tabella 13 si hanno i numeri di Nusselt per varie configurazioni geometriche sia per
temperatura imposta che per flusso imposto.

5.15 CONVEZIONE TERMICA NEI CONDOTTI IN REGIME TURBOLENTO

La transizione fra regime laminare e turbolento avviene, com’¢ noto dallo studio dei fluidi reali,
quando il numero di Reynolds supera 2900 (meglio considerare 4000 nelle applicazioni pratiche).
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La lunghezza di inmtboceo per lo sviluppo completo dello strato limite dinamico ¢ data dalla relazione:

Xet
10<—<60
D

In genere si assume che la lunghezza di imbocco sia pari ad almeno 60 diametri del condotto.
11 coefficiente di attrito, C,, & dato da:
T v* ’ 2
C; = 1—5 =2 —| = 5
5 pU’n U (u,; )

ove, si ricorsi dallo studio dei profili universali di velocita, si ¢ posto:

05
ve=| L
o,
ut _U_m
m V*
ed infine:
ury
y'=-—"
14

con u,, velocita media del fluido all’interno del condotto.

Valori del numero di Nussell e del coefficiente di attrilo per il moto laminare compleiamente
sviluppato in condotti di varia sezione.

4 r
Forma della sezione “hn - b - 1.+ Bea
(g" = cost) (Tp = cost)
436 366 16,00
1 361 298 1423
2 4,12 3,39 15,55
a/b= 3 4,79 3,96 17,09
AI 4 533 444 18,23
6 6,05 514 19,70
fe a—) 8 6,49 5,60 20,58
oo 824 7.54 24,00

4,00 334 15,05

10° 245 1,61 12,47
6= 30° 291 2,26 13,07
60° KRS 247 13,33

90° 2,98 234 13,15

120° 2,68 2,00 12.74

¥ a/b= 4,36 3,66 16,00
b 2 4,56 3,74 16,82

1 4 4,88 3,79 18,24
8 5.09 3,72 19,15

- 16 5.18 365 19,54

Tabella 13: Numeri di Nusselt per varie tipologie di condotti

Per il moto turbolento si assume valida la relazione:
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u*=25In(y")+5

Al variare di y (distanza dalla parete) si puo calcolare y* e quindi il valore medio di #," vale:

ul = Z'SIH(EF}”S
vp

Tenendo conto della definizione del coefficiente di attrito, C; si ha, dopo alcuni passaggi:

U, =2.5In(Re, ,[C, )-085

Essendo & = 4C; allora dalla precedente relazione si ricava:
1

E:Z.OSSIOQ(Re\/E)—OB

che ¢ la relazione di Prandtl. Weissbach ha trovato una relazione comoda nelle applicazioni:

£=0.184-Re™?

valida per tubi lisci con 10000 < Re < 300000. Per condotti rugosi si hanno altre relazioni che
tengono conto della scabrezza relativa.

Si ricordano quella di Colebrook (vedi volume sui fluidi reali):

D 251

1
JE 77|87 ReE

con € scabrezza assoluta.

Questa relazione ¢ scomoda da utilizzare perché fornisce & in forma implicita e quindi occorte
ricorre ad calcoli ricorsivi. Meglio usare la nuova correlazione di Haaland che, oltre ad essere esplicita,
fornisce valori con errori entro 1'1.5% rispetto alla correlazione di Colebrook:

111
F-1stog| (555 vm
JE 3.7D Re,

5.15.1 CORRELAZIONE DI COLBURN PER MOTO TURBOLENTO

Dalle equazioni dello strato limite per regime turbolento, C), in vicinanza della parete si ha (come
gia visto per la derivazione dei profili universali di velocita) dall’equazione della quantita di moto:

ou

eSS

o)

Quest’ultima puo essere scritta nella forma:

v g |07 |
Pr Pr, )oy oC,

e dall’equazione dell’energia:
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P . . . .
con Pr, = % . Nel caso in cui Pr =Pr,=1 allora le due relazioni sono formalmente eguali e
H

quindi si puo ritenere ancora valida la correlazione di Co/burn ricavata per moto laminare:

St Pr2’® = Cx
X 2

Con riferimento al fattore di attrito di Dary, essendo f= 4 Cj si ha:

st pre® =+
" 8

che, per la relazione di Weissbach, diviene:
St _Pr® =0.023Re **
dalla quale si ricava il numero di Nusselt:

Nu = 0.023Re%® pr/®

valida per tubi lisci con 0.7 < Pr < 150, Re > 10000 , L/D >60. Per il moto turbolento nei
condotti si hanno altre correlazioni sperimentali molto buone e in particolare quella di Dittus — Boelter:

Nu =0.023Re%¢ Pr"

con 7 pati a 0.4 nel caso di riscaldamento (T, > T,) ed #=0.3 per raffreddamento e con gli stessi
limiti per Re e Pr della relazione precedente. Una correlazione molto usata ¢ quella di Sieder Tate:

0.14
Nu = 0.027 Re®® prv3| £m
My

che tiene conto della variabilita della viscosita alla temperatura di parete e alla temperatura media
del fluido. Valida ¢ anche la relazione di Petukhov:

(e
B3

1.07+12.7 :;(Prm—l Hp

con # pari a 0.11 per riscaldamento uniforme a temperatura costante, 0.25 per raffreddamento
uniforme a T costante ed pari a 0 per flusso termico imposto.
Nella zona di profilo di velocita non sviluppato si puo usare la relazione di Nusselt:

0.055
Nu = 0.036 Re®® pr'/® [%)

valida per 70 < D/L < 400.

Per condotti a sezione non circolare si puo applicare quanto detto per i diametri equivalenti ai fini
del calcolo delle perdite di pressione ma occorre apportare correzioni per il calcolo del coefficiente di
convezione che dipende fortemente dalle condizioni locali e della presenza degli spigoli.

5.16 SCAMBIO TERMICO CON I METALLI LIQUIDI

I metalli liquidi sono caratterizzati da una elevata conducibilita termica e quindi da numeri di
Prandtl (Pr =c u/A) molto piccoli (<<1). Pertanto le correlazioni viste in precedenza non risultano piu
valide, come indicato anche dalle condizioni di interpolazione sempre riportate. I metalli liquidi, inoltre,
sono in grado di trasmettere calore anche se non in movimento proprio per I'elevata conducibilita
termica.
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Al fini del calcolo del coefficiente di convezione termica occorre modificare la forma matematica
delle correlazioni utilizzate. In particolare si dimostra che le correlazioni di scambio sono della forma:

Nu =C,+C,(RePr)’
e ponendo Pe = Re Pr (numero di Pecle?) si ha anche la forma:
Nu=C, +C,Pe"
Sabbotin suggerisce la correlazione:

Nu =5+0.25Pe®

Per le leghe sodio — potassio (dette leghe NaK) si puo usare la correlazione di Skupinski:

Nu = 4.82+0.0185Pe"*
valida per Re < 900000, 100 < Pe < 10000 e L/D>60.

5.16.1 ALGORITMO DI CALCOLO PER LA CONVEZIONE FORZATA

Quanto detto in precedenza sulla convezione forzata prospetta una metodologia di risoluzione
che qui possiamo riassumere nei seguenti punti fondamentali.

Determinazione delle proprieta termofisiche

Le proprieta termofisiche del fluido dipendono dalla temperatura e pertanto sorge subito la
difficolta di doverle determinare per un campo di temperature che spesso ha gradienti elevati.

Di solito si determinano alla temperatura media fra quella di parete e quella del fluido fuori dallo
strato limite termico, detta anche temperatura di film:

_Tp+Tw
o2

Determinazione dei numeri di Reynolds e di Prandtl

Il numero di Reynolds ¢ determinato nota la velocita, u, (in genere quella del fluido non
disturbato) e il parametro geometrico (x o D) e la viscosita cinematica del fluido alla temperatura di
film. Il numero di Prandtl lo si calcola allo stesso modo o lo si ricava dai dati termofisici in forma
tabellare o funzionale del fluido alla temperatura di film.

Utilizzo delle correlazioni di calcolo per la determinazione di Nu

In precedenza si sono dimostrate numerose correlazioni fra Nu e Re e Pr. Nelle tabelle del §5.13
se ne elencano alcune decine. La scelta della correlazione da utilizzare per calcolare Nu (e quindi il
coefficiente di convezione termica) va fatta tenendo conto delle condizioni di validita indicate per
ciascuna correlazione (cio¢ intervalli possibili per Re e per Pr) e al tipo di regime di moto (laminare o
turbolento) che ¢ possibile conoscere noto Re.

Calcolo del flusso termico

Tramite la correlazione di scambio si trova Nu e quindi, noto il parametro geometrico di
similitudine, L, e il coefficiente di conducibilita del fluido alla temperatura di film, A, si determina /:

Nu -
ho Nu A
L
Pertanto, note le temperature di parete e di fluido indisturbato, si calcola il flusso termico:
q"=h(T,-T,)
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Calcolo degli sforzi di attrito

Si ¢ visto nei paragrafi precedenti come calcolare C,. o anche il valore medio globale per varie
condizioni geometriche e di moto.

Noto questo coefficiente si puo calcolare lo sforzo tangenziale, 7, o le perdite per attrito.
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6 CONVEZIONE NATURALE

La convezione naturale presenta difficolta aggiuntive nella risoluzione delle equazioni della strato
limite rispetto alla convezione forzata. In questo caso, infatti, le equazioni della quantita di moto (che
ora riscriveremo) e dell’energia risultano accoppiate poiché la temperatura compare anche nella prima
equazione.

La convezione naturale si puo definire la vera convezione nel senso che il moto del fluido (e
quindi il trasporto di materia ed energia) ¢ conseguente al campo di temperature che si stabilisce nel
fluido stesso.

Senza differenze di temperature il fluido non si muove e quindi si annulla la convezione termica
naturale. La forza di spostamento (driving force) ¢ determinata dallo squilibrio causato dalla forza di
gravita fra le masse riscaldate (piu leggere) e quelle fredde (solitamente piu pesanti). Pertanto la
differenza di densita, generata dalla differenza di temperature, genera il moto convettivo.

Oltre al campo gravitazionale terrestre nelle applicazioni si utilizzano anche campi artificiali,
come avviene, ad esempio, per il raffreddamento delle palette delle turbine per il quale si sfrutta il
campo di forze centrifughe generato dalla rotazione dei rotori.

La convezione naturale genera campi di velocita solitamente meno intensi di quelli in convezione
forzata dove tali campi sono imposti dall’esterno in modo del tutto indipendente dal campo di
temperatura.

Anche se la convezione forzata produce scambi termici piu intensi per i piu elevati coefficienti di
convezione, la convezione naturale ¢ fondamentale nei processi naturali (climatologia terrestre,
riscaldamento naturale dei corpi, impiantistica, ....) e deve sempre essere presa in considerazione quale
unico metodo di scambio in condizioni di emergenza quando il fluido non viene mosso da organi
esterni.

Cosi, ad esempio, il radiatore di una autovettura funziona meglio quando la vettura ¢ in
movimento e ad alte velocita deve si scambiare con I'aria ambiente pit calore ma ha anche migliori
condizioni di scambio termico.

Pertanto le condizioni piu critiche si hanno a vettura ferma quando il flusso dell’aria di
raffreddamento ¢ generato dalla sola convezione naturale. E’ a quel punto che parte la ventola
supplementare di raffreddamento!

Un impianto termico (nucleare o convenzionale) ha le condizioni di criticita quando si fermano le
pompe di circolazione. Un circuito elettronico ha le condizioni peggiori quando si ferma (o manca,
come avviene nei portatili) la ventola di raffreddamento.

Equazione di continuita

I’equazione di continuita per la convezione naturale rimane invariata rispetto a quanto visto per
la convezione forzata:

a_u+@:0

oX oy

Equazione della quantita di moto

Le equazioni della quantita di moto deve ora contenere la forza unitaria X corrispondente alla
forza di gravita. Proiettando sull’asse x I'equazione:

pm:—Vp+,uV2\7+lf
Dz

otteniamo, all'interno degli strati limiti:

P _

ox —PY
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Pertanto il gradiente di pressione dipende solo dall’asse y.
Proiettando nell’asse y si ha:

U u v u_ o, o%u
- - = ILl -
ox "oy ox oy

valida nel moto laminare. Introduciamo ora Iipotesi di Bussinesque in base alla quale assumiamo
che le proprieta termofisiche del fluido siano costanti ad esclusione della densita funzione della
temperatura.

AN
I
1
te) 1
) SJF
Tp /
\ I’
\\t@/) /I
\\\ ;
= ’
I I . N Al S
—I 7
[} /
0 /
o \17 ,/
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pgdxdy ,
’
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’
7
7
7
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P
7
-~
“d

>—
Yy

Figura 60: Convezione naturale con lastra piana verticale

Pertanto riteniamo costante W ma non p. La distribuzione delle pressioni nel fluido ¢ di tipo
idrostatico e quindi si puo porre:

op _dp _
ox dx
ove si indica con Py la densita del fluido non interessato dallo strato limite termico (quindi
lontano dalla parete). Pertanto sostituendo nella precedente equazione della quantita di moto si ha:

ou ou lop o4
—tV—=-=—"+4v——g
ox oy pox oy

che diviene:

ou ou  ou g
U—+v—=v—+=(p,—p)
ox oy oy p
L’ultimo termine a secondo membro puo ancora essere scritto, ricordando il coefficiente di
dilatazione isobaro f3, nella forma:

%(pw—p)=—9ﬁ(Tw—T)

Ne segue che I'equazione della quantita di moto diviene:

ou ou Q4
U—+V—=v—x+qB(T-T
ax aj, Vaj'Z gﬂ( 00)
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che, come si osserva dall’ultimo termine a secondo membro, contiene un termine, gf(T - T.), che
dipende dalla temperatura ed ¢ detto alleggerimento termico (o anche, thermal buoyancy).

Equazione dell’energia

Anche questa equazione resta invariata rispetto a quella trovata per lo strato limite laminare per la
convezione forzata:

o ar T (euY
U—+V—=a—5+V| —
ox oy oy oy
Il termine dissipativo puo trascurarsi a maggior ragione poiché il campo di velocita ¢ meno
intenso e pertanto 'equazione diviene:
or ol o°T
U—+vV—=a—
ox oy oy
6.1 ADIMENSIONALIZZAZIONE DELLE EQUAZIONI DELLO STRATO
LIMITE PER LA CONVEZIONE NATURALE

Seguendo un procedimento gia visto per la convezione forzata nel §{5.5.2 cerchiamo di conoscere
i parametri fondamentali per la convezione naturale adimensionalizzando le tre equazioni sopra scritte
per lo strato limite laminare. Si pongano le seguenti variabili, indicando con #, una velocita di
riferimento di comodo:

allora le equazioni dello strato limite sopra scritte divengono:

ou* ovx

+—=
X*  oy*

ou* . au *zgﬁ(Tp—Tw)LT: 1 gtu*

ox* - oy* uZ Re oy *

0

Lor* oT* 1 o°T*
u +V = 5
OX* oX* Re-Proy*

ove si ha Re=u L/v. Il gruppo adimensionale a secondo membro dell’equazione della quantita di
moto puo essere scritto nella forma:

gB(T,-T.)LT* Gr |
ug ~ Re?

*

ove si ¢ posto il nuovo gruppo adimensionale, detto di Grashoff:
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9B(T,-T.)0

2
14

=Gr

definiamo ora una velocita caratteristica del moto data dalla relazione:

U ;/gﬂL(Tp -T,)

allora il numero di Grashoff puo essere scritto nella forma:
2
UcL
Gr=| <—| =Re?
1%

che conferisce a Gr il significato di un quadrato di un numero di Reynolds riferito alla velocita
caratteristica #..
Se ora poniamo #, = #, allora le equazioni adimensionalizzata dello strato limite divengono:

ou* ov*
o oy 0
g o, o, 1 dux

ox* - oy* JGr ay*
LOT* LOT* 1 T
OX™* ox*  JGrProy*

Ricordando che deve sempre essere per il coefficiente di convezione termica:

u

) Z;
h=—— ~ 240
(Tp _Tf)

ne segue che il numero di Nusselt, Nu, dipende nella convezione naturale solamente da Gr e Pr e
non piu da Re.
Pertanto le relazioni funzionali saranno del tipo:

Nu = f (Gr,Pr)
In molti casi, specialmente per i gas e 'aria, la dipendenza si semplifica nella forma:
Nu = f(Gr-Pr)= f (Ra)
ove si ¢ indicato il numero di Rayleigh:
9pL (T, ~T.)
va

Ra=Gr-Pr=

Si osservi che avendo trovato I'equivalenza Gr=Re?, con riferimento alla velocita caratteristica,
allora si puo dire che il peso della convezione naturale (per altro sempre presente) ¢ sensibile quando il

e >>1.

rapporto 2
Nel caso in cui ¢ <<1 prevale la convezione forzata mentre se ¢ circa 1 i due modi sono
equivalenti.
Si osservi che quanto sopra ricavato per la lastra piana verticale vale in tutti i casi nei quali si
considera la convezione naturale.
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6.1.1 ANALISI ADIMENSIONALE PER LA CONVEZIONE NATURALE

Si vuole qui riportare il procedimento seguito con l'analisi adimensionale (applicazione del
teorema di Buckingam) per la determinazione delle tipologie delle correlazioni per la convezione
naturale.

I parametri che intervengono nel fenomeno della convezione sono visibili nelle equazioni dello
strato limite prima scritte e pertanto si puo affermare che il coefficiente di convezione 4 ¢ funzione
delle seguenti variabili:

h=h(p, 1,9 BAT,l,c,,2) [111]

ove il prodotto g B AT esprime Valleggerimento termico prodotto dalla differenza di temperatura fra
parete e fluido e gli altri simboli hanno il significato gia noto.

Per il teorema di Buckingam (o teorema pi-greco) si dimostra che se una grandezza k dipende da m
altre variabili e se ¢ possibile scegliere n variabili indipendenti allora la variabile k si puo porre in
funzione di m-n gruppi adimensionali.

Nel caso in esame / ¢ variabile dimensionale e il numero complessive di variabili in gioco ¢ pati a
7, pertanto se si scelgono come grandezze indipendenti quelle relative al Sisterna Internazionale, metro
(m), chilogrammo (kg), secondo (s), grado Kelvin (K) allora si pud scrivere una relazione
funzionale fra 7-4=3 gruppi adimensionali la cui determinazione segue un procedimento analitico
relativamente semplice che qui si desidera accennare.

Se la [111] ¢ valida si supponga di avere un legame funzionale di tipo monomio in modo che si
possa scrivere una relazione del tipo:

h=Cp*u"(gBAT) 1°c A [112]

Per il principio di omogeneita le dimensioni di ambo i membri di questa eguaglianza debbono
essere uguali.

Pertanto se esprimiamo nel S.I. (che ha le seguenti unita di misura fondamentali: M,1.T,0) le
dimensioni di tutti i parametri sopra indicati abbiamo 1 seguenti sviluppi:

[1]=[L]
[98AT]=[07LT %0 ]=[LT"?
[p]=[ML? ]
[1]=[ML*T ]
[A]=[MLT %0 ]
& ] :[LZT_Ze_l]
[h]=[MT 6]
Pertanto la [112] diviene:
[MT20 | =c[ML*T[MUT T [LT2 T[] [T 20 T [MuT 20 ] 113

Possiamo ora imporre che quanto presente per ciascuna unita di misura a primo membro deve
essere uguale al secondo membro e cio¢ che si possa scrivere il seguente sistema dimensionale:

0=-3a-b+c+d+2e+f per L
l=a+b+f per M
[114]
-3=-b-2c—-2e-3f per T
—l=—e-f per 6
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Ne consegue che, essendo la caratteristica del sistema pari a 6-4=2 (7 variabili pari al numero
degli esponenti e quindi pari ai parametri da cui dipende 4, 4 unita indipendenti del S.I.) ne segue, per il

teorema di Rouché ¢ Capelli, che le soluzioni possibili sono 00,
Basta scegliere due delle variabili come indipendenti e risolvere il sistema per esse. Trovate le
soluzioni si trova che la [112] assume la forma:

hzi[cpﬂJ (ngﬂzATPj s
I\ A Y7

Si possono riconoscere 1 seguenti gruppi adimensionali:

Numero di Nusselt definito da: Nu = % =

Resistenza termica per conduzione
Resistenza termica per convezione

SR | —

H
c Diffusivita meccanica
Numero di Prandtl definito da: Pr = pH P _ - — -
y) A Diffusivita termica

C,0

213
Numero di Grashoffdefinito da: Gr = M equivalente a Reynolds®

La relazione funzionale [115] diviene, quindi:

Nu=CPr"Gr" [116]
con C, 7, n determinate sperimentalmente mediante best fit.
Si tratta del tipo di relazione visto in precedenza mediante 'adimensionalizzazione delle equazioni
dello strato limite. In genere per fluidi aeriformi gli esponenti » ed 7 coincidono e pertanto si hanno
correlazioni del tipo:

Nu=C(Gr-Pr)"=C-Ra" [117]
ove si ¢ indicato con Re il numero di Rayleigh dato da:
g BATIPp® i 9BATIPC,

Ra=Gr-Pr= >
7, A y7s

[118]

6.1.2 PROFILO DI TEMPERATURA NELLO STRATO LIMITE TERMICO

Possiamo ancora una volta supporre che il profilo di velocita e di temperatura adimensionale
siano polinomiali e cio¢ che si possa porre:

3
u y y
- = a = Z
Loaatea[d]

con le condizioni al contorno:
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ed ancora che sia:

,
[
(@]
he
—
=
|
.
SN—
<

0

- per
14

Con queste condizioni si trova:

u 9p(T,-T,)d° y(l— yjz

)

u, My O
Per il profilo di temperatura si puo porre:
y y 3
T*=b +b,=+b,| =
o Lo 2]

con le condizioni:

T*=1 per y=0
T*=0 e %:o per y=4,
o°T*

=0 per y=0

Si trova, pertanto:

3
T*:1_§l+1 l
25 208

Le esperienze di laboratorio mostrano che i due profili sopra determinati, pur se approssimati per
via dellipotesi polinomiale, approssimano abbastanza bene gli andamenti reali.

6.1.3 STRATO LIMITE TERMICO IN MOTO LAMINARE

Lo strato limite termico con moto convettivo in regime laminare, cio¢ per Ra < 108, puo essere
calcolato mediante la relazione:

X
valida per Pr =~ 1. I parametri termofisici sono calcolati alla distanza x dal bordo di attacco alla

temperatura di film gia indicata in precedenza. Per Pr # 1 si puo usare I'espressione:

x Prt/?
5, =349

Si osservi che se nell’equazione del momento si trascura il termine di attrito rispetto a quello di
alleggerimento termico gBAT allora lo strato limite termico risulta proporzionale al prodotto (Ra Pr)™*.

Si osservi che il nuovo gruppo adimensionale RaPr non contiene la viscosita cinematica:
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95(T, - T.)

a2

Questo nuovo gruppo adimensionale ¢ detto Numero di Boussinesque, Bo,,. Anche il numero locale
di Nusselt ¢ funzione dello stesso gruppo adimensionale, cioe:

Ra, Pr =

Nu= f (Ra,Pr)"

6.1.4 STRATO LIMITE TERMICO IN MOTO TURBOLENTO

Per valori di Ra > 10° il moto convettivo assume le caratteristiche di un moto turbolento ed
hanno inizio i fenomeni di transizione dal moto laminare con formazione di vortici. Per Ra >107 il
moto ¢ definitivamente turbolento, almeno per la lastra piana verticale.

Lo strato limite termico pud ancora essere calcolato utilizzando le stesse espressioni dello strato

limite dinamico per Pr = 1 mentre per valore diversi si applica ancora il fattore correttivo Pr'/2,

6.1.5 CONVEZIONE NATURALE CON PARETE PIANA VERTICALE ISOTERMA

La soluzione esatta puo essere ottenuta applicando ancora la teoria della similitudine (siwilarity) e
cio¢ ponendo una variabile di similitudine data dal rapporto:

n=
yRa, 1z
Introducendo le funzioni di corrente di flusso (streamfunction):
0 0
u= _l// V= __!'//

oy OX

la funzione di similitudine ¢ definita come:

%
F (77' PI’) = aRa

Per la temperatura la forma adimensionale si ha:

T-T
6(n,Pr)= T __If°
p ©

Per applicare il metodo di Blasius occorre procedere in due fasi: prima si eliminano # e » mediante
le derivate della funzione di corrente, y, poi eliminando x; y, e T mediante 1, Fe 0.
Si possono scrivere le equazioni differenziali:

EFPIY
4

i 1F'Z—EFF" =—F"+0
Pr\ 2 4

Le condizioni al contorno sono:

F=0 per n=0

F'=0 per n=0

0=1 per n=0
F'=0 per n—>©
6=0 per 7 —>o©

La soluzione delle precedenti equazioni risulta piuttosto complessa e viene qui omessa per
semplicita. Il numero locale di Nusselt ¢ cos’” determinato:
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Pr+0.986 Pr'/2+0.492

valida per tutti i numeri di Prandtl. I valori asintotici sono:

Pr 1/4
Nu, = 0.503( j Ra "

Nu, =0.503Ra,”*  per Pr>>1
€ ancora:
Nu, =0.600(Ra, Pr)l/4 per Pr <<1

Entrambe queste correlazioni confermano le aspettative indicate nel §6.1.3. 11 valore medio vale:

_ Pr 1/4
Nu, = 0.671( — j Ra,
Pr+0.986Pr <+ 0.492

Per I'aria, avente Pr = (.72, si ottiene la relazione semplificata:

Nux =0.571Ra **

Una relazione valida per qualunque numero di Prandtl e con Ra < 10" ¢, per Nusselt medio
(correlazione di Churchill e Chu):

0.387Ra,’*

9 55

. 0.492 i
4 16
Pr

Nu, =(0.825+0.325Ra"* )’

Nu, = 0.825+

che per l'aria, P 7= (.72, diviene:

In regime laminare (Ra < 10%) si ha la correlazione:

1/4
NU, =068+ 007R&,

9

1{0.492)16 ?
Pr

Nuy =0.68+0.515Ra"*

che per 'aria, Pr=0.72, diviene:

6.1.6 FLUSSO UNIFORME DALLA PARETE

Supponiamo ora che lungo la parete verticale si abbia un flusso uniforme, ¢” = cost, e che
pertanto la temperatura della stessa parete cresca uniformemente e monotonicamente nella direzione x.
Per fluidi con elevati numeri di Prandtl si ha relazione:

q,,s X [gﬂ(Tp _Tw)xs ]1/4

av

[T,()-T.]4

Sperimentalmente si ¢ trovata la relazione:

PI’ 1/5
Nu, =0.616 Ra,
Pr+0.8
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La turbolenza si ha per Ra, > 10",
Vet e Liu propongono le seguenti relazioni:

Nu, =0.6Ra’’®

Nuy =0.75Ra}'®

per regime laminare: 10° < Ra, < 10", mentre per regime turbolento, Ra_ > 10", si ha:

Nuyx = 0.568Ra’%

Nuy = 0.645Ra’%

Per I'aria /et e Lin propongono le relazioni:
Nu, = 0.55Ra’’ laminare

Nu, =0.17Ra’® turbolento

Chu e Churetl] propongono una relazione valida per ogni Ra e Pr:

2

0.38Ra""*

9/16 8/27
{1{0.437) }
Pr

Questa relazione richiede che la temperatura di riferimento sia calcolata mediante la differenza
con il valore medio della temperatura di parete, cioe:

Nuy =40.825+

T, =Tp-T,
Per I'aria, Pr = 0.72, la precedente correlazione diviene:
— 2
Nux =(0.825+0.328Ra}"®)

In Letteratura si hanno numerose altre correlazioni sperimentali per il calcolo del coefficiente di
convezione per diverse situazioni geometriche rispetto alla parete piana verticale sopra vista.

6.1.7 CONVEZIONE NATURALE SU UNA LASTRA PIANA ORIZZONTALE

Si tratta di un caso molto importante per le applicazioni impiantistiche. La lunghezza
caratteristica I ¢ data dal rapporto:

-2
P

ove A ¢ l'area della piastra e P ¢ il perimetro. Le situazioni di scambio termico possibili sono
diverse a seconda della posizione della lastra piana e questa ¢ a temperatura maggiore (riscaldamento) o
minore (raffreddamento) rispetto al fluido.

Con lastra piana calda rivolta verso I'alto o anche con lastra piana fredda rivolta verso il basso si
possono usare le correlazioni:

Nu. =0.54Ra*

valida per regime laminare (10* <Ra < 10'"") mentre per regime turbolento (Ra > 10" si ha:

Nu, =0.15Ra!?
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negli altri due casi, cio¢ lastra piana calda rivolta verso il basso o lastra piana fredda rivolta verso
I’alto, non si dovrebbe verificare alcuna convezione termica.

In realta si hanno deboli flussi termici difficilmente stimabili e dovuti a disturbi casuali del moto
del fluido.

6.2 CONVEZIONE NATURALE PER CILINDRI ORIZZONTALI LUNGHI

Il parametro geometrico di riferimento ¢ il diametro D e il numero di Nusselt locale varia, come
gia visto per la convezione forzata, con la posizione lungo la circonferenza. Il valore medio
circonferenziale ¢ dato dalla relazione:

Nup =0.53Ra}*
valida per regime laminare (10’ <Ra < 10”). Per il regime turbolento (10" <Ra < 10'%) si ha:

Nup =0.13Ra?

Recentemente ¢ stata proposta una correlazione pitu complessa ma piu precisa:

2

0.387Ra’*
[1+(0.559 Prg“‘i)fm

Nun =¢0.60+

valida sia in regime laminare che turbolento.
6.3 CONVEZIONE NATURALE IN CAVITA CHIUSE

Questo argomento ¢ oggi di grandissimo interesse non solo per gli aspetti relativi alla
trasmissione del calore ma anche per gli aspetti epistemologici relativi ai sistemi dissipativi secondo le
teorie di Y. Prigogine.

La convezione termica avviene all'interno di domini chiusi (di forma parallelepipeda o fra
superfici piane affacciate con diversa temperatura. In Figura 61 si ha una cavita a sezione rettangolare
con due lati adiabatici con lato caldo a sinistra e lato freddo a destra. Nella figura a destra si ha la
distribuzione di temperatura che indica la formazione di uno strato limite ascendente sul lato caldo e di
uno strato limite discendente sul lato freddo. II flusso termico ¢ calcolato sempre con la relazione di
Newton con coefficiente di convezione da valutare alla temperatura media:

_L+ﬂ
fm ™~ 2

con T, e Titemperature del lato caldo e freddo.

Il numero di Grashoff ¢ calcolato con la relazione:

_ gﬂ(Tc _Tf)H3

2
v

Gr

con H altezza delle superfici attive. Per Ra bassi (< 10%) si hanno ridottissimi movimenti del
fluido e la trasmissione del calore avviene quasi esclusivamente per conduzione termica attraverso lo
stesso fluido e quindi si ha:

A
Q=S (T.-T)
ove b ¢ lo spessore della cavita ed § l'area della sezione verticale (non adiabatica) e A il

coefficiente di conducibilita termica del fluido. La precedente relazione implica che il numero di
Nusselt riferito alla larghezza della cavita ¢:
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Nub:@zl
A
=
H ol Y|y
\_/
/\
(a) PO (b)

Figura 61: Convezione naturale in una cavita chinsa

Quanto detto vale per rapporti H/b compresi fra 2 e 10 per Rz < 10’ e per H/b fra 10 e 40 per
10°<Ra<70". Per valori pit elevati di Rz si instaura una circolazione di fluido che diviene sempre pit
consistente e il numero di Nusselt ¢ dato dalla relazione:

0.28 1.09
Nu, = 0.22( Pr Raj (Ej
0.2+Pr H

valida per 10 < H/b < 40, Pr < 10° e 10" < Ra < 10". Si ha la correlazione:

1.05
Nu, =0.42Ra’% (3)
H

valida per 10 < H/b < 40, 1 < Pr < 10* e 10’ < Ra < 10". Per valoti di H/bI > 40 si pone
sempre H/b=40 nella precedente correlazione.

Nel caso di cavita sottili, con H/b <1 allora il comportamento termico dipende dal tipo di
trasmissione alle pareti.

Per flusso costante alle pareti si ha la correlazione:

Nu = 0.34Ra ** (ﬂjﬂg
' b

con Ray dato dalla relazione:

ne _ 9BH'T"
H av i
Nel caso in cui si calcoli Ra con la relazione:
Ra< Ra, _ gAATH s
Nu av

allora la correlazione da utilizzare ¢ la seguente:
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1/7
Nu =0.25Ra,,*"” (%j

Si ¢ osservato sperimentalmente che nel caso in cui si abbia temperatura di parete costante si
possono usare la stessa correlazione sopra indicata purché il numero di Raylight sia calcolato con
riferimento alla temperatura media fra la parete calda e quella fredda.

6.3.1 CAVITA RISCALDATE DAL BASSO

La differenza fra le cavita riscaldate lateralmente e quelle riscaldate dal basso ¢ che ora le cavita
sono riscaldate dal lato vuoto e non da una parete, come illustrato in Figura 62).

Queste cavita, dette anche Celle di Bénard, attivano una circolazione di fluido anche con pochi
gradi di differenza di temperatura fra la superficie inferiore e quella superiore.

11 valore critico perché questa circolazione avvenga ¢ che si abbia:

Ra,, >1708

con Ray; dato da:

RaH _ gﬂ(Tc _Tf)H3

Ra=—=—
Nu av

La circolazione che si instaura ¢ caratteristica di queste celle, vedi figura, che puo anche diventare
turbolenta incrementando sensibilmente il flusso termico dal basso verso I'alto. Sperimentalmente si ¢
trovata valida la correlazione:

Nuw =0.069Ra,, " Proo™

con proprieta termofisiche calcolate alla temperatura media. Per Ra, > 10” si ha una
proporzionalita diretta di Nusselt con Ra,,"* con flusso indipendente dallo spessore H della cella.

Superficie

e

esagonale

oy -
s, X /

“>—fastre pranc
Rolls

Figura 62: Cavita riscaldate dal basso (Celle di Bénard)

Al di sotto del valore di 1708 il moto del fluido ¢ del tutto trascurabile e il flusso ¢ praticamente
solo conduttivo. Le celle di Bénard sono utilizzate per raffreddare mediante convezione naturale
superfici molto calde, come ad esempio le lampade allo iodio usate nei proiettori luminosi.
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6.4 CORRELAZIONI UTILI PER LA CONVEZIONE NATURALE

Lastra pians verscale :—{ l
¢ cilindn di elevato .Ll.
diametro ﬂ
ED
X =1L
Autore Correlazione Note
GrPr < 107
Polhausen, Nu = 0,48 (Gr)'/*(per ania) Pr=0,73 €=03571
Schuh Nu=C-(Ra)'/* Pr=10 C =10,612
Pr=100 € =0,652
Pr= 1000 C=0,0653
= _ 0,67 (Ra)'/* s 5
Churchill Nu=0,68+ 0,492 a/16.4]16 10° < Ra< 10
1+ (—P—) ]
% 1/6
Chu Nu'/? = 0,85 + “‘3" {Ra) 10! < Ra < 10'?
, 492 .9716,6/27
B+
< Pr<
Mc Adams Nu = 0,59 (Ra)!/4 | Pr~1,0, 10* < Ra < 10*
Nu=0,13 (Ra)'/? j0% < Ra < 10'3
0,67 (Ra)' /4 i 14
e ————— . <10
Churchill Nu=0,67 [| = (0.‘92)9“6]”9 B-107*<Ra<4-1
Thelen i 0,022 < Pr < 7640
Vet Nus = 0,55 (Grg Pr)?2 laminare
Ross Nug = 0,17 (G2 Pr)02% turbolento
Tabella 14: Correlazioni per la convezione naturale
7
Lastra piana orizzontale,
flusso termico ascendente
X=1L
Autore Correlazione Note
Fujii Nu = 0,13 (Ra)!/3 1-10% < Ra< 7-10'0
Jmura 0,3%x0,15m
0,07 x 0,05 m
Lewandowski Nu = 0,766 (Ra)'/$ 10* < Ra < 107
Nu =0,173 (Ra)'/3 10° < Ra < 108
Fishenden Nu = 0,54 (Ra)t/* 10* < Ra < 107
Saunders Nu = 0,14 (Ra)!/3 107 < Ra < 3109
0,61 x0,61lm
Hassan Nu = 0,135 (Ra)'/3 = 15% Pr=0,72, 10° < Gr < 10°
Mohamed 0,5x0,2m
Al-Arabi Nu = 0,7 (Ra)'/* + 14% 2-10°<Ra<4-107, 0,05 m
El-Ricdy Nu = 0,155 (Ra)'/3 + 12% Ra>4-107 Pr=0,72

0,1m,0,15x 0,25 m

Tabella 15: Correlazioni per la convegione naturale
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Lastra piana orizzontale, f i ;[
flusso termico discendente —

! =1
Awlore Correlazione Note
Mc Adams Nu = 0,27 (Ra)' /4 3-10° < GrPr < 1019
Fujii Nu = 0,58 (Ra)'/* 10% < Ra < 10*!
Imura
Chapman Nu = 0,44 (Ra)'/8 10° <Ra<2-107

Tabella 16: Correlazioni per la convezione naturale

o A
Cilindri onizzontal DIF‘_;Q
X=D

Autore Correlazione Note

- - 9
Mc Adams Nu = 0,53 (Ra)!/* m; <Ra< m”

Nu = 0,13 (Ra)!/? 16 < Ra< 10
2
i 60 + 0,387 { s JH

b el i [t + (0,559/ Pr)®/18]18/9
Chu 10°> < Ra < 102
Elenbaas| Nud o-6/Nu o SrPr Gr Pr < 10% (fili)

235

Tabella 17: Correlazioni per la convegione naturale

L et

) Laminare Turbolento
o 10% < Gr Pr < 107 Gr Pr> 10?

T 5 .
Lastra o cilindro verticale ki x.u(AT)ll‘ h = 0,95(AT)M/3
Cilindro orizzontale h=1,32(AT/D)!/* ho=1,24(AT)/3
Lastra orizzontale (quadrata):
Faccia riscaldata verso l'alto o AT -
faccia pill fredda verso il basso h= 1.32(—,-)"‘ k= 1,43(AT)

AT s

Faccia riscaldata verso il basso o IA:(I,bl(-F-)

faccia pil fredda nvolta verso 1"alto

Tabella 18: Correlazioni per la convegione naturale

6.5 GETTI E PENNACCHI

Lo studio dei getti e dei pennacchi riveste notevole interesse sia industriale che ambientale. Si
tratta di due esempi di convezione termica non confinata, cio¢ non limitata da superfici solide: una
corrente fluida (getti o fumi) induce un moto convettivo della massa esterna (ad esempio aria per il caso
dei pennacchi).

Con riferimento alla Figura 63, una corrente di fluido immesso attraverso un orifizio, dopo una
zona iniziale (circa 6 volte la dimensione del foro nel quale la velocita media coincide con quella a
monte dell’orifizio) passa dalla zona laminare a quella turbolenta.
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Figura 63: Formazione del getto (zona turbolenta)

Il getto si allarga man mano che si procede in avanti e si parla di una zona di accrescimento
lineare dello spessore del getto.

La distribuzione della velocita nel getto si dimostra, partendo dalle equazioni allo strato limite
turbolento, che ¢ di tipo esponenziale secondo la relazione:

o= Uce_%)
ove ¢ b= 0.107 x ed u,_ ¢ la velocita sull’asse. Analogamente la distribuzione di temperatura ¢:
TT=(T-T.)e

con b= 0.127 x. Le precedenti equazioni necessitano dei valori della velocita e della temperatura
sull’asse del getto. St dimostra che vale la seguente relazione:

© T
Zﬂ'jo purdr = pU, ZDOZ

Combinando con TI'equazione della distribuzione di velocita si ottiene il valore della velocita
sull’asse:

UoDo
X

0, =6.61

Si osservi come questa velocita decresce al crescere di x e che per x = 6.67 D, siha U, =U,.

Si dimostra ancora valida la relazione:
) o (= VA 2
27 jo pe,u? (T =T, )rdr = pCpU(,Z(TO ~T,)D,
Combinando con I'equazione della distribuzione della temperatura si ottiene:
_ T -T
T.-T, :5.65—( o—T.) D,
X

Quindi I'eccesso di temperatura decresce ancora con la distanza x dall’orifizio.

Se un getto viene orientato su una parete verticale allora nell’area della sezione del getto si hanno
coefficienti di convezione elevati.

Pertanto si usano i getti per il raffreddamento rapido ed intensivo di superfici particolarmente
calde (ad esempio le palette delle turbine, ...).

Per i pennacchi si ha una situazione del tipo descritto in Figura 64.
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La sorgente di calore innesca un movimento ascensionale di fluido caldo che, a partire da una
certa distanza da questa, innesca moti turbolenti con formazione di vortici che trascinano (entrainment) il
fluido circostante.

Le distribuzioni di velocita e di temperature hanno ancora 'andamento esponenziale gia visto in
precedenza per i getti con valori delle costanti da determinare sperimentalmente.

Detribuzi lavdadta I

T~
:'__'ﬂ] L@ I [1--

\

|

|

} Tamjerte
Fornazioe, ‘
& vartice | } .

; f

| i

| g

i g
Remeadhio i

\

\

|

Srgated cdae

Figura 64: Formazione di un pennacchio
In Figura 65 si ha un esempio di pennacchio reale formatosi al di sopra di una torcia di blow down
di uno stabilimento industriale.
Maggiori informazioni sono reperibili nei manuali specializzati.

Figura 65: Formazione di un pennacchio in una torcia di raffineria
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7 METODI NUMERICI PER LA FLUIDODINAMICA (CFD)
7.1 LE PROBLEMATICHE DELLA SIMULAZIONE NUMERICA

La soluzione dei problemi di fluidodinamica ¢ molto pit complessa di quella vista per la
conduzione termica. Le equazioni differenziali (Navier Stokes piu equazione dell’energia) sono di tipo
alle derivate parziali, non lineari, paraboliche, ellittiche e iperboliche al tempo stesso.

L’applicazione del metodo alle differenze finite porta a notevoli diversita rispetto a quanto gia
visto per la conduzione. A causa della non linearita del problema. Una evoluzione del metodo alle
differenze finite ¢ il metodo ai volumi finiti.

In questo caso si suddivide il dominio di applicazione delle equazioni differenziali in una serie di
volumi di controllo, opportunamenti selezionati, su cui integrare le equazioni stesse usando profili noti
della variabile incognita.

Nei volumi di controllo debbono valere le leggi di conservazione gia descritte (massa, energia,
quantita di moto, ...) in modo del tutto simile a quanto visto per il metodo alle differenze finite..
Proprio questa conservazione delle grandezze fondamentali ¢ il principale vantaggio del metodo a
volume di controllo.

In genere per evitare divergenze matematiche si usano varie metodologie risolutive (vedi, ad
esempio, metodo #pwind)

Un secondo importante metodo utilizzato ¢ il metodo agli elementi finiti (FEM) che qui
brevemente si sintetizza. In questo caso, in analogia con il metodo delle differenze finite, si cerca la
soluzione delle equazioni differenziali per approssimazioni successive su elementi per i quali la
soluzione ¢ nota o ipotizzabile in modo quasi esatto.

Il metodo agli elementi finiti assume una funzione approssimata che soddisfi 1 vincoli della PDE
di partenza e che dipenda da parametri da ottimizzare (ad esempio minimizzando 'energia totale). Esso
definisce a priori 'andamento della soluzione su singole porzioni (elemento finito, EF) del continuo
connesse alle altre in dati punti.

Pertanto si suddivide il continuo con una griglia (#esh) che delimita gli Elementi Finiti (EF). La
griglia definisce: volume, posizione dei nodi ed appartenenza dei nodi ad uno o piu EF.

Gli EF si scambiano azioni solo tramite i nodi. Si assumono andamenti “sezplic/” delle variabili
allinterno degli EF.

Si impongono condizioni di continuita e congruenza nei nodi e, in parte, sui contorni degli EF
confinanti.

Le equazioni di vincolo dei nodi formano un sistema globale che viene risolto con i classici
metodi matriciale.

In definitiva si ha la seguente procedura:

Discretizzazione , soluzione definita “a pegzi”, continuita e congruenza sui bordi
7.2 LA FLUIDODINAMICA COMPUTAZIONALE (CFD)

Lo scopo della Fluidodinamica Computazonale (CFD) ¢ quello di formulare model/i adatti a descrivere i
fenomeni fluidodinamici. Considerazioni sulla natura dei fluidi e analisi del livello di scala spaziale,
temporale e dinamico della realta sono gli strumenti indispensabili per formulare modelli fisici per la
fluidodinamica che possiedano il requisito di riprodurre la realta con il livello di approssimazione desiderato.

L'effettiva validita di ogni modello, in quanto necessariamente approssimato, dovra poi essere
verificata confrontando le previsioni che esso ¢ in grado di fornire con dati sperimentali, oppure con le
previsioni di altri modelli fisici ottenuti con un livello minore di approssimazione. Conoscere un
fenomeno fluidodinamico significa conoscere compiutamente (sebbene con un certo livello di
approssimazione) la distribuzione spaziale e 'evoluzione temporale di un certo numero di variabili
fluidodinamiche (velocita, temperatura, pressione, ecc.) che lo caratterizzano.
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Il numero minimo di tali variabili dipende, di volta in volta, non solo dal tipo di fenomeno, ma
anche dal livello di approssimazione con cui desideriamo conoscetlo.

‘ Mondo reale ‘

L

‘ Fisica ‘

— spaziale
Livello di approssimazione —< temporale
fisica dinamica

‘ Modelloe fisico ‘

Livello di approssimazione

‘ Tecniche sperimentali ’7 matematica

Maodello
fisico-matematico

| Simulazione fisica | \|,

Discretizzazione
spaziale

definizione della griglia

Discretizzazione
Analisi matematica temporale

Modello
fisico-matematico
discreto

H Tecniche numeriche

Simulazione numerica ‘

Diagramma 1

Figura 66: Schema della modellizzazione fluidodinamica

Come indicato nel diagramma di Figura 66, a tale conoscenza si puo pervenire, dopo averne
formulato un modello fisico, sia attraverso misure sperimentali dirette di tali variabili, sia risolvendo
sistemi di equazioni le cui variabili sono appunto tali proprieta fluidodinamiche.

Si tratta di quelle che, con un termine poco felice, ma ormai universalmente diffuso, prendono
rispettivamente il nome di sizulazione fisica, o sperimentale, e di simulazione numerica. Nel secondo caso, il
passo che ¢ necessario compiere dopo aver formulato un modello fisico consiste nel tradurlo in un
modello fisico-matematico.

Il passaggio dal modello fisico a quello fisico-matematico si basa su alcune leggi fondamentali
della fisica, che impongono che in un sistema di fluido, come in ogni altro sistema dinamico della
meccanica classica, determinate grandezze quali la massa, la quantita di moto generalizzata e l'energia
soddisfino precise equazioni di bilancio che esprimono quelli che, pitt 0 meno propriamente, prendono
il nome di principi di conservazione.

Nell'ambito della fluidodinamica classica, ovvero nell'ambito del livello di approssimazione della
realta del continuo deformabile di tipo newtoniano il piu completo tra i modelli fisico-matematici ¢ costituito
dal sistema di eguazioni di Navier-Stokes che esprime, appunto, il principio di conservagione della massa, il
teorema della quantita di moto e 1l principio di conservazione dell'energia totale.
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Una volta che siano note l'equazione di stato e le proprieta fisiche del fluido in esame, questo
sistema di equazioni differenziali, integrato numericamente, secondo la tecnica che prende il nome di
DNS, (da Direct Numerical Simulation), ¢ perfettamente in grado di descrivere a livello microscopico
anche la piu complicata delle correnti.

Ad esempio, ¢ in grado di riprodurre compiutamente tutti i dettagli di una corrente turbolenta (e
pertanto caratterizzata da una marcata tridimensionalita e non stazionarieta), anche in presenza di
fenomeni termici, di reazioni chimiche, etc”.

Tuttavia ¢ estremamente utile analizzare come l'introduzione di successive ipotesi di
approssimazione spagiale, temporale e dinamica consenta di ottenere modelli fisici di validita e complessita
decrescents, a partire da quello che presenta il massimo di complessita e di generalita ( diagramma 2 di
Figura 67).

Un primo passo nella semplificazione del modello fisico-matematico lo si pud compiere se invece
di voler approssimare la realta fisica a livello delle scale microscopiche, si accetta di descriverla con
livelli di accuratezza spaziale e temporale meno raffinati.

Il modello fisico-matematico che si ottiene ¢ quello che prende il nome di LES (da Large Eddy
Simmulation).

Non ¢ il caso di entrare ora nei dettagli di questa tecnica, ma si puo facilmente intuire che l'aver
ridotto cosi drasticamente i requisiti di risoluzione spaziale e temporale del problema portera ad una
altrettanto drastica riduzione del costo e del fempo necessari per effettuare un'eventuale simulazione
numerica del fenomeno, a fronte di una perdita di informazioni che puo ritenersi, nel caso in esame, del
tutto accettabile, se non addirittura benefica.

Thuttavia, se ci limitassimo a risolvere le equazioni di Navier-Stokes semplicemente adottando una
scarsa risoluzione spaziale e temporale, commetteremmo un gravissimo errore. Non si puo negare che
le considerazioni appena fatte siano sensate, ma nel nostro ragionamento abbiamo assunto
implicitamente (e in modo del tutto ingiustificato) che, dal momento che certi dettagli del fenomeno #on
¢l interessano, questi sono automaticamente zznfluent; per la sua evoluzione reale: quanto avviene a livello
microscopico (il livello che abbiamo deciso di trascurare) pud anche non interessare affatto a chi
desidera effettuare un’analisi a livello macroscopico.

La perdita dei dettagli del moto turbolento a livello microscopico deve essere pertanto
compensata, almeno statisticamente, da altre informazioni che devono essere reintrodotte nel modello
fisico attraverso modelli agginntiv: 1 cosiddetti modelli di turbolenzga sottogrigha, 11 cui nome indica appunto
che ¢ loro affidato il compito di riprodurre tutti gli effetti dinamici di quanto avviene alle scale del moto
inferiori a quella della grigla di discretizzazione.

I1 problema ¢ concettualmente identico a quello che ha portato dal modello molecolare del gas a
quello del continuo deformabile. Un modello che riproduca ogni dettaglio del moto molecolare di un
gas ¢, non solo estremamente oneroso, ma anche spesso del tutto inutile dal punto di vista pratico,
tuttavia quanto avviene a livello molecolare puo essere trascurato soltanto a condizione che l'inevitabile
perdita di informazione venga compensata dall'equazione di stato e da informazioni sulle proprieta
fisiche szatistiche del fluido.

In molti casi, si puo rinunciare a conoscerne 1 dettagli, non solo a livello delle scale spaziali e
temporali delle singole particelle fluide, ma addirittura anche a quello delle grandi strutture turbolente:
in altre parole, puo essere sufficiente descrivere quello che prende il nome di moto medio e apprezzarne
l'evoluzione temporale mediando su intervalli di tempo di durata variabile tra qualche minuto e, al
limite, l'intera durata del fenomeno.

Questo secondo livello di approssimazione porta al modello fisico-matematico delle equazioni
mediate di Reynolds. Anche in questo caso, e in misura ancor maggiore che nel caso della LES, si ottiene
un'enorme riduzione del costo e del tempo necessari per ottenere una simulazione numerica dell'intero
fenomeno.

2 Problemi complessi ottenuti dalla somma di diversi problemi di simulazione (diffusione, reazioni chimiche,
campi dinamici, ....) sono detti multifisici ¢ sono caratterizzati da un numero elevato di equazioni differenziali alle derivate
patziali spesso anche fra loro correlate.
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Figura 67: Applicazione delle ipotesi spaziali e temporali al modello CFD

Ci sono addirittura delle situazioni in cui il moto ¢ 7 media stazionario il che rende del tutto
superflua la sua discretizzazione temporale, oppure casi in cul /z corrente media ¢ bidimensionale, ovvero
indipendente da una delle coordinate spaziali, nel qual caso la discretizzazione spaziale del problema
potrebbe essere limitata al solo pzano del moto medio.

Ovviamente il sistema delle equazioni mediate di Reynolds deve essere integrato con
informazioni fornite da modelli di turbolenza. A differenza dei modelli sottogriglia della LES, ai modelli di
turbolenza per le equazioni mediate di Reynolds ¢ atfidato il compito di riprodurre gli effetti dinamici de//intero
spettro dei moti tridimensionali e non stazionari che caratterizzano la corrente turbolenta. Compito che li
rende piuttosto complicati e scarsamente generali.
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Ulteriori modelli semplificati sono derivabili a partire dal modello delle equazioni mediate di
Reynolds, sulla base di successive approssimazioni dinamichela prima delle quali ¢ quella di wumero di
Reynolds elevato. 11 numero di Reynolds ¢ uno dei parametri dinamici fondamentali ed esprime
essenzialmente il peso relativo delle forze d'inerzia del fluido rispetto a quelle viscose, nella particolare
corrente in esame.

Un numero di Reynolds elevato significa quindi che, in un determinato fenomeno, gli effetti delle
forze d'inerzia sono mediamente preponderanti (anche di vari ordini di grandezza) rispetto a quelli delle
forze viscose Se ¢ verificata la condizione che il numero di Reynolds della corrente ¢ elevato, puo
talvolta verificarsi anche una seconda condizione.

Puo succedere che allinterno di un moto che rimane pur sempre tridimensionale e non
stazionario, la velocita media con cui viene trasportato il fluido abbia una componente decisamente
prevalente rispetto alle altre e si puo quindi identificare una direzione dello spazio, che prende il nome
di direzione del moto medio, lungo la quale 1 fenomeni convettivi sono decisamente preponderanti rispetto a
quelli diffusivi. In tali condizioni, si possono quindi ritenere trascurabili gli effetti della diffusione
viscosa e turbolenta nella sola diregione del moto medio e si ottiene il modello fisico-matematico che prende
il nome di eguazioni di N-S parabolizzate.

Qualora, poi, verificate le ipotesi appena descritte, si verifichi anche che il zerso della velocita nella
direzione del moto medio ¢ ovunque il medesimo, si puo adottare una geniale approssimazione
dinamica, dovuta a Prandt/. Egli intul che, sotto opportune condizioni (la prima delle quali ¢ un elevato
numero di Reynolds, la seconda ¢ l'assenza di controcorrenti), gli effetti dinamici diffusivi, associati alla
presenza di vorticita, viscosita e turbolenza, possono essere confinati in regioni del dominio di moto di
spessore estremamente limitato, che si sviluppano in cortrispondenza delle pareti solide lambite dalla
corrente e che prendono appunto il nome di strati limite o, meglio, di strati vorticosi sottils.

Da una lucida analisi del peso relativo delle forze in gioco, Prandtl dedusse che, non solo il »oto
medjo all'interno di questi strati poteva essere descritto da forme semplificate delle equazioni di Navier-
Stokes, che prendono appunto, come gia visto in precedenza, il nome di equazioni dello strato limite (o degli
strati vorticosi sottil), ma anche che, all'esterno di tali strati di corrente, gli effetti della viscosita del fluido
potevano essere completamente trascurati.

Deduzione, quest'ultima, non meno importante della prima, dal momento che consente di
ritenere che il campo di moto all'esterno degli strati limite sia determinabile prescindendo
completamente dagli effetti della viscosita. Ne deriva che in una (gran) parte del dominio, il
comportamento della corrente puo essere descritto dalle equazioni di Eulero, un modello fisico-
matematico che si ottiene a partire dalle equazioni di Navier-Stokes nell'ipotesi, appunto, di poter
eliminare completamente gli effetti della viscosita nelle equazioni di bilancio per la quantita di moto e
per l'energia. L'accoppiamento tra quelli che prendono, molto impropriamente, il nome di modello
viscoso (le equazioni di Prandtl che governano il moto nelle regioni vorticose sottili) e modello non viscoso
(valido all'esterno di esse) avviene essenzialmente attraverso la variabile scalare pressione.

Altri modelli semplificati si possono ottenere a patto che sia verificata un'ulteriore approssimazione
dinamica sul peso relativo tra le forze elastiche con cui il fluido, comprimendosi o espandendosi, reagisce
alle variazioni della pressione e, ancora, le forze d'inerzia.

Se tale rapporto ¢ piccolo, ovvero se il numero di Mach della corrente ¢ tale da garantire l'assenza di
onde d'urto, I'atto di moto nelle regioni esterne agli strati limite ¢ Zrotazionale e quindi descrivibile con
un modello piu semplice di quello di Eulero, ovvero con il modello del pozenziale completo.

E se, al limite, si puo ragionevolmente assumere che le pressioni in gioco siano tali da non
alterare la densita del fluido,si puo formulare l'ipotesi di completa incomprimibilita,che porta a descriverne
il moto con una semplice equazione di Laplace per il potenziale cinetico.

Nei casi in cui I'atto di moto all'esterno degli strati limite sia irrotazionale, il campo della
pressione, che descrive compiutamente lo stato di sforzo nella corrente (essendo ivi nulli gli effetti della
viscosita) puo ottenersi semplicemente con l'equazione di Bermoulli, a partire dal campo di velocita
fornito dalle equazioni del potenziale.

Si ¢ gia accennato al fatto che, anche in una corrente turbolenta, le variabili fluidodinamiche
medie possono presentare talvolta gradienti nulli lungo una direzione dello spazio.
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E' evidente che, in questi casi, ¢ sufficiente fornirne una descrizione nel solo piano normale alla
direzione di uniformita (il cosiddetto pzano del moto medio).

Qualora le direzioni di uniformita fossero due, anziché una, la corrente media potrebbe essere
ovviamente descritta con un modello #onodimensionale.Una situazione del genere non si presenta mai nel
mondo reale, ma esistono effettivamente correnti, stazionarie e non, nelle quali i gradienti di alcune
grandezze fluidodinamiche sono relativamente piccoli in una gran parte del campo di moto.
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Figura 68: Gerarchia dei modelli di simulazione

E' questo il caso di alcune correnti interne a condotti che presentano un'estensione longitudinale
assal maggiore di quella trasversale: se si escludono le regioni (magari sottili) adiacenti alle pareti solide e
quelle in cui si verificano variazioni brusche della direzione o del modulo della velocita media, velocita e
pressione si mantengono praticamente uniformi in ciascuna sezione del condotto e presentano gradienti
significativi soltanto nella direzione del moto medio, il quale puo pertanto essere descritto con una
forma monodimensionale delle equazioni di Eulero, se il fluido ¢ comprimibile, oppure da forme
monodimensionali dell'equazione di continuita e della quantita di moto, nel caso di fluidi a proprieta
costanti.

Nel caso di correnti stazionarie di fluidi a proprieta costanti, il modello che si deriva dall'ipotesi di
monodimensionalita prende il nome di #eoria delle ret.

E' chiaro pero che un modello di questo genere ¢ utilizzabile solo se accoppiato a modelli aggiuntivi
che siano in grado di tenere conto di tutti quegli effetti tridimensionali che, sebbene abbiano luogo in
regioni effettivamente limitate del campo di moto, non per questo devono avere conseguenze
trascurabili.
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Queste informazioni aggiuntive sono generalmente costituite da coefficienti e correlazioni di
origine sperimentale, che prendono il nome di coefficienti di perdita di carico.

Si conclude osservando che la gerarchia di modelli fisico-matematici fin qui esaminata ¢
rappresentativa della quasi totalita dei problemi della fluidodinamica classica. La parte iniziale di questa
trattazione verra dedicate, con particolare attenzione, alla formulazione del modello generale delle
equazioni di Navier-Stokes. Successivamente si esamineranno i problemi relativi alla loro integrazione
numerica diretta (DNS), si accennera alle equazioni per la LES ed infine a quelle mediate di Reynolds.

Per queste ultime si affrontera il “problema della chinsura”, gia introdotto nei capitoli precedenti,
prestando in particolar modo attenzione al modello a due equazioni differenziali (K-g),il quale ¢ stato
piu volte applicato nelle simulazioni fluidodinamiche. La gerarchia dei metodi di modellazione in
funzione dell’applicazione considerarta ¢ riportata nel diagramma 3 di Figura 68:

7.3 MODELLO AD UN’EQUAZIONE DIFFERENZIALE PER LA VISCOSITA
TURBOLENTA

Per superare alcuni dei limiti dei modelli algebrici di viscosita turbolenta, sono stati sviluppati i
modelli differenziali che, in generale, prevedono la scrittura e l'integrazione di una o piu equazioni
differenziali che descrivono, o direttamente la dinamica del tensore degli sforzi di Reynolds, oppure la
dinamica di una o piu grandezze scalari correlate con la viscosita cinematica turbolenta introdotta da
Boussinesq.

11 vantaggio ¢ che le equazioni differenziali di trasporto per queste grandezze consentono, in ogni
caso, di valutare la viscosita turbolenta tenendo conto della effettiva storia della corrente. Quando il
modello prevede la soluzione di un'unica equazione differenziale (si parla di modelli di ordine uno), la
viscosita turbolenta ¢ generalmente correlata ad un'equazione di bilancio per /energia cinetica turbolenta. Fu
lo stesso Prandtl che,vent'anni dopo 1 suoi lavori sulla mixing length, e sfruttando un'intuizione di
Kolmogorov, apri la via ai modelli differenziali di turbolenza, formulandone uno basato su di un'equazione

di bilancio per la grandezza scalare energia cinetica turbolenta media specifica K | che si indichera nel seguito
semplicemente con il termine di energia cinetica turbolenta, e che ¢ definita come:

R:%(ﬁw'v' rwiw) [119]

Nel nuovo modello differenziale, Prandtl conserva il principio che la viscosita cinematica
turbolenta sia esprimibile attraverso il prodotto di una velocita turbolenta V(e di una lunghezza di
ou

Invece di esprimere la velocita turbolenta attraverso il prodotto del gradiente della velocita media
per la lunghezza di mescolamento, assume che tale velocita di agitazione sia direttamente proporzionale
alla radice quadrata del/'energia cinetica turbolenta K :

Vi < V2K [120]

mescolamento ma lascia cadere la relazione Vi) = |m

Sotto tali ipotesi, quindi, la relazione:

. [121]

Viy = Vol

diventa:

vig =K [122]

dove, in luogo di |m\/§ si ¢ indicata la lunghezza | che, anche nei modelli ad una equazione
differenziale, continua ad essere calcolata con formule opportune, esattamente come avveniva nel
modello algebrico di Prandtl per la lunghezza di mescolamento |, . In questo tipo di modello, dunque, si

mantiene il concetto di viscosita turbolenta, ma nella sua espressione non compaiono piu termini legati
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al gradiente della velocita media, bensi termini contenenti l'energia cinetica turbolenta K, la quale puo
essere calcolata, in modo del tutto generale, in ogni istante ed in ogni punto del campo di moto, sulla
base di un'equazione differenziale di trasporto che si detiva con un procedimento concettualmente
semplice, ma piuttosto laborioso.

Di fatto, si tratta di:

a) moltiplicare l'i-esima componente dell'equazione di bilancio per la quantita di moto, relativa

alla velocita istantanea ' U, = Ui + ui, per la componente i-esima ' U'i della velocita fluttuante;

b) sommare le tre equazioni cosi ottenute e

¢) mediare nel tempo l'equazione risultante.

Cio che si ottiene ¢ la seguente equazione di bilancio per l'energia cinetica turbolenta media K ,
per unita di massa:

au;, ou,

oK oK ———ou;, 0 oK 11— 1—
U ——=—UiU | v——Zuiuu - = pu |-y 1| [123]
ot OX; ox; ox;| ox; 2 P ox; 0X
— N N
Variaz tot di K Produzione diff.molecolare trasporto diff. press dissipazione

turb
Il primo membro dell'equazione di bilancio [123] rappresenta, come di consueto,la variagioni totale
di K, e cio¢ la somma delle derivate temporale e convettiva. Tutti i termini hanno le dimensioni di

[m*s”], ovvero di un'energia per unita di tempo e per unita di massa, e cioé di una potenza per unita di
massa. Il primo termine al secondo membro indica la produzione per unita di massa e di tempo (si
tratta quindi di una velocita di produzione) di energia cinetica turbolenta operata dal tensore degli sforzi
di Reynolds e viene generalmente denotato con Py, il secondo, la velocita di diffusione molecolare di
energia cinetica turbolenta, il terzo, la velocita di trasporto di K da parte delle fluttuazioni della velocita,
il quarto, la velocita di diffusione di K per opera delle fluttuazioni della pressione, il quinto, infine, la
velocita di dissipazione, che si indica con & .

Poi si puo osservare che una parte del termine di produzione di K ¢ esattamente lo sforzo di
Reynolds. Pertanto, in base alla sua definizione

S(t)ij =Uuil
all'ipotesi di Boussinesq

S t 2
( )Ij — V(t) elj
queStO termine pu6 essere riSCrittO come:

g, [
lax, Yex

]

2

[124]

Se si esclude il termine di diffusione molecolare, che coinvolge la variabile K e la viscosita
molecolare,che ¢ nota, tutti gli altri termini dell'equazione [124] contengono prodotti,o correlazioni,tra
fluttuazioni della velocita e della pressione e devono essere,pertanto, modellati.

Il termine piu critico,da questo punto di vista,e quello di diffusione di K per fluttuazione della
pressione che,fortunatamente,¢ sufficientemente piccolo da poter essere o trascurato oppure modellato
insieme al termine di trasporto turbolento di K, assumendo che:

1. .. 1—— Vi 0K
Zuliuj—-—=puj=——2L—
2 Yo, oy OX;

[125]

dove o ¢ un coefficiente empirico, che prende il nome di numero di Prandt/ per la diffusione

turbolenta.
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Per quanto concerne invece il termine di dissipazione di energia cinetica turbolenta, 'analisi
dimensionale, nelle ipotesi di Kolmogorov, suggerisce di esprimerlo in funzione di K e di una
lunghezza, che ¢ quella di mescolamento |, secondo la relazione:

o _3/2
ou; ou, K
V| ——|=C, — [126]
OX; OX; I

E =

dove C,¢ un parametro che deve essere assegnato, di volta in volta, in funzione del tipo di

corrente.
In conformita a queste ipotesi, I'equazione [126] diventa dunque:

— — —\ 2 — —3/2

oK oK ou, 0 Vi | 0K K

— Ui —=vy| — | t=—||v+t— | |-Co—— [127]
ot OX; OX; OX; oy ) OX; |

%{_/

\_ﬁ/_—/

Variaz tot di K Produzione diffusione e trasporto dissipazione

La [127] contiene ora solo grandezze medie e puo essere finalmente integrata e fornire, istante
per istante, la distribuzione spaziale di K, purché si sia in grado di assegnare condizioni iniziali ed al
contorno anche per questa nuova variabile media. Per quanto concerne la superficie di contorno
all'ingresso del dominio di calcolo (quella che, in generale, prende il nome di sezione di inflow) ¢
necessario assegnare la distribuzione di K, mentre, sulle eventuali pareti solide, si impone, ovviamente,
la condizione di K = 0.

A titolo di esempio, vediamo di riscrivere e di discutere l'equazione per K nel caso particolare di
strato limite turbolento sottile non separato, con moto medio bidimensionale. Negli strati limite sottili, come
vedremo piu avanti, la componente della velocita normale alla parete, che indichiamo con v, ¢
generalmente piccola rispetto alla componente parallela, u. Inoltre, il gradiente della velocita in
direzione parallela alla parete, che indichiamo con x, ¢ piccolo rispetto a quello in direzione normale, y.
Nelle ipotesi di strato limite sottile, quindi, la [127] puo essere riscritta nella forma:

oK -0K -0K ou) o Vi oK K
— —=vy| — | +—||v+—|— |-C, ——

+U——+V V(t)
a e ey ) Tl e Sy |

dove C,é una costante che ha valori dell'ordine di 0.07+0.09, mentre il numero di Prandtl
assume valore pari all'unita. Nel caso degli strati limite sottili, il modello che consente di determinare la
viscosita cinematica turbolenta isotropa V( t ) in base all'equazione di bilancio per l'energia cinetica

turbolenta media K per unita di massa puo quindi essere riassunto nella forma seguente:

V(t) = I\/?

— —\2 — —3/2
%zv(t) ou +£ 0] 9K —CDK— [128]
Dt oy oy oy ) oy I
C, =0.07=0.09; o =1.0

In base alle [128] ¢ quindi ancora necessario prescrivere un'opportuna distribuzione della
lunghezza 1 in funzione della coordinata y, che puo essere anche di tipo algebrico. La legge di variazione
di I naturalmente dipende dal tipo di corrente considerata.

Nel caso di correnti turbolente di parete ¢ usuale assumere | = C;X,, dove X, ¢ la distanza dalla
parete, ed il coefficiente C ha un valore intorno a 0.41. Nel caso di correnti turbolente libere, invece, si

puo assumere che | =€, dove O ¢ lo spessore locale dello strato vorticoso ed il coefficiente Cé
compreso tra 0.4 ed 1.0.
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A differenza di quelli algebrici,questo modello,grazie all'equazione di trasporto per l'energia
cinetica turbolenta media, ¢ in grado di tenere conto della storia della corrente. II risultato ¢ che, pur
con un costo computazionale piuttosto modesto, si possono ottenere indicazioni relativamente
affidabili anche, ad esempio, in strati limite che si sviluppano o si rilassano.

D'altro lato, esiste ancora almeno una limitazione piuttosto pesante: non solo non esiste
(esattamente come nei modelli tipo mixing length) un'espressione di validita generale per la scala di
lunghezze 1, ma non possono essere rappresentati nemmeno gli effetti di trasporto di tale scala, che
sono invece assal importanti in tutte le correnti separate.

7.4 MODELLO A DUE EQUAZIONI DIFFERENZIALI (K-¢)

Anche 1 modelli ad un’equazione (tutti ricavati secondo lo schema di calcolo esposto nei
precedenti capitoli per la convezione termica), pur presentando indubbi vantaggi rispetto ai modelli
algebrici del tipo mixing length softrono di alcune limitazioni, la piu gravosa delle quali consiste nel fatto
che i risultati dipendono ancora da una imposizione a prioti della scala di lunghezza | .

Invece di prescrivere | a prioti, cosi come K ¢ ottenuta da un'equazione di trasporto, si puo
quindi utilizzare una seconda equazione di trasporto per la lunghezza |,oppure per una qualsiasi
variabile che sia cotrelata contemporaneamente, sia all'equazione per K |, che ¢ relativamente semplice

da trattare e che sembra dunque sensato continuare a risolvere, sia alla lunghezza | . In altri termini, si

. . . . . . T, a . . . .
tratta di definire finire una qualunque variabile del tipo K I°, e di scriverne l'equazione esatta di
trasporto, mediante manipolazione delle equazioni di Navier e Stokes. E' evidente che l'equazione
risultante conterra in ogni caso numerosi prodotti di grandezze turbolente che richiederanno, come nel

caso dell'equazione per K il ricorso alla modellazione. Tra le possibili variabili del tipo Ralb, sono

comunemente usate: \/E | (frequenza turbolenta), KI? (vorticita turbolenta) e K¥?I (velocita di
dissipazione dell'energia cinetica turbolenta).
A titolo di esempio, vediamo come si puo scrivere un'equazione di bilancio per la variabile velocita
di dissipazione dell'energia cinetica turbolenta specifica & = K¥l una grandezza scalare che gia compare
nell'equazione per K, e che consente di calcolare molto semplicemente 1, una volta nota K , attraverso
il rapporto:
—3)2

L 1129]

&

La scelta di & presenta, rispetto alle altre possibili, il vantaggio di non richiedere termini correttivi
in vicinanza di pareti,dal momento che K si annulla automaticamente all'annullarsi della velocita a

parete,mentre € si mantiene finita. I'equazione per & si puo scrivere evidenziando, al solito, i termini di

produzione, diffusione e distruzione, che hanno le dimensioni di [m>s™], ovvero di una potenza per

unita di tempo e per unita di massa:

De .
Ot P.+d, —distr, [130]
Il trasporto di & ,e cioe il trasporto di velocita di dissipazione, viene ovviamente calcolato in

modo esatto, mentre restano da modellare 1 termini di produzione di &, P&, di diffusione d€ e di

distruzione distr€ , esattamente come avveniva per l'equazione di bilancio per K. Vediamo, in estrema

sintesi, come si possono modellare questi termini, e cio¢ esprimerli in funzione di grandezze medie.

In generale,la produzione di € deve bilanciare la produzione di K e, al fine di evitare la crescita

illimitata di quest'ultima, si puo assumere che:
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&
P, OC?PK [131]

dove il fattore di proporzionalita e ¢ l'inverso di una scala di tempo, coerentemente con il fatto

che la produzione di € ¢, di fatto, la velocita di distruzione di K.

Pertanto,introducendo il fattore di proporzionalita c€, e riprendendo il termine Py dalla [131] si
scrive l'uguaglianza:
2

P.=co=vy| = 1132]

Per la diffusione di € , ancora in analogia con quanto si ¢ fatto per la diffusione di K, si assume

che essa sia funzione delle viscosita molecolare e turbolenta e del gradiente di € , secondo una relazione
del tipo:

1%
0 0 os

d, c—||Vv+—|—
£ oX o, )oX, [133]

i €
dove O, ¢ un coefficiente del tutto analogo al numero di Prandtl o . Infine, il termine di

distruzione di € deve tendere all'infinito quando K tende a zero per evitare che K possa assumere valori

negativi. Questo porta a scrivere:
. &
distr, oc ?g [134]

cio¢, introducendo un ulteriore fattore di proporzionalita:
2
distr, =c,, =
IStr, =C,, ?

[135]
L'equazione puo quindi scriversi come:
2
ou. 1% 2
LA N R VR L) P 1136]
Dt K OX; OX; o, )X, K

A questo punto, anche l'equazione di trasporto per € pud essere integrata insieme alle equazioni

mediate di Reynolds e all'equazione di bilancio per K, ma richiede anch'essa condizioni iniziali e al

contorno per € , nonché di determinare i valori di alcuni parametri che compaiono nell'espressione dei
termini a secondo membro.
Questi valori vengono definiti attraverso un processo di "calibrazione" del modello, a partire da

quelli, relativi a quella che prende il nome di formulazione standard del modello K-€ , riportati nel

seguito.
RS/Z
Assunzioni base: Vi) = |\/E |=——
&
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—2
Viscosita cinematica turbolenta: v, = C K—
)~ ~u °

DK (au)  of( vgloK) . K

Equazione per K: — =Vl — | T||v+ uUN AN Cpb—
Dt oy oy oy ) oy I
: De & ou, 0 Vi | O g

Equazione per e: —=Ca=Vy| — | + +—|— |-C,,=

Dt K OX; OX; o, )X, K
Parametri: c 7 Cgl C82 Oy Ge

0.09  1.1256 1.92 1.0 1.3

I modelli del tipo K-€ rappresentano, almeno dal punto di vista concettuale, un indubbio

miglioramento rispetto a quelli ad una sola equazione differenziale: la viscosita turbolenta viene
finalmente calcolata sulla base di una velocita turbolenta e di una scala di lunghezze le cui distribuzioni
spaziali non sono piu assegnate a priori, bensi entrambe calcolate con equazioni di trasporto che
tengono conto della storia dellacorrente. Anche questi modelli, tuttavia, presentano ancora dei punti
deboli: come tutti 1 modelli per le equazioni mediate di Reynolds, mancano di universalita, il che si
traduce nella necessita di adattare caso per caso, le varie "costant?* del modello.

Inoltre, richiedono inevitabilmente distribuzioni iniziali e valori al contorno per K e per €,che

non ¢ sempre facile assegnare in modo rigoroso. Per cercare di superare questi limiti si sono sviluppati
anche modelli che prevedono l'integrazione di un'equazione di trasporto per ciascuna delle componenti
del tensore degli sforzi di Reynolds (ovviamente sempre in termini di variabili medie). Anche questi
ultimi, peraltro, continuano a rimanere poco generali. Bisogna inoltre considerare che, all'aumentare del
numero delle equazioni differenziali che va ad aggiungersi alle equazioni mediate di Reynolds, il lavoro
di calibrazione dei vari parametri diventa sempre piu complicato e l'impegno di calcolo rischia di
diventare quasi confrontabile con quello richiesto da altri metodi, quali la Large Eddy Sinulation.

7.5 FONDAMENTI DELLA “LARGE EDDY SIMULATION (LES)”

L'approccio della Large Eddy Simulation (LES), ovvero della discretizzazione spaziale e temporale
del moto medio e delle sole strutture turbolente di scala relativamente grande, si situa, sia per dettaglio
dei risultati forniti, sia per impegno di risorse di calcolo, in una posizione intermedia fra la soluzione
delle equazioni mediate di Reynolds e la soluzione diretta delle equazioni di Navier e Stokes.

L'esposizione rigorosa di questa tecnica richiede il ricorso ad integrali e a trasformate di Fourier
delle variabili fluidodinamiche.

Tuttavia, se ci si limita ai soli aspetti fondamentali, ¢ sufficiente richiamare alcuni concetti generali
sulla turbolenza quali, ad esempio, la cascata energetica, le scale spazio-temporali ecc. In particolare, si
deve ricordare che, all'interno dello spettro d'energia delle varie scale turbolente ¢ possibile riconoscere
la funzione energetica di strutture vorticose che possono essere approssimativamente raggruppate nelle
tre bande dimensionali, o scale denominate, rispettivamente:

- banda energetica (o energy-containing range), contenente le strutture vorticose turbolente di
grande scala,

- banda inerziale (inertial range o subrange), che comprende i vortici di dimensione media,

-banda dissipativa (dissipation range), relativa alle strutture vorticose di piccola scala.

significato piu chiaro ai termini "grande" e "piccolo”, riferiti alle dimensioni dei vortici.

Su tali basi, possiamo infatti affermare che le strutture vorticose di scala maggiore(i grandi
vortici):
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- hanno natura convettiva e numeri di Reynolds caratteristici relativamente elevati (tanto che, per
instabilita, sono in grado di produrre vortici di dimensioni piu ridotte),

- hanno una scala temporale paragonabile a quella del moto medio,

- hanno origine e tipologia fortemente dipendenti dal moto medio, ovvero dal tipo e dalla
geometria del dominio di moto (o, in altre parole, dal tipo di corrente),

- estraggono energia cinetica dal moto medio per produrre energia cinetica turbolenta,
- hanno forma e dimensione poco dipendenti dal numero di Re della corrente media,
- sono generalmente anisotrope.

Energy - containing range Inertial
E subrange

/01/—\ P -
\ /

Dissipation
range

0-01}—

0-001

I

n

! 1 1 J
1 10 100 1

Figura 69: 1e tre bande caratteristiche dello spettro d'energia della turbolenza: scale energetiche,
inergiali e dissipative
Le strutture turbolente di dimensioni intermedie:
- sono generate dall'instabilita non lineare delle grandi strutture,

- sono anch'esse instabili, in quanto caratterizzate da numeri di Reynolds ancora relativamente
elevati,

- hanno essenzialmente la funzione di trasferire ai vortici piccoli l'energia cinetica turbolenta

prodotta, e ricevuta, da quelli grandi;

I vortici piu piccoli:

- nascono da interazioni non lineari fra quelli grandi e quelli intermedi,

- sono stabili, in quanto caratterizzati da numeri di Re bassi (dell'ordine dell'unita),

- hanno natura dissipativa e convertono in calore, attraverso la viscosita,l'energia cinetica

turbolenta loro trasmessa dai vortici intermedi,

- hanno vita media molto piu breve degli altri vortici e decadono con legge esponenziale,

- hanno tempi caratteristici molto brevi e di conseguenza, come si ¢ gia detto, una dinamica

praticamente indipendente da quella dei grandi vortici e del moto medio,

- hanno dimensioni relative rispetto a quelle dei grandi vortici che dipendono quasi

esclusivamente dal numero di Re della corrente,

- hanno una struttura pit universale (ovvero indipendente dal tipo di corrente) e relativamente

isotropa.

E' da queste considerazioni che nascono le idee fondamentali della Large Eddy Simulation, che
possono essere riassunte in:
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1) 1 vortici grandi e medi devono essere necessariamente (e quindi vengono) risolti esplicitamente,
come in una DNS,

2) soltanto i vortici pzcoli si prestano ad essere (e quindi vengono) #odellati.

Mentre con l'approccio delle equazioni mediate di Reynolds non si distingue fra strutture grandi e
piccole, e si ¢ costretti ad usare modelli che devono quindi simulare gli effetti della totalita dello spettro
delle dimensioni spaziali delle strutture turbolente, ¢ che pertanto non avranno mai il requisito
dell'universalita, con la LES si puo sperate che, ricorrendo alla modellazione dei so/i vortici piccoli
(quelli grandi sono, infatti, risolti direttamente), questo possa essere al contempo non eccessivamente
complicato e sufficientemente universale, dal momento che piu universali sono le proprieta dei vortici
che richiedono la modellazione.

. B

Figura 70: Strato limite turbolento in Large Eddy Simulation

E anche l'isotropia, implicita nel concetto dello scalare viscosita turbolenta, ¢ piu ragionevolmente
ipotizzabile nel caso dei vortici di piccola scala. La LES quindi, seppure meno accurata, ¢ pero molto
meno costosa della DNS, soprattutto se i numeri di Reynolds in gioco sono elevati e, per quanto
concerne le informazioni piu significative, ovvero quelle relative al moto medio e alle strutture
convettive di grande scala, ¢ praticamente altrettanto affidabile, in quanto questi sono calcolati
esplicitamente.

Il processo di derivazione delle equazioni della LES, a partire da quelle di Navier- Stokes, ¢
analogo a quello utilizzato nell'approccio delle equazioni mediate di Reynolds, salvo che, in questo caso,
sono completamente diversi il concetto e la definizione dell'operatore di media. Per le equazioni
mediate di Reynolds si ¢ eseguita un'operazione di media, o di filtraggio temporale delle variabili istantanee,
al fine di separare la parte discretizzata e riso/fa direttamente con le equazioni del moto medio, da quella
fluttuante, che veniva modellata.

Qui, al contrario, alle medesime variabili si applica un filfraggio spaziale, per separare la parte
spaziale discretizzata e riso/ta direttamente, dalla parte spaziale, che viene ancora modellata.

L'operazione di filtraggio piu intuitiva (sebbene non definibile in modo molto rigoroso dal punto
di vista matematico) ¢ quella implicitamente operata dal "volumetto di controllo", ovvero dal volume
racchiuso da ciascun elemento o cella della discretizzazione spaziale.
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Nel caso della LES, si adottano dimensioni delle celle che non sono sufficientemente piccole da
permettere di descrivere in dettaglio la dinamica di zutfe le strutture turbolente (altrimenti si ricadrebbe,
evidentemente, nei medesimi problemi della DNS) e, pertanto, le strutture di scala minore vengono
parzialmente o completamente fi/trate dalla soluzione.

E, cosi come avveniva per le fluttuazioni temporali nelle equazioni mediate di Reynolds, gli effetti
delle strutture spaziali #on risolfe vengono reintrodotti nel modello fisico-matematico attraverso relazioni
(o modelli) aggiuntivi. Nella LES, le equazioni per la quantita di moto (da integrarsi ovviamente a
sistema con l'equazione di continuita, anch'essa filtrata) sono del tipo:

oui - oui  1lop 0| [oui éuj
—+Uj—=———+ +

= 14
ot lox;  pox, ox.| |ox,  ox,

] ] J

—uuy |+ R 1377

Equazione in cui, nel caso qui esaminato di fluidi a proprieta uniformi e costanti, il termine
"viscoso" puo anche essere riscritto nella forma, del tutto equivalente, seguente:

o | [oui ou; o%u,
v + =v
x| (ox; o OX?

] 1

Le [137], pertanto, sono formalmente identiche alle equazioni mediate di Reynolds, salvo che la
barretta orizzontale qui indica la componente direttamente riso/ta, e cioe residua dopo l'operazione di
filtraggio spaziale, mentre l'apice indica la componente filtrata, non risolta, o "sottogriglia".

Nel caso della LES, tuttavia, il tensore di componenti U iU j, che ha il significato di "sforzo
sottogriglia specifico", richiede evidentemente modelli diversi da quelli impiegati per modellare il
tensore degli sforzi di Reynolds.

Inoltre si deve ricordare che, mentre nelle equazioni mediate nel tempo, i termini contenenti le
derivate temporali delle grandezze medie erano presenti soltanto nel caso di moto medio non
stazionario, qui sono sempre presenti: infatti, anche se il moto medio ¢ stazionario, le strutture
turbolente grandi e quelle intermedie, che devono essere risolte direttamente, sono, in ogni caso, non
stazionarie.

E allo stesso modo, anche nel caso di correnti medie bidimensionali, le equazioni della LES (al
contrario di quelle mediate di Reynolds) vanno sempre risolte in tre dimensioni,dal momento che non
esiste struttura turbolenta che non possieda la caratteristica della tridimensionalita.

7.6 ESEMPIO: SIMULAZIONE DI UNO SWIRLER

La simulazione del bruciatore in questione ¢ stata effettuata tramite il programma di calcolo ad
elementi finiti “FEMI.AB®*”, prodotto e distribuito dalla software house svedese COMSOL®. 11
programma di calcolo possiede un “mode/ navigator” dotato al suo interno di una serie di moduli
applicabili per analisi di vario tipo,dalla fluidodinamica alla meccanica strutturale.

All'interno di ognuno di questi sono a loro volta presenti dei sottomoduli contenenti gli algoritmi
di risoluzione delle equazioni differenziali tipiche del problema che s’intende analizzare.

Seguendo la logica di soluzione del programma di calcolo utilizzato, I'analisi e la modellazione del
problema affrontato sono state realizzate seguendo una successione di procedure, partendo dalla
realizzazione della geometria fino ad arrivare al plottaggio e al post-processamento dei risultati.

Le diverse fasi sono analizzate in dettaglio nei successivi paragrafi e costituiscono 1 passi necessari
per sviluppo di un generico modello di calcolo numerico, a prescindere dal software utilizzato.

2411 CAD FEMLAB® ora prende il nome di COMSOL MULTIPHYSICS®
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| Nuovo modello | Libreria dei Modelli | Modelli Utente | Settaggi

Dimensione geometrica: 20 ‘,',J

)

|# ) FEMLAB

__| Chemical Engineering Module
__| Electromagnetics Module

| ® ] Structural Mechanics Module

Descrizione:
FEMLAE - Modellazione Mutti-fisica.

Variabill dipendenti:

Nome della modalita di analisi: |

Formulazione elemento; | pat) [ Multi-fisica l

Annulla

Figura 71: Finestra iniziale FEMI.AB

7.6.1 COSTRUZIONE DELLA GEOMETRIA

Il primo passo inevitabile per la realizzazione del modello risiede nella costruzione della
geometria del sistema. In particolare ai fini del calcolo non ¢ stato necessario considerare il sistema per
la sua lunghezza effettiva, ma, ai fini di un piu scrupoloso utilizzo delle risorse di memoria, si ¢
analizzata la sezione finale del bruciatore pi 0 meno a ridosso della zona in cui ¢ presente lo switler. Il
programma di calcolo ¢ dotato di un’interfaccia CAD per la costruzione delle geometrie.

Tuttavia questa si ¢ dimostrata inadeguata ai fini della realizzazione dello switler il quale presenta
una geometria troppo complessa per essere eseguita con le primitive messe a disposizione dal software.

Per la costruzione della geometria completa si ¢ allora proceduto separatamente. Come prima
cosa ¢ stato modellato lo swirler, utilizzando un CAD adeguato (Solid Works®), la cui immagine ¢
riportata in Figura 72.

Figura 72: Modellazione geometrica dello swirler

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE 135

Successivamente il file IGES™ relativo allo swirler ¢ stato importato all'interno dell'interfaccia
grafica del software e su di esso ¢ stata completata la geometria complessiva.

Questa ¢ suddivisa in due zone: il primo tratto, sul quale ¢ stato inserito lo swirler, ¢ caratterizzato
da due cilindri concentrici che rappresentano il condotto del bruciatore entro cui fluisce il comburente.

1l secondo tratto, caratterizzato da un cilindro pieno, rappresenta un volume di controllo entro il
quale si puo analizzare il campo di moto del fluido in uscita dal bruciatore, e che simula una porzione
del reattore.

LLa geometria completa ¢ riportata in Figura 73.

Figura 73: Geometria completa del sistema studiato

7.6.2 EQUAZIONI DEL MODELLO, SOTTODOMINI E CONDIZIONI AL
CONTORNO

Il passo successivo alla costruzione del modello geometrico,e stato scegliere il sistema di
equazioni differenziali che meglio approssima il comportamento del sistema nelle sue condizioni di
funzionamento,imponendo i giusti parametri sia per quanto riguarda il sottodominio sia per quanto
riguarda le condizioni al contorno.

In base alle rilevazioni sperimentali portate a termine sul bruciatore, le condizioni operative sono
risultate le seguenti:

1l fluido,ovvero il comburente,entra dalla sezione iniziale con una velocita di circa 20 m/s,in

accordo con la portata di progetto;

La densita del fluido ¢ stata approssimata ad un valore di circa 1 Kg/ m’, in funzione della

temperatura e di una media pesata effettuata sulle densita dei componenti facenti parte della

miscela gas-ossigeno(che caratterizza il comburente in esame);

La viscosita cinematica & stata fissata sul valore di 1¥10° m?/s in accordo con i valori tipici

riportati in letteratura;

La pressione all'interno del volume di controllo, assimilabile ad una porzione del reattore,¢ stata

fissata ad un valore di 3 bar.

25 11 formato IGES ¢ riconosciuto da molti programmi come un formato standard per la modellizzazione solida.
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Note le condizioni operative del sistema, sono stati calcolati due parametri adimensionali di
fondamentale importanza,allo scopo di determinare il regime di moto nel quale si trova il fluido, ovvero
il numero di Mach e il numero di Reynolds. Per il primo si ¢ ottenuto che:

Ma = —0.04
C

S

dove si ha che:

W =20 m/s ¢ la velocita del fluido;

C, =vVKkRT =480m/s ¢ la velocita del suono;

e, considerando il comburente come un gas petfetto,ad una temperatura T=300°C si ha che:
C

k=-—+t=14 R=287kJ/kg-K.
C

v

Per il secondo invece il valore ottenuto ¢ il seguente:
~e_ W(D,-D)
|4

= 72000

Dall’analisi di questi due paramettri si ¢ arrivati alle seguenti conclusioni:

-Per prima cosa, si ¢ potuto, con buona approssimazione, considerare il fluido “zncomprimibile”
(ovvero si sono trascurate le variazioni di densita) essendo il numero di Mach molto minore
dellunita®. Questo ¢ giustificabile osservando che le velocita in gioco nell’efflusso non sono
particolarmente elevate.

-In secondo luogo, dato il valore assunto dal numero di Reynolds, si capisce come il regime di
moto sia sicuramente turbolento.

-Infine il fluido in questione ¢ considerato newtoniano, essendo una miscela gassosa; cio
comporta I'indipendenza della viscosita dal gradiente di velocita.

| Nuovo modell | Libreria dei Modeli | Modelli Utente Settaggi

Dimensione geometrica: 2D v
{4 Modalta di Analisi 7y
| | FEMLAB

| _ Chemical Engineering Module

[# __] Bilancio energetico

# __]Bilancio di massa

= *_4 Bilancio della quantita di moto
# # Equazioni di Brinkman
# # Fluido comprimibile secondo Eulero
# # Legge diDarcy

EYR Whiodello di Turbolenza K-Epsilon Desctizione:
& # Fluido incomprimibile, eq. di Navier-Stokes [Flus=0 in regime turbolento di un fluido
# # Flusso non isotermico incomprimibile.

‘ # # Flusso Non-Newtoniano ¥\

1< > | |Analisi stazionaria in 2D.

Variabili dipendenti: {uv pLogk Logd

Notme della mosalita i analisi ke | | |

Formulazione elemento: lLagrange - P, Py R [ Mutti-fisica ]

[ ok ][ annue |

Figura 74: Finestra di selezione dei sottomodnli di risolugione

26 In realta si patla di incomprimibilita quando Ma<0.3,condizione il che ¢ ampiamente soddisfatta nel caso in
esame.
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Sotto queste condizioni, il modulo adottato per la risoluzione numerica del problema ¢ il “wodello
a due equazioni differenziali k-€”, inserito all'interno del “Chemical Engeenering module”.

Come gia osservato nel capitolo quinto, il modello k-e ¢ uno dei migliori per lo studio dei
fenomeni che concernono la turbolenza. Le equazioni caratteristiche di questo approccio sono
Iequazione di continuita e le equazioni di bilancio di quantita di moto,inglobando in queste anche le
due equazioni ausiliarie sull’energia cinetica turbolenta “k” e sull’energia di dissipazione turbolenta
“e” necessarie per la chiusura del problema:

(usVu)u =—Vp/,0+v‘[(V+VT)W]+ %

-V-u=0

(U-V)kzrij%—8+v- v+ |VK
OX; o,

(u-V)gzcglg/k-rij%—05182/k+v- v+l |ve
_ c

] &

Individuato il modulo per lo studio si ¢ effettuato il settaggio del sottodominio,in accordo con i
valori derivanti dalle specifiche precedentemente elencate:

Equazioni
(us¥u = -Vpip + Ve[(v + vT)’Vu] +Fip

-Veu=0
(ueVik = rij. auiiaxj e+ Vo(v + vTJcrk)Vk]

2
(usV)e = cﬂemijauiraxj - sza &+ Te[(v + v.rfcr:)Ve]

Selezione del sottodominio | Dati Fisici | valori Iniziali | Formulazione elemento |

Al Proprieta per i flido
Libreria dei materiali: yri

Quantita Valore/Espressione Descrizione
p 1 ] | Densita
¥ >1A e-5 | Wiscosita cinematica
Foo o | Forza di volume dir. x
' F 0 | Forza di volume dir. y
bl s :
T F, 0 | Forza di volume dir. z

D Seleziona per gruppi omogenei

[ Dpitfusione Artificiale... |

Aftivo hel dominio corrente

[ ok || annuwie || appica |

Figura 75: Finestra per il settaggio dei sottodomini

A seguire sono state impostate le condizioni al contorno(“boundary conditions”)per le quali il
software offre diverse tipologie (Figura 76).Per la fisica del problema affrontato le condizioni al
contorno imposte si POSSONO riassumere come segue:

Condizione di velocita assiale nella sezione d’ingresso,pari a 20 m/s;

Condizione di aderenza(no slip) su tutte le superfici solide che costituiscono le pareti dei condotti
e le palette dello switler;

Condizione di pressione pari a 3 bar nella sezione finale del sistema.
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7.6.3 LA MESH DEL MODELLO

Una volta stabilite tutte condizioni fisiche del modello, si ¢ potuto passare alla realizzazione della
mesh. Quest’ultima ¢ stata realizzata con elementi tetraedrici che meglio si adattano a casi di geometrie
3D, differentemente dalle mesh mappate con elementi quadrangolari.

1l problema esaminato,per via della sua geometria piuttosto complessa in prossimita dello switler,
presenta un elevato numero di gradi di liberta che hanno creato non pochi problemi per la gestione
della memoria del calcolatore utilizzato.I valori impostati per la definizione degli elementi della mesh
sono riportati nella Figura 77.

Equazione -

u=u0,k=k0,£=eo

Selezione del contorno Condizioni al contorno

& Condizione al contorna: fﬂusso entrante v
g ' Quantita Flussa entrarte one
;4 Uy Flusso uscente h dir.
| Pressione ’
15 Ya : ) . hodir. y
;B Scorrimento/Simmetria
L g Scorrimento assente h dir. z
?8 k0 Funzione di parete logaritmica inetica della parte turbulenta
: | z Flusso normale/Pressione
ln 12l 0 o e
. . . Condizione neutra
[ seleziona PEr gruppi omogenei Pa 7 TFTESSIOMN:
[:] Entita al contorno interne [ Spessore di parete

| o

J[ Annulla ][ Applica ]

Figura 76: Finestra per il settaggio delle condizioni al contorno

Sottodominio | Contorno | Lato | Punto | Opzioni avanzate

Parametri globali per la mesh

Tipi di'infittimento predefiniti: iifjlormale i v
Dimensione massima dell'slemento: [

Fattore di scala per la dimensione massima: |1

Rapporto di disinfittimento: 14 z
Parametro relativo alla curvatura: Q 4 3
Parametro di sensibilta sulla curvatura: 007I )

Tipo di dominio per la mesh: Sottod 9@[@9 7v

Ofttimizza la qualita della mesh

Metodo per l'infittimento:

iﬁ?al lato maggiore V‘

[ Rigenera ][ OK ][ Annulla ]

Figura 77: Finestra di settaggio per i parametri della mesh

Imponendo tali valori la mesh del modello ¢ risultata come riportato in Figura 78.

Da questa si puo osservare che la zona in cui ¢ presente lo switler risulta molto piu densa di
elementi,essendo questa suddivisa in tanti piccoli sottodomini caratterizzati dai vani compresi tra le
palette. Cio si osserva meglio nell'ingrandimento riportato in Figura 79.

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE 139

Tuttavia nonostante 'apparente bonta della mesh, il numero delle maglie non ¢ quello ottimale
per ottenere risultati di precisione elevata,per 1 quali necessiterebbero mesh con milioni di gradi di
liberta.

In ogni caso l'analisi ¢ risultata pienamente soddisfacente con il livello di approssimazione
considerato e ha restituito indicazioni importanti sulle distribuzioni del campo di velocita e di pressione
del sistema studiato.

Figura 78: Mesh del modello

Figura 79: Ingrandimento della mesh nella zona dello swirler
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7.6.4 SOLUZIONE NUMERICA DEL PROBLEMA

Questa fase rappresenta sicuramente il punto cruciale nella risoluzione del problema.ll software
utilizzato possiede di default una serie di solutori i quali possono essere opportunamente gestiti in
funzione dell’entita del calcolo e della tipologia di problema da risolvere. In breve i solutori possono
essere suddivisi come segue:

Solutori lineari: per problemi semplici di carattere lineare;

Solutori non lineari: per problemi complessi non lineari;

Solutori diretti: ricavano la soluzione con metodo diretto ma con eccessivo utilizzo di memoria;

Solutori iterativi: ricavano la soluzione in modo iterativo,sfruttando meno memoria,ma

impiegando piu tempo.

Normalmente per problemi come quello affrontato, in cui analizzano problemi di turbolenza con
geometrie 3D, il solutore che meglio si presta per la risoluzione ¢ sicuramente di tipo non lineare e
iterativo, da un lato perché le equazioni caratteristiche del moto sono non lineari, dall’altro perché il
solutore iterativo non presenta gli oneri di calcolo che presenterebbe un solutore diretto (soprattutto
nel caso di geometrie 3D).

Tuttavia a causa delle numerose iterazioni che questo tipo di solutore si trova ad eseguire per
risolvere il sistema di equazioni in questione, si ¢ optato, in definitiva, per un solutore non-lineare
diretto, che pur richiedendo notevole risorse di memoria ha consentito una maggiore rapidita di calcolo.

Com’¢ riportato in Figura 80, Tanalisi effettuata risulta essere “stagionaria non lineare” ed il
solutore prescelto risulta essere TUMFPACK il quale ¢ stato settato limitando il fattore di smorzamento
per far convergere piu rapidamente la soluzione del problema:

ki Non-lineare | ! it Opziohi avanzate
Solutore lineare
Solutore lineare: bireﬁo (UMFPACK) v
Solutore: —_— —

|&nalisi stazionaria lineare &

Analisi stazionaria nonlin

IDipendente dal tempo

|Autovalore Settagy...
[Parametrica lineare

Parametrica nonlineare Metodo di soluzione: iGen_grglg_ v

‘ [] Matrici simmetriche
v
< &

[[] Mesh adattiva

[ OK ]l Annulla ][ Applica ]

Figura 80: Finestra di gestione del solutore

Infine, il “metodo di soluzione” delle equazioni differenziali alle derivate parziali(PDE) ¢ fissato sulla

modalita “generale”, necessaria quando vengono affrontati problemi di natura non lineare, o semi-lineare.

7.6.5 PLOTTAGGIO DEI RISULTATI E POST-PROCESSAMENTO

Questa ¢ la fase finale del processo di modellazione la quale consiste nel plottare i risultati
ottenuti dalla simulazione e di effettuare il loro post-processamento.
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11 software utilizzato ha, nel post-processamento dei risultati, uno dei suoi punti forti in quanto
presenta un’interfaccia di gestione semplice da utilizzare, ma allo stesso tempo completa.ll primo
risultato che ¢ stato plottato, riporta la distribuzione del modulo del campo di velocita,analizzato in una
serie di sezione trasversali del sistema ed ¢ rappresentato in Figura 81. Si evince chiaramente dalla figura
che il fluido entrando con una velocita di circa 20 m/s subisce un’accelerazione all’interno dello swirler
a causa della stazionarieta del problema. Infatti, la conservazione della portata di massa comporta il

conseguente aumento della velocita al ridursi della sezione.

Piani di Sezione: Campo della velocita

n.2

Ma: 40
40

a0

25

20

Min: 0.4

Figura 81: Piani di sezione: campo di velocita

All'interno del reattore i fluido incontra un ambiente di grosse dimensioni espandendosi e
rallentando bruscamente fino a valori della velocita di 1 m/s circa. Il tutto appare piu chiaro nella

seguente sezione longitudinale:

Campo della velocita

Max: 38

Min: 1.0

Figura 82: Sezione longitudinale del modello
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Dalla Figura 82 risulta evidente I'espansione del getto fluido(con andamento tipicamente
conico)al momento dell'ingresso nel reattore, con conseguente diminuzione di velocita.

Per quanto invece riguarda la direzione del campo di moto, si sono andati ad analizzare le linnee
di flusso® e i vettori velocita, come mostrato nelle seguenti immagini.
Linee diflusso: Campo della velocita Max: 44

40

35

- 425

15

Min: 2.5

Figura 83: Linee di flusso

Vettore: [u, v, w]

n.2

Figura 84: Vettori velocita

Risulta in questo caso ben visibile il moto a spirale tipico di un flusso swirlato.In particolare il
moto impresso dalla palettatura crea,come accennato nel capitolo precedente,una zona di depressione
interna con conseguente sviluppo di una zona di ricircolo centrale (“Central Toroidal Ricirculation Zone”)
che riporta il fluido verso la sezione d’uscita del bruciatore.

27 Si ricorda che per linea di flusso (szreamline) s’intende la linea che si mantiene tangente in ogni punto al vettore
velocita.
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Linee diflusso: Campo della velocita Max: 44

40

35

30

{25

Min: 2.3

Figura 85a: Ingrandimento della zona di formazione del vortice(posteriore)

Linee diflusso: Campo della velocitd Max: 44

Min: 4.3

Figura 85b: Ingrandimento della zona di formazione del vortice(anteriore)

Eseguendo in prossimita di quest’ultima (ad una distanza di circa 1 cm) un’analisi della
distribuzione radiale della componente assiale della velocita, ¢ possibile osservare su un generico piano
longitudinale della geometria, un andamento del tipo riportato in Figura 80.

E’ facile osservare come nella zona centrale ,ovvero all’interno del nucleo del vortice,il modulo
della velocita assiale assuma valori negativi. Cio, ovviamente, ¢ collegato all'inversione del flusso causata
dai gradienti pressori che si originano in suddetta zona.

I valori trovati sono aderenti ai risultati ottenuti per via sperimentale, tramite LDV e concordano
con i numerosi casi analoghi ritrovabili in letteratura. I valori inerenti all’effetto di ricircolo ottenuti con
la simulazione inoltre risultano concordanti con il grado di swirl posseduto dal bruciatore.
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Velocta indr &
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Figura 86: Distribuzione radiale della componente assiale della velocita all’uscita del bruciatore

Si ¢, calcolato il numero di switl per il sistema in esamem basata sulla geometria del sistema,

ottenendo che:

3
_2 —1_(R“/R)2 tana =0.77
3 1_(Rh/R)

Secondo la suddivisione effettuata nel sesto capitolo in merito ai diversi gradi di effetto swirl, si
osserva che il sistema esaminato rientra nel caso di un “medinm swirl’, essendo il numero di swirl

compreso tra 0 ed 1.

Valotity n dir ¢

L 005 01 015 02 0.25 03 035 94

Art-berv)

Figura 87: Distribuzione radiale della componente assiale della velocita a 20 cm dalla sezione d'uscia del
bruciatore

In questa categoria, infatti, rientrano tutti i sistemi in cui 'effetto ¢ tale da generare un gradiente
di pressione assiale e radiale sufficientemente intenso da formare vortici di rientro in cui viene

ricircolata una certa percentuale di massa fluida.
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Cio, quindi, corrisponde perfettamente a quanto ottenuto dalla simulazione. La stessa analisi ¢
stata successivamente effettuata a distanze crescenti rispetto alla sezione d’uscita del bruciatore per
analizzare la permanenza ¢ la lunghezza della zona di ricircolo.

Come riportato in Figura 87 ad una distanza di circa 20 cm dalla bocca del bruciatore si ha ancora
un notevole effetto di ricircolo evidenziato dai valori assunti dalla componente assiali della velocita,i
quali permangono negativi.

Questo denota un elevato grado di miscelazione tra comburente e combustibile, il quale viene, in
una buona percentuale, ricircolato dai vortici toroidali del comburente verso la zona d’iniezione,dando
origine a tutti gli effetti benefici che sono gia stati piu volte sottolineati riguardo le emissioni e la
stabilita di fiamma.

In maniera analoga ¢ stato possibile analizzare la distribuzione radiale di pressione sempre in

prossimita della sezione d’uscita, il cui andamento ¢ riportato in Figura 88.
5

T T T T T L T T T

x10

3.004

3.003

3.002 +-

3.001

Pressione

2.999

2.998

2.997

2.996

il L i L { (x L L I :

] 0.02 0.04 0.06 0.08 0.1 012 0.14 0.16
Arc-length

Figura 88: Distribugione della pressione all’uscita del bruciatore

La figura ¢ esplicativa del fatto che, pur essendo fondamentalmente tutto I'ambiente alla
pressione di progetto di 3 bar, all'uscita del bruciatore si viene a creare quella leggera depressione tipica
dei flussi swirlati.

La leggera discontinuita che si puo notare nell'immagine, nella zona centrale, deriva
dall’imprecisione di calcolo implicita nella mesh prescelta che,come gia osservato,comporta degli errori
durante I’analisi numerica.
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8 EBOLLIZIONE E CONDENSAZIONE DEI FLUIDI

I fluidi (liquidi e vapori) possono cambiare di stato, come si ¢ visto in Termodinamica Applicata con
le curve di Andrews. Questi cambiamenti di stato, ebollizione e condensazione, tivestono una
grandissima importanza industriale per le numerosissime ed importantissime applicazioni in campo
energetico. Si pensi, ad esempio, al raffreddamento dei reattori nucleari, ai tubi di calori e alle
applicazioni in campo elettronico (raffreddamento di componenti fortemente energetici).

Oggi con queste tecniche si riesce a raggiungere una intensita di flusso estratto dell’ordine del
MW /m? e quindi valoti elevatissimi e adatti a far fronte alle esigenze di raffreddamento di dispositivi ad
elevata densita di potenza®. Si vuole in questo capitolo presentare brevemente queste problematiche
affrontandole piu in modo qualitativo che quantitativo, anche in considerazione della natura del
presente Corso. Si rimanda ai testi specializzati ogni ulteriore approfondimento.

Un altro motivo di interesse specifico di questi fenomeni di scambio termico con passaggio di
stato ¢ dovuto alla semplice considerazione che per essi non si possono applicare le relazioni
adimensionali della convezione termica viste in precedenza. Si osservi, infatti, che per la convezione
forzata si hanno relazioni adimensionali del tipo:

Nu=C-Re"-Pr"
mentre per la convezione naturale si hanno correlazioni adimensionali del tipo:
Nu=C-Gr"-Pr"

che spesso, nel caso di gas per i quali gli esponenti 7 ed 7 sono eguali, si possono ricondurre nella
forma semplificata:

Nu=C-Ra"

Si ricorda che il numero di Prandtl ¢ definito dal rapporto:

et
A

e quindi dipende dal calore specifico a pressione costante del fluido interessato. Durante i
passaggi di stato la pressione si mantiene costante ma anche la temperatura e quindi ¢, ¢ infinito. Ne
segue che durante i passaggi di stato non possiamo usare correlazioni adimensionali ove compare c,,.

Pr=

Occorre, quindi, affrontare diversamente il problema dello scambio termico in cambiamento di
fase con osservazioni e metodologie di studio specifiche per questi fenomeni.

8.1 EBOLLIZIONE STATICA

Prima di affrontare lo studio dell’ebollizione ¢ bene ricordare che questa differisce dalla
evaporazione. Questa, infatti, ¢ un fenomeno di transizione dalla fase liquida a quella di vapore nella
regione superficiale di contatto dei due fluidi ed ¢ determinata dalla differenza fra la pressione di
saturazione e la pressione parziale del vapore. L’ebollizione interessa, invece, la massa del fluido ed ¢
determinata dal raggiungimento della temperatura di saturazione nel punto specifico e alle condizioni di
pressione presenti. L’ebollizione ¢ stata studiata negli anni gwaranta da Nukijama che propose il
diagramma di Figura 89 per ebollizione statica: in ascisse ¢ rappresentato AT, cioe la differenza di
temperatura della parete, T, e quella di saturazione del liquido, T, in ordinate si ha il flusso specifico
[W/m?] in unita arbitrarie.

28 ] reattori nucleari raggiungono densita di potenza dell’ordine di qualche centinaio di Watt per centimetro cubo.
Dello stesso ordine di grandezza sono le densita di potenza dei tubi claystron utilizzati negli impianti radar. Si pensi, ancora,
che un semplice Pentium III disperde circa 40 W con una superficie di circa 2 cm? e quindi con una densita superficiale di
0.2 MW/m? E’ opportuno ossetvate che oltre al valore assoluto della potenza termica da estratre (ad esempio negli impianti
di potenza) ¢ importante considerare anche le densita (volumiche o superficiali). Se non si riesce a smaltire queste potenze
specifiche i dispositivi interessati possono subire danni irreversibili o non funzionare affatto.
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Figura 89: Curva di Nukijama

L’ebollizione statica si ha, ad esempio, ponendo la classica pentola sul fuoco: il fluido ¢ in
condizioni statiche e non in movimento, come avviene nei tubi all’interno di una caldaia.

Se si aumenta la potenza ceduta alla parete di fondo si hanno, inizialmente, valori di AT, bassi,
dell’ordine di qualche grado, come indicato in figura.

Per effetto di questa differenza di temperatura si instaurano fenomeni convettivi per i quali il
fluido caldo, a contatto con la parete di fondo riscaldata, si sposta verso l'alto, ove la temperatura ¢
inferiore a quella di saturazione dando luogo alla convezione termica, cosi come vista in precedenza. In
questa zona si possono utilizzare le correlazioni adimensionali solite per la convezione naturale e il
flusso specifico ¢ dato da™:

q = hATsat

Molto usata ¢ la correlazione di Mc Adams: Nu=0.56(Gr PI’)O'25 per moto laminare e

Nu = 0.13(Gr PI’)O'33 pet moto turbolento.

Ad un certo punto, a seconda della combinazione di fluido e materiale delle pareti e della
pressione sul fluido, si cominciano ad osservare sulla parete di fondo riscaldata alcune bollicine che
appena nate subito spariscono.

Per comprendere questo fenomeno occorre ricordare che I'ebollizione del liquido avviene solo
quando si supera la temperatura di saturazione e per effetto di una causa scatenante, una sorta di
innesco spesso dato dalla presenza di impurezze, di gas diverso dal vapore o da asperita tipiche delle
lavorazioni delle pareti metalliche.

In Figura 90 si ha un ingrandimento della parete di fondo con I'evidenziazione delle asperita
dovute alle lavorazioni. Si osservi che queste asperita sono volute, come si dira fra poco, perché aiutano
il processo di formazione delle bolle.

29 Si utilizza il salto di temperatura AT, come valore di riferimento certo. 1l salto reale di temperatura dipende dalle
condizioni locali non sempre facilmente calcolabili.

PROF. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — TRASMISSIONE DEL CALORE 148

BOLLA DI VAPORE

GRADIENTE DI TEMPERATURA

ASPERITA'

PARETE DI FONDO RISCALDATA

Figura 90: Nascita di una bolla di vapore

Se consideriamo una cavita si intuisce che nella cuspide di fondo si ha una concentrazione
anomala di potenza termica (a parita di superficie frontale le pareti inclinate trasmettono piu calore) e
quindi ¢ possibile avere I'znnesco per I'inizio della ebollizione.

11 vapore che si viene formando occupa un grande volume e forma una bollicina che va sempre
piu crescendo di diametro fino ad uscire fuori dai limiti della stessa cavita e affiorare nel liquido
sovrastante. Il liquido pud essere ancora in condizioni di sottoraffreddamento, cio¢ ancora non
sufficientemente riscaldato e quindi in condizioni tali da mantenere le condizioni termodinamiche di
esistenza in vita della bolla.

BOLLA DI VAPORE CHE IMPLODE

GRADIENTE DI TEMPERATURA

ASPERITA'

PARETE DI FONDO RISCALDATA

Figura 91: Implosione della bolla

Pertanto la bolla si raffredda rapidamente perché cede calore al fluido sovrastante e, quando la
pressione interna diviene inferiore a quella esercitata dal liquido esterno si ha I'implosione con
conseguente scoppio, vedi Figura 91 e Figura 92.

Questo semplice meccanismo si rivela efficacissimo ai fini dello scambio termico poiché il vapore
allinterno della bolla cede al liquido il suo calore latente di vaporizzazione (che ¢ elevatol). Inoltre lo
scoppio produce l'effetto benefico di movimentare il liquido ossia di migliorare la convezione termica.
E’ come se si avessero tanti piccoli meccanismi di movimentazione del liquido e quindi la convezione si
comporta come se fosse forzata.

Quanto sopra detto si chiama ebollizione enucleata e tale il nome proprio dalla formazione dei
nuclei di ebollizione che poi implodono. La temperatura corrispondente all'insorgere di questo

fenomeno ¢ detta onset on nucleate boiling (ONB) e rappresenta un punto significativo della curva
di Nukijama.
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CALORE LATENTE DI VAPORIZZAZIONE CEDUTO

BOLLA DI VAPORE CHE IMPLODE

LIMITE DI SATURAZIONE

GRAD\ENTE DI TEMPERATURA

ASPERITA'

PARETE DI FONDO RISCALDATA

Figura 92: Scoppio della bolla

Per effetto dei meccanismi efficacissimi di scambio termico ora il flusso termico si esprime con la
relazione:

gq= hAT 3+55at

Si osservi che ora il flusso termico dipende dalla 3+5 potenza del AT, e quindi si ha una capacita
di estrazione termica notevolissima. E’ proprio questa la zona di maggiore interesse per le applicazioni.:
Vebollizione nucleata.

_________ LIMITE DI SATURAZIONE ___ ______
=T
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ATsat]

PARETE DI FONDO RISCALDATA

Figura 93: Distacco delle bolle

Man mano che il liquido si riscalda le bolle possono crescere ulteriormente e finalmente possono
staccarsi dalla parete di fondo, come indicato in Figura 93. Le bolle ora perfettamente formate sono in
grado di iniziare la loro ascesa verso la superficie superiore del liquido ma, allontanandosi dalla parete,

incontrano strati di liquido piu freddi e quindi si raffreddano cedendo calore attraverso la superficie di
separazione.

Figura 94: Equilibrio termodinamico della bolla
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Quando la pressione interna della bolla non riesce piu a bilanciare la pressione del liquido si ha,
ancora, I'implosione della bolla e quindi nuovamente il meccanismo di scambio termico visto in
precedenza con la cessione del calore latente e la movimentazione del liquido.

Con riferimento alla Figura 94 si puo scrivere, per equilibrio:

q2 2
pvﬁT = p,7z7+7zd0'
ove si sono indicate con:
o la pressione del vapore interna alla bolla alla temperatura T';
P la pressione esercitata dal liquido alla pressione T';
d il diametro della bolla;
c la tensione superficiale della bolla,
Da questa relazione si ha:
4o
=P = a

Si puo subito osservare che piu piccolo ¢ il diametro della bolla tanto maggiore deve essere la
differenza di pressione fra I'interno (vapore) e esterno (liquido).

Inoltre se si vuole che il liquido e il vapore della bolla sia in equilibrio termodinamico deve essere
T, = T, e poiché il vapore ¢ in condizioni di saturazione alla pressione p, > p, deve anche aversi che il
liquido, essendo ad una temperatura supetriore a quella di equilibrio alla pressione p, < p, , ¢
surriscaldato.

Allora il surriscaldamento T, — T in condizioni di equilibrio termico e meccanico puo essere
determinato facendo ricorso all’equazione di Clapeyron — Clausius (che possiamo ricavare dalle equazioni
di Mascwell viste in Termodinamica):

op| _0s
oT|, ovl;
che, nel caso in esame diviene:
dp _r rp,
M~ .
dT VI, RT,
ove si ¢ tenuto conto che deve essere P,V=R/]T . Possiamo ancora scrivere, in prima
approssimazione:
% ~ P, — B
dar  T,-T,
e quindi, anche in considerazione di quanto sopra visto per p, — p, si ha:
4RT o
T,-T, =t -t = R"—S
rp,d

Ora I'ebollizione nucleata non ¢ piu sul nascere ma in pieno sviluppo e siamo nel tratto di curva
AB della Figura 89.
Gli scambi termici sono efficaci e il liquido subisce un vigoroso riscaldamento.

Quando il AT, raggiunge il punto B allora si cominciano ad avere le prime bolle che raggiungono
la superficie del liquido e quindi tutta la massa del liquido ¢ interessata dal fenomeno della enucleazione.
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Dal punto B in poi, al crescere di AT, si formano sempre piu bolle di vapore che raggiungono la
superficie del liquido, fino a formare vere e proprie colonne di vapore che occupano uno spazio non
trascurabile™.

11 liquido in moto convettivo dall’alto verso il basso, per continuita di massa, trova sempre meno
spazio per passare e quindi aumenta la sua velocita di spostamento e cio favorisce lo scambio termico.

Se non si fosse in equilibrio termico allora per T, < T si avrebbe:

2
T -1 >R o
rpd
11 calore si scambia per conduzione all'interfaccio liquido — vapore e parte del liquido evapora e la
bolla cresce. Se invece T, > T, ovvero per :

4R,
T -1 <ARLo
rpd
lo scambio termico si inverte e la bolla diminuisce di volume.
Ritorniamo alla curva di Nukijama osservando che quando AT, raggiunge il punto C di Figura

89 allora tutta la massa del liquido si ¢ portata nelle condizioni di saturazione e puo partecipare
massivamente all’ebollizione.

Il punto C ¢ particolarmente importante nello studio che si sta facendo: esso prende il nome di
punto critico ¢ il flusso termico corrispondente ¢ detto flusso di burn out (cio¢ di bruciatura). A
destra del punto critico non ¢ facile andare se si controlla il flusso termico, come sin qui si ¢ fatto. La
curva di Nukijama ¢ monocroma se si controlla il AT, mentre ¢ policroma se si controlla il flusso
termico ¢.

LIMITE_DI SATURAZIONE

T N\ T
E \\’j ,\)
< { —
& S N>
o ~ ,*—'
= A o
- =’ " BOLLA DI VAPORE ESPLOSA
[sm}
[N
=
=
L
[}
<T
o
& ASPERITA’

PARETE DI FONDO RISCALDATA

Figura 95: Implosione della bolla distaccata

Dal punto critico C con un leggero incremento della temperatura di parete si passa al punto D a
cui corrisponde (si veda in ascisse) un valore elevatissimo e tale da portare a fusione la maggior parte
dei materiali oggi utilizzati.

Pertanto le condizioni operative debbono essere lontane il piu possibile da C per evitare la
bruciatura della parete di fondo a cui seguono scoppi ed incidenti vari.

Se anziché controllare il flusso termico si potesse controllare AT, ad esempio mediante scambi
termici con corpi in cambiamento di fase (la cui temperatura, quindi, ¢ costante durante il cambio di
fase e nota per data pressione) allora si puo andare a destra di C, con grande cautela.

30 §i ricordi che il vapore ha un volume specifico molto grande rispetto al liquido, almeno per pressioni lontane da
quella critica.
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Figura 96: Formazione di colonne di bolle

Adesso la produzione di vapore ¢ massiva e le colonne di vapore sono talmente numerose da
toccarsi fra loro, specialmente in corrispondenza della parete di fondo. Si ha, pertanto, la situazione di
Figura 97 ove si ha la formazione di uno strato di vapore continuo nel fondo.

11 liquido, per effetto delle velocita raggiunte a causa del restringimento delle sezioni di passaggio,

riesce a squarciare questo velo di vapore e quindi a bagnare ancora, seppure parzialmente la parete di
fondo.

PARETE DI FONDO RISCALDATA

Figura 97: Formazione di uno strato di vapore sulla parete di fondo
L’alternarsi dello strato di vapore e dello strato di liquido giustifica la necessita di abbassare il
flusso termico, come mostrato in Figura 89.
Si osservi, infatti, che la trasmissione attraverso il liquido ¢ sempre piu efficiente rispetto a quella
con vapore e quindi la trasmittanza termica con liquido ¢ maggiore di quella con vapore. Pertanto si ha:

Kiiguido O AT > K apore SAT,

liquido sat vapore sat

e quindi a parita di S e di flusso termico imposta si ha un AT
vapore.

Dal punto C ci si sposta, diminuendo il flusso termico, fino al punto L detto punto di
Leidenfrost o di calefazione in corrispondenza del quale lo strato di vapore prende definitivamente il
sopravvento rispetto al liquido che, pertanto, non riesce piu a squarciare il velo di vapore.

In pratica il liquido galleggia su uno strato di vapore stabile sulla parete di fondo.

maggiore nel caso di presenza del

sat
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Questa situazione ¢ facilmente riproducibile: se si gettano goccioline di acqua su una piastra di
ferro infuocata si puo osservare una sorta di galleggiamento delle goccioline sulla stessa piastra, fino a

quando tutto il liquido diventa vapore.
Si ha in L una situazione di scambio termico con K elevati, come si vede

dalla curva di Nukijama.

pore € quindi con AT,

Ora pero la situazione ¢ stabile e quindi il flusso puod nuovamente crescere al crescere di AT, In
Figura 98 si ha una sequenza fotografica della nascita di una bolla e del suo collasso in fase iniziale
(ebollizione nucleata).

Si puod osservare come I'implosione della bolla provochi un micro moto convettivo locale che
incrementa fortemente lo scambio liquido — vapore.

E’ questa una delle motivazioni forti della grande efficacia di scambio termico in questa tipologia
di ebollizione.

In Figura 99 si ha una analoga sequenza di immagini dell'implosione di una bolla non piu in fase
nucleata ma del tutto sviluppata.

8.2 CORRELAZIONI DI SCAMBIO TERMICO PER L’EBOLLIZIONE

Le correlazioni di scambio termico si basano su esperienze di laboratorio in varie situazioni
pratiche (cio¢ accoppiamento di liquidi e metalli vari). Si definisce un numero di Reynolds di bolla dato
dalla relazione:

Hy
ove con M, si ¢ indicata la portata di vapore per unita di supetficie, D, il diametro della bolla al

momento del distacco, L, la viscosita del liquido.
La correlazione di scambio sperimentale (Zuber) ¢ la seguente:

g (pl _,0\,) CpATsat
o rPriiCy

q=unr

ove r ¢ il calore latente di vaporizzazione, p, e p, sono le densita del liquido e del vapore, Pr, ¢ il
numero di Prandtl del solo liquido saturo, s e C;opportuni coefficienti dati dalle varie combinazioni di

liquidi e materiali e G ¢ la tensione superficiale dell'interfaccia liquido - vapore.

11 flusso termico massimo, cioe il flusso critico, puo essere calcolato con la relazione:

1/4

Ueritico = 018,0Vr M L
pv p| —pv

8.3 EBOLLIZIONE CON LIQUIDI IN MOVIMENTO

Consideriamo adesso il caso che I'ebollizione avvenga con liquido in movimento all'interno di un
condotto, come raffigurato in Figura 101.

11 flusso termico ¢ ceduto lungo la superficie laterale del condotto (si immagini un tubo bollitore
allinterno di una caldaia).

11 liquido entra nel condotto in condizioni di sottosaturazione.

Man mano che procede verso 'alto il liquido si riscalda fino a quando, con le stesse modalita viste
in precedenza per I'ebollizione statica, si formano le prime bolle di vapore (ONB) sottoraffreddate e
poi, ancora procedendo verso I'alto, si formano delle vere e proprie bollicine che si liberano nella
matrice liquida.
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Figura 98: Sequenza di ebollizione nucleata statica attorno ad un filo caldo
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Figura 99: Sequenza delle fasi di implosione di una bolla completa
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Figura 100: Curva di Nukijama per ebollizione dinamica (a é il coefficiente di convezione)
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Moto a nebbia

Moto a tappi

Iy > fvv(p/)

Moto a bolle

Figura 101: Ebollizione dinamica
Si ha, quindi, I moto a bolle di Figura 101. All’aumentare del flusso termico ricevuto si hanno
sempre piu bollicine che finiscono con il toccarsi formando bolle di dimensioni maggiori, dei veri e
propri tappi di vapore e siha il moto a tappi.
Procedendo ancora verso l'alto il vapore che si forma diviene massivo e tale da formare uno
strato anulare interno al condotto, con pareti ancora bagnate dal liquido, moto anulare. Ad un certo
punto il liquido alle pareti viene sostituito dal vapore e si ha un punto di crisi termica analogo al punto

di burn out visto in precedenza.
Adesso si dice punto di dry out e cio¢ punto di asciugatura. Anche in questo caso se il vapore

bagna le pareti il AT, cresce molto ed improvvisamente. In questo caso si hanno valori del salto di
AT, inferiori a quelli in ebollizione statica e 1 tubi normalmente usati possono resistere benissimo.

sat
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Figura 102: Distribugione di temperatura lungo un tubo bollitore

Oltre il punto di dry out si ha un moto nel quale goccioline residue di liquido galleggiano in una
matrice di vapore. Si ha il moto a nebbia utilizzato in alcune applicazioni impiantistiche.

L’andamento del tipo di moto unitamente alla distribuzione della temperatura lungo il tubo
bollitore sono riportati in Figura 102. E” opportuno osservare che il tipo di moto sopra indicato non
avviene sempre allo stesso moto in qualunque situazione sperimentale.

Ad esempio, per tubi orizzontali si hanno configurazioni di moto diverse con moto stratificato
anziché anulare. Inoltre si possono avere anche unioni di masse liquide per formare una specie di tappi
(moto a sing) che non ha corrispondenza nel moto verticale.

Per conoscere il tipo di flusso che si viene ad instaurare in un condotto non si hanno metodi certi
per cui si utilizzano mappe sperimentali non sempre affidabili data la grande variabilita dei parametri.
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Figura 103: Tipo di moto in un tubo bollitore orizzontale

In Figura 104 si ha un tipico diagramma detto a gone per individuare, con approssimazione non

sempre accettabile, il tipo di moto che si puo instaurare in un tubo bollitore orizzontale.

10°

104
<
..
'OU‘ 107 Stratificato
Tappi
2
10 - T T T T
%1 10° 10’ 10? 10

(G / Gg)-A ¢

Figura 104: Diagramma a zone per il tipo di moto

158

Nel caso di ebollizione dinamica si hanno vari metodi per calcolare il coefficiente di convezione

termica che portano a forme analitiche del tipo:
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q=af (p)AT s
con a e b costanti sperimentali opportune.

Chen consiglia di usare un coefficiente di convezione termica dato dalla somma di una
componente dovuta alla convezione microscopica ed una convezione macroscopica.

Quest’ultima si puo determinare mediante la relazione di Dittus — Boelter modificata:

h

eb.mac

=0.023Re,”* Pr** A
Dy
ove Re, ¢ il numero di Reynolds corrispondente al deflusso bifase dato dalla relazione:

Re, =Re,-F

con I fattore correttivo empirico funzione del parametro di Martinelli, X, definito come radice

quadrata del rapporto fra la caduta di pressione nella fase liquida e la caduta di pressione nella fase
aeriforme ed ¢ dato a sua volta dalla relazione:

0.9 0.5 0.1
ﬁz(l_—X) AN
Ap, X )\ 4,

con x titolo del vapore.
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Figura 105: fattore di correzione F
11 coefficiente di convezione microscopica ¢ fornito dalla relazione:
110.79 045 _0.49
_ o | 0.24 0.75
hy mie = 0.000122 ST 039 021 0 AT, “Ap™™S
O K r v
con S fattore correttivo funzione di Re,. Il flusso termico critico ¢ dato da:

m 0.5
14oo(j
A
Oeritico =~ <015
dO.Z( I j
d

valida per acqua e con pressioni fino a 7 bar.
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Figura 106: Fattore di correzione S
8.4 LA CONDENSAZIONE

Il processo inverso dell’ebollizione ¢ la condensazione che puod avvenire sia a gocce che per film. 11
primo tipo (a gocce) ¢ molto efficiente e rappresenta 'analogo dell’ebollizione nucleata.

Sfortunatamente perché questa avvenga occorre avere superfici di condensazione non bagnabili in
modo che le goccioline di condensato restino isolate. Cio si raggiunge spalmando le superfici con
speciali additivi chimici o ricoprendole di lamine d’oro e di materiale plastico.

L’uso continuo porta comunque ad un decadimento delle proprieta superficiali e quindi alla
necessita di rinnovamento delle superfici stesse. Con la condensazione a gocce si puo arrivare a
coefficienti di convezione fino ad 1 MW/m?K. Piu facile da avere e controllare ¢ la condensazione a film
nella quale si ha un processo di condensazione massivo (analogo dell’ebollizione di massa) con
formazione di un film di condensato che scorre lungo la parete fredda, come indicato in Figura 107.

Il problema della condensazione ¢ stato studiato da Nusselt ad inizio del novecento e la sua
teoria, pur se semplificata, rimane ancora oggi valida. Nusselt suppone che il condensato si muova in
regime stazionario con moto laminare lungo la parete e che il profilo del film di condensato sia liscio,
cio¢ non si formino onde o corrugazioni.

Le equazioni della quantita di moto si riducono alla sola equazione in y e cio¢:

ov oV dP o’V

P u&+v5 Z—d—y+ﬂuy+/0|9
B
X
GATA
ALMD
N4 OO

y
PETE
AEA

Figura 107: Formazgione del film di condensato
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L’ultimo termine rappresenta I'azione della gravita sull’elemento di volume di condensato. 1 film
di liquido si suppone sottile e in tale ipotesi il gradiente di pressione nel liquido risulta eguale (per la
seconda equazione della conservazione della quantita di moto) a quello nel vapore, cio¢ si ha:

dpP
dy
La prima equazione della quantita di moto puo essere riscritta, per effetto della precedente
osservazione, in altro modo:

A9

2

N oy oV
plU—+V— =1 —+9(p~-p)

ox oy oxr L T
— Alleggerimento
Attrito

Inerzia

In questa relazione sono evidenziate le forze in gioco e il loro bilanciamento. Assumiamo, ancora,
che le forze di inerzia siano trascurabili (per lo strato sottile) rispetto alle forze di attrito e quindi si puo
scrivere ancora:

o°v
m—+9(p—p,)=0
aXZ ( v )
- Alleggerimento
Attrito

Questa equazione del secondo ordine va integrata due volte in x con le condizioni al contorno:

v=0 per x=0 , cioe scorrimento nullo alla parete,
%X:O per x=0 , cioe taglio nullo allinterfaccia liquido-vapore, avendo indicato con & lo

spessore corrente del film liquido ad ordinata y;
Si ottiene allora la seguente distribuzione di velocita:

v(xy)="(p-p,)8" g_g(g

H

In questa relazione non ¢ ancora noto lo spessore ¢ del film di condensato. Nota la velocita del
condensato si puo calcolare la sua portata che vale:

5
my = Io P udx :¥(P| _Pv)53
H
La portata di liquido condensato ¢ qui misurata in [&g/ (ms)] ed ¢ espressa per unita di lunghezza
nella direzione normale al piano di Figura 107. Il vapore che va condensando cede il suo calore latente
di condensazione e il calore sensibile di desurriscaldamento, supponendo che la temperatura di parete
sia inferiore alla temperatura di saturazione del vapore alla pressione in cui esso si trova.

h= _[06 pv[h —c,y (T —T) Jdx

ove si ¢ considerata 'entalpia del fluido saturo /,e non quella del liquido sottoraffreddato (perché
a contatto con la parete fredda, T, < T,). Nusselt suppose (e quest’ipotesi ¢ ancora oggi valida) che la
temperatura locale T sia distribuita linearmente lungo lo spessore del film di condensato e cio¢ si abbia:

Tsat -T ~1_£
T —Tp 1)

per cui integrando la precedente relazione dell’entalpia totale di condensazione si ottiene:

h= [hf —gcp,, (T —Tp)}m,

hlIv
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La quantita in parentesi quadra ¢ Pentalpia totale del liquido condensato. L’entalpia ricevuta dal
liquido viene, a regime, trasmessa verso la parete per conduzione termica e quindi deve essere:

n Tsat_T
Wy =h—5—

ove A, ¢ il coefficiente di conducibilita termica del liquido condensato. A regime si deve avere che
il flusso di condensazione per una lunghezza dx deve eguagliare quello di conduzione e quindi:

Tsat =T

P dx

3 ,
[hf _gcp,l (Tsat _Tp ):l dmI = 2’]
Combinando questa relazione con quella della portata di condensato si ottiene:
ﬂ’lvl (Tsat _Tp)
hlIv g(pl _pv)

Integrando e ricordando che per y=0 ¢ 6=0 si ha:

a4 (To -T,) T
5(y){x h'a(p —pv)}

Pertanto lo spessore del condensato cresce con x.
11 coefficiente di convezione termica puo adesso essere calcolato dalla relazione:

h = q"p ﬁ{ﬂﬂshllv g(pl_pv)]1/4
T 4yV| (Tsat _Tp)

-T, o
Integrando su tutta la lunghezza della parete si ottiene il coefficiente di convezione media:

sat p
_ 1L h,_ 4
ho==[ hdy=—2""—="h
) LIO i 1+(-1/4) 3"

dy =o6°%ds

ossia:

| 3 0.25
ﬁ _0943[th gpl(pl_pv)ﬂ'l jl
L = V.

H L (Tsat _Tp )

Per calcolare il coefficiente di scambio termico convettivo si utilizza la teoria di Nusselt che porta
alla seguente correlazione per il calcolo del valore medio sulla lunghezza 1.

, 3 0.25
hlv gpl (pl _pv)ﬂ'l
/uIL(Tsat _Tp)

In forma adimensionale la precedente si puo scrivere:

3 0.25
hlv 'gpl (pl _pv)L
/ulﬂ'l (Tsat _Tp)

Oggi si hanno correlazioni piu precise e sofisticate di quella di Nusselt e in particolare entalpia di
condensazione viene data dalla relazione:

h', =h,+0.68c,, (T, —T,)

h = 0.943[

Nu, = 0.94:{
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che tiene conto anche di eventuali moto ondosi del liquido e di condizioni di turbolenza che
possono manifestarsi a partire da una certa sezione.
Per banchi di tubi si utilizza la correlazione di Chen:

0.25

i~ T —T _ 1193
hL =0.728| 1+ O.ZM(n—l) P (pv p|)gh|v A
r nd (T,-T,)

ove 7 ¢ il numero di tubi di diametro 4.
8.5 ITUBI DI CALORE (HEAT PIPE)

Una interessante applicazione di quanto sopra visto per I'ebollizione e la condensazione si ha nei
tubi di calore (Heat Pipe) schematizzati in Figura 108. Si tratta di un tubo le cui dimensioni possono essere
di pochi millimetri e di metri, a seconda dei casi, all'interno del quale ¢ posto un vapore saturo nelle
condizioni di temperatura e pressione di esercizio.

Nella zona inferiore si ha la testata calca nella quale viene ceduto calore al fluido che, per
conseguenza, vaporizza.

Per effetto di microcavita create all'interno del tubo si hanno movimenti di vapore verso Ialto
(ma il fenomeno ¢ indipendente dalla gravita per effetto della micro capillarita creata nel tubo). In alto si
ha una testa fredda nella quale si asporta calore provocando il raffreddamento e quindi la
condensazione del vapore. Questo cede il suo calore latente di condensazione e pertanto il trasporto di
calore dal basso verso I'alto ¢ molto efficace.

Il liquido condensato scende verso il basso sempre per capillarita, aderendo alle pareti laterali del
tubo. In questo modo si riprende il ciclo di ebollizione (endotermica) in basso e condensazione
(esotermica) in alto. Il tubo di calore, quindi, ¢ un sistema efficace di trasporto di calore dalla zona a
contatto con la testata calda verso la zona a contatto con la testata fredda.

La capillarita interna al tubo di calore consente il funzionamento in qualsiasi condizioni, anche in
assenza di gravita. Pertanto questa tecnica viene utilizzata, ad esempio, in applicazioni spaziali, in
geotermia, in energia solare, in elettronica per il raffreddamento di microprocessori.

TESIAA
FRECDA
LIQIDD
ALEREET
| \AROEA GNIFO
TESTAA
QLA

Figura 108: Schematizzazione del tubo di calore
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Una applicazione recente in elettronica ¢ costituita da una testata calda che viene posta sulla
superficie di un microprocessore interno ad un computer portatile’’ ed una testa fredda collegata alla
parte esterna del coperchio (dietro lo schermo) che funge, cosi, da radiatore.

Il calore generato dal microprocessore viene portato dai micro tubi di calore sulla superficie
esterna del coperchio e da questo disperso per convezione ed irraggiamento nell’ambiente.

Questo sistema ¢ stato ben ingegnerizzato ed ha un costo stimato, su scala industriale, di 25 § e
quindi tale da non aggravare il costo complessivo del computer. Con 'aumentare della potenza termica
prodotta dai microprocessori questo sistema sara sempre pit conveniente.

In energia solare si utilizzano i tubi di calore con freon come fluido di lavoro. Lo schema
funzionale ¢ illustrato nella Figura 109.

TUBOD QA0

AHTED R\E

TUBOD GAGHE]
ENFEON

Figura 109: Sezione di un collettore solare a tubo di calore

Si tratta di tubi al quarzo, quindi trasparenti, all'interno dei quali si pone un tubo di calore con
due alette laterali in rame. Le alette, investite dalla radiazione solare e per I'effetto serra che si genera
allinterno del tubo di quarzo, convertono la radiazione solare in calore che viene trasmesso verso la
zona centrale ove ¢ presente il tubo di calore.

Rispetto alla configurazione di Figura 108 manca la testata calda sostituita dalle superfici alettate
lungo tutto la lunghezza del tubo di calore. E’ perd presente la testata fredda che viene inserita
allinterno di un grosso tubo all'interno del quale passa I'acqua di refrigerazione che, pertanto, viene
riscaldatata e quindi trasporta 'energia utile all’esterno.

I1 tubo di calore ha dei limiti di funzionamento dovuti al fatto che la sezione di passaggio del
liquido puo essere interrotta nel caso in cui la generazione di vapore (di elevato volume specifico) sia
superiore al limite consentito dalla sezione stessa.

Si definisce, quindi, un flusso critico di flusso come il flusso massimo consentito nella testata calda
senza interruzione della circolazione del flusso interno.

3111 computer portatili presentano condizioni operative piu critiche rispetto a desktop perché la componentistica ¢
racchiusa in spazi limitati e miniaturizzati e perché l'utilizzo di sistemi di raffreddamento attivi consumano energia che
riduce la durata delle batterie di alimentazione. Le ultime generazioni di computer usano un contenitore in lega di magnesio
che ¢ leggera ma ¢ anche buona conduttrice di calore. Pertanto il calore prodotto dal microprocessore viene disperso da
tutta la superficie di appoggio del computer e in parte dal coperchio per convezione termica naturale.
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9 L°’TRRAGGIAMENTO

E' I'ultima forma di trasmissione del calore che prendiamo in esame. Come gia accennato in
precedenza in questo caso l'energia viaggia sotto forme di onde elettromagnetiche e puo propagarsi
anche nel vuoto. Pertanto l'zraggiamento non richiede presenza di materia come invece richiedono la
conduzione e la convezione termica.

Le onde elettromagnetiche, emesse da tutti i corpi a temperatura superiore allo zero assoluto,
divengono energia interna (e quindi calore) quando sono assorbite da un altro corpo. Nello spazio la
materia non é presente e si ha il freddo siderale cosi come in alta montagna la rarefazione della materia
provoca l'abbassamento di temperatura rispetto al fondo valle.

L'energia elettromagnetica assorbita da un corpo viene trasformata in energia interna e quindi in
agitazione molecolare.

Si ricordera che l'energia interna é proporzionale, tramite il calore specifico a volume costante,
alla temperatura assoluto del corpo stesso e quindi si intuisce come mai l'incremento dell'energia interna
portti ad incremento della temperatura del corpo.

Si sottolinea I'importanza dell'irraggiamento: é tramite questa forma di trasmissione dell'energia che
il sole ci riscalda. Lo studio dell'irraggiamento presenta aspetti matematici complessi. Qui si cerchera di
semplificare al massimo tale trattazione ricordando solamente le leggi fondamentali.

Una radiazione elettromagnetica ¢ caratterizzata da tre parametri fondamentali: la lunghezza
d'onda, la frequenza, la velocita di propagazione nel mezzo. Vale la legge generale delle onde:

Av = S
n
ove:
A ¢ la lunghezza d'onda di solito espressa in
14 ¢ la frequenza di oscillazione (¢cicli al secondo) espressa in Hg (Hertg);
n ¢ l'indice di rifrazione del mezzo, per l'atia e per il vuoto é pati ad 1;
¢, ¢ la velocita della luce nel vuoto, 2,993 .10° m/s.

Ogni radiazione ¢ caratterizzata da una lunghezza d'onda e quindi da una frequenza, come
indicato in Figura 110.

Ore rado ‘OobFacbr‘ Ry Infrarces

0001m 4
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0.78 u 141080 1D Ban
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Figura 110: Tipologia delle onde elettromagnetiche al variare della lunghezza donda

Poiché il meccanismo fondamentale di trasformazione da energia elettromagnetica a termica
passa per I'assorbimento dei corpi occorre subito osservare che, in generale, una radiazione incidente
con uno strato di materia, vedi Figura 111, viene in parte riflessa (con fattore p), in parte trasmessa
8con fattore T) e in parte assorbita (con fattore ).

Ciascuno di questi fattori (a, T, p) dipendono dalla lunghezza d’onda, cio¢ dalla tipologia di
radiazione elettromagnetica. Ad esempio i corpi assorbono bene le radiazioni infrarosse ed ultraviolette
ma assorbono poco i raggi X e y ed ¢ per questo motivo che queste ultime si utilizzano per le x-grafie e
Y-grafie dei materiali.
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Quindi si puo riscaldare in poco tempo un pollo in un forno a microonde (cio¢ con raggi
infrarossi) piuttosto che con raggi ¥ che lo attraversano senza interagire, praticamente, con la materia.
Fra i fattori suddetti vali la relazione:

t,+p,+a, =1

Oa Imdderte Tae e

MW

©10.085/

Rflessa

Figura 111: Interazione delle onde elettromagnetiche con la materia

Le onde elettromagnetiche che interessano il campo termico sono le cosiddette onde infrarosse e le onde
ultraviolette aventi un intervallo di lunghezza d'onda comprese fra 10" 7z a 10 . Si ricorda che le onde
elettromagnetiche comprese fra 0,38 e 0,78 w7 sono di fondamentale interesse per l'uvomo in quanto
per effetto” che provocano sull’'uomo sono chiamate luce visibile.

La radiazione solare ha una variabilita della lunghezza d'onda che va dalle radiazioni #/traviolette a
quelle znfrarosse lontane e comprende la luce visibile per circa il 48% della radiazione totale emessa. La
composizione dello spettro solare (cio¢ della distribuzione delle radiazioni in funzione della lunghezza
d'onda) varia con l'altitudine e con la massa atmosferica (nubi, aria pulita,...), come si dira nel prosieguo.

9.1 UNITA DI MISURA PER L’ IRRAGGIAMENTO

Considerato il diverso meccanismo della trasmissione del calore per irraggiamento rispetto a
quelle per conduzione e per convezione termica, occorre introdurre alcune opportune unita di misura
relative alle grandezze di scambio usuali nell’irraggiamento.

Le radiazioni elettromagnetiche hanno proprieta direzionali (si pensi al comportamento di uno
specchio rispetto ad una superficie opaca uniformemente riflettente) e pertanto le grandezze radiative

debbono prendere in considerazione sia la natura (cio¢ la lunghezza d’onda A) che la direzionalita (cioe
'angolo solido di emissione).

911 EMISSIONE MONOCROMATICA

Definiamo Emissione monocromatica la potenza radiativa emessa da una superficie nell'intervallo fra

A e dA, cioé:

d
;- da
dSd4
Essa ¢ espressa in [W/#2um|. Si vedra nel seguito che un corpo non emette uniformemente al

variare della frequenza e pertanto mediante questa grandezza possiamo sapere quanta potenza radiativa
viene emessa ad ogni lunghezza d’onda. Si suole definire questa grandezza anche come emissione

monocromatica poiché ad ogni A corrisponde un colore (cioé una tipologia di radiazione).

32 §i chiarisce qui il concetto che non sono le onde elettromagnetiche ad essere chiamate luce ma la sensazione da
esse prodotte nel nostro cervello. La visione avviene, infatti, tramite I'interpretazione dei segnali sensoriali che pervengono,
tramite il nervo ottico, al cervello.
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9.1.2 EMISSIONE GLOBALE

Se integriamo la emissione monocromatica in tutto l'intervallo di lunghezze d’onda (cio¢ da 0 ad
00) st ha Pemissione globale di una superficie:

E= jo e,di
Le unita di misura sono, quindi, [/ 7.

9.1.3 INTENSITA DI EMISSIONE MONOCROMATICA

Se consideriamo una superficie dS e con riferimento alla sua normale # si vuole individuare la

. . . 33 . . . .
potenza emessa nella direzione ® entro un angolo solido™ dw, vedi Figura 112. Si definisce allora
intensita di emissione monocromatica i rapporto:

Figura 112: Intensita di emissione monocromatica

dq

di, , =
2 dScosa-dA-dQ

Le unita di misura sono [W/»? um sr]

9.1.4 INTENSITA DI EMISSIONE GLOBALE

Se integriamo Uintensita di emissione monocromatica per tutte le lunghezze d’onda allora si ha:

lo=["i,d2

0

che ¢ Vintensita totale nella direzione €2. E si misura in [W/n? s7].
9.2 EMSISSIONE EMISFERICA

Si consideri una superficie emittente nel semispazio34, come indicato in Figura 113. Allora si ha
che I'angolo solido vale:

_ 2zr-seng -rdr

rZ

dw

e Pemissione nel semispazio vale:

7l2
E=2zl,[  senacosada

33 Si definisce angolo solido il rapporto fra la calotta sferica e il quadrato del raggio. Nel caso generale si puo definire
angolo solido 1l rapporto fra la superficie proiettata nella direzione di emissione e il quadrato della distanza. L’angolo solido

varia da 0 a 4 m. Il semispazio ¢ pari a 2 . L’unita dell’angolo solido ¢ lo steradiante indicato con sr.

3+ Le radiazioni elettromagnetiche emesse da un corpo provengono da uno strato supetficiale di pochi Angstrom
poiché le emissioni degli strati pitt profondi sono assorbite dalla stessa materia del corpo. Pertanto data una superficie si
deve conservare solo ’emissione in un semispazio, come nel caso qui considerato.
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Cioe si ha:
E=rxl,
Se si considerano grandezze monocromatiche si ha una relazione del tutto analoga:
€ =7,

Queste relazioni risultano molto importanti per il prosieguo e per /’I/luminotecnica.

Figura 113: Emissione emisferica

9.3 IL CORPO NERO

L’interazione delle onde elettromagnetiche con la materia ¢ caratterizzata dai tre fattori p, o, T
ciascuno funzione della lunghezza d’onda. Risulta allora estremamente complesso caratterizzare il
comportamento di un corpo (sia che sia emettitore che assorbitore) e pertanto occorre fare una
idealizzazione che consenta di scrivere relazioni cercate: supporremo l'esistenza di un corpo ideale
capace di assorbire tutte le radiazioni e quindi le sue interazioni con le radiazioni sono estremamente
semplici. Tale corpo ¢é detto corpo nero ed ¢ bene sottolineare che la parola nero si riferisce non
solamente al colore visivo nero ma anche a tutte le lunghezze d'onda esistenti.

Possiamo dire, con un gioco di parole, che il corpo nero é piu nero del nero visibile. Ad esempio
la neve appare di colore bianco ma é un ottimo corpo nero per le radiazioni ultraviolette. Il corpo nero
emette una radiazione che ¢é data dalla relazione di Planck seguente:

C,
Er=T 7 N
A% el -1
ove il simbolismo ¢ il seguente:
A ¢ la lunghezza d'onda,
T ¢ la temperatura assoluta del corpo nero, K;

e(AT) € la radianga monocromatica cio¢ l'energia emessa per unita di tempo, nell'intervallo di
lunghezza d'onda dA attorno alla frequenza A e per unita di superficie; [W/ (u7K)].

C1 e C2 sono due costanti pati a
C,=3.742 108

C,=1.439-10"
Una rappresentazione grafica della legge di Planck per temperature variabili da 1000 a 6000 K (dal
basso verso 1'alto) ¢ data nella Figura 114 seguente ove si sono segnati anche gli intervalli di visibilita
dell'occhio umano medio (0,38 ¢ 0,78 pm). La curva piu alta ¢ relativa a 6000 K che ¢ la temperatura

apparente del disco solare: tale curva é in buona approssimazione la curva di emissione del sole cosi
come si puo rilevare immediatamente fuori dell'atmosfera.
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Al disotto dell'atmosfera si hanno assorbimenti dei gas (CO, O, NO, 03, H,O,.) che
modificano sensibilmente tale spettro. L'esame di queste curve (con temperature crescenti verso l'alto)
ci mostra che 1 massimi di ciascuna curva si sposta verso lunghezze d'onda decrescenti secondo la
relazione:

AT =2897.6

che esprime una legge di vatiazione iperbolica di 4 . (cio¢ della lunghezza d'onda per la quale si
ha la massima emissione) con la temperatura assoluta 1" di emissione del corpo nero.

Tale curva ¢ riportata in fig. 6 come linea tratteggiata che tocca i punti massimi delle curve di
=0,498 m. Si é
detto che l'occhio umano vede la luce nell'intervallo fra 0,38 ¢ 0,78 e pertanto il valore di 4, sopra
indicato corrisponde alla zona di massima visibilita dell'occhio umano medio.

emissione del corpo nero. Per la temperatura di 6000 K si ha, ad esempio, una A4

max

Un corpo alla temperatura di 300 K ha 4,,=9,56 um e cio¢ emette nel campo delle radiazioni
infrarosse. Cosi avviene per il corpo umano il cui campo di emissione radiativo ricade proprio
nell'infrarosso (si patla di snfratermia per la riprese fotografiche ai raggi infrarossi per uso medico). Un
metallo al punto di fusione, ad esempio il ferro, alla temperatura di 2000 K ha 4,,=1,49 pwm e quindi
nel campo dell'infrarosso vicino: il ferro incandescente, infatti ha un colore rossiccio tipico del metallo
caldo e al crescere della temperatura di riscaldamento tende al giallo-rosso fino a divenire bianco alla
fusione.

La lava appare rossiccia alla temperatura di uscita dal cratere ma quando si raffredda non ¢ piu
visibile: una fotografia all'infrarosso renderebbe visibile il magma. Le curve E(A,T) forniscono

l'indicazione dell'energia emessa al variare della lunghezza A delle radiazioni. Se si desidera conoscete

l'energia totale emesse in tutto lo spettro (cio¢ per | variabile da 0 ad © si ha la relazione di Stefan -
Boltzmann:

E=0c,T* [138]
con:
o0 =5,64 .10° W/ (»’K’) detta costante di Stefan - Boltzmann;
T la temperatura assoluta del corpo nero, K;
E energia globale radiante specifica, W/ #7.

La [138] ¢ di grande irnportanza?’5 perché consente di calcolare la quantita di energia irradiata da
un corpo nero una volta nota la sua temperatura assoluta. Si badi bene che un corpo nero irradia sezpre
purché a temperatura superiore allo zero assoluto (cioe¢ sempre, visto lo zero assoluto non ¢é
raggiungibile mai, secondo il terzo principio della Termodinamica).

Pertanto se due corpi neri si scambiano (nel senso che si dira nel successivo paragrafo) energia
radiativa allora si ha che il corpo caldo irradia il corpo freddo e quello caldo irradia quello caldo.
L'interscambio (cioe la differenza di energia fra quella irradiata e quella ricevuta) é positiva per il corpo
caldo e cio a conferma del secondo principio della termodinamica che vuole il flusso termico positivo
se scambiato da un corpo caldo verso un corpo freddo.

9.4 EMISSIVITA SPECIFICA

11 corpo mero é una idealizzazione necessaria per potere effettuare gli studi teorici sui meccanismi
della radiazione termica. I corpi reali sono ben piu complessi in quanto hanno un comportamento non
facilmente ottenibile in forma analitica. Figura 115 si hanno alcuni spettri caratteristici di emissione
radiativa.

35 R . 4, . N
Puo essere interessante osservare chela E = o o T ¢é stata derivata da Boltzmann verso la meta del secolo scorso

e cio¢ molto prima che Planck pubblicasse la sua legge di emissione del corpo nero. In effetti Boltzmann ricavo la sua
relazione solo con considerazioni termodinamiche senza ancora conoscere nulla sulla teoria quantistica di Planck.
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Si osservi come 'emissione monocromatica puo variare con continuita (anche se in modo non
analiticamente definibile) o in modo discreto (come avviene, ad esempio, nelle lampade a scarica nei
gas) e come, ultimo diagramma in basso, 'emissione del corpo nero abbia le caratteristiche sopra
descritte.

Procedendo per passi successivi si puo definire corpo grigio un corpo che emetta, per data
temperatura, come un corpo nero ma con intensita che sta a quello dello stesso crpo nero in rapporto
costante. Si puo definire emissivita il rapporto fra l'emissione del corpo grigio e quella del corpo nero
secondo la seguente relazione:

[139]
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110
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Figura 114: Curve di emissione di Planck per corpo nero a varie temperature.
ove con E si indica 'emissione del corpo grigio e con E, quella del corpo nero. Dalla [139] si deduce
che per avere I'emissione globale di un cwrpo grigio basta conoscere la sua emissivita e moltiplicarla per
l'emissione totale del corpo nero (relazione di Stefan - Boltzmann [138).
Pertanto si ha, in generale, la seguente relazione:

E=¢o,T* [140]

Poiché I'emissivita ¢ sempre minore di uno il corpo grigio emette sempre meno del corpo nero
alla stesso temperatura. Ad esempio nella Figura 116 si ha un esempio di emissione di corpi neri, grigi e
reali (detti anche se/estivi) nella quale si puo osservare la grande variabilita del’emissione monocromatica
nei corpi reali e la difficolta di descrivere questa grandezza con relazioni matematiche esplicite.

Dall’osservazione della Figura 116 si deduce che un corpo grigio emette sempre in proporzione
costante (pari alla sua emissivita) rispetto al corpo nero a pari temperatura e quindi per esso & non
dipende dalla lunghezza d’onda ma solo dalla temperatura, inoltre un corpo reale emette sempre meno
del corpo nero a pari temperatura anche se in certi intervalli di frequenza possono emettere piu di un
COrpo grigio equivalente.
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Questo fenomeno, detto sekttivita dell’emissione dei corpi reali, risulta molto utile in numerose
applicazioni quali, ad esempio, la costruzione dei filamenti di tungsteno delle lampade ad
incandescenza® o nella scelta di sostanze che mettano selettivamente in intervalli di frequenza diversi (&
bassa per lunghezze d’onda grandi, > 7 wm, e € grandi per lunghezze d’onda piccole, <3 ) utilizzate
per la costruzione di collettori solari selettivi ad elevata efficienza di raccolta.

La relazione [140] puo ulteriormente essere generalizzata per lo scambio di due superfici grigze,
ciascuna a temperatura T, e T, , tenendo conto anche del fattore di forma e ottenendo la reazione generale
dello scambio termico radiativo fra due corpi grigi:

E=SHk, (T14 _T24) [147]

11 calcolo di F,,, detto fattore di forma o di vista, sara approfondito nel prossimi paragrafi.

9.41 LEGGE DI KIRCHHOFF

Per corpi in equilibrio termodinamico si ha:

e pertanto risulta:
e, =a,
Analoga relazione vale per le emissivita e i fattori di assorbimento totali, e cio¢ si ha:
E=a
Questa relazione puo facilmente dimostrarsi supponendo di avere un corpo grigio all'interno di

una cavita nera in equilibrio termico con essa.
Allora energia ricevuta deve essere pari a quella irradiata e quindi deve aversi:

a,G,=¢, Enl

ove Gy, ¢ lirradiazione (cioé l'energia ricevuta) alla frequenza A .

Poiché Tenergia ricevuta dal corpo grigio proviene dal corpo nero per il quale ¢ Gj = E
semplificando i due membiri si ottiene la legge di Kirchhoff.

9.5 I CORPINON GRIGI

I corpi che non appartengono ai corpi neri e neppure ai corpi grigi sono detti corpi selettivi e sono,
in pratica, 1 corpi reall.

Essi emettono sempre meno del corpo nero (che oltre ad assorbire tutto emette anche piu di
qualunque altro corpo esistente) ma puo avere uno spettro di emissione che non é piu in rapporto
costante con quello del corpo nero (come avviene per il corpo grigio) ma variabile con la lunghezza
d'onda.

I corpi selettivi possono emettere piu in certe zone dello spettro e meno in altre rispetto al corpo
grigio (e quindi sempre meno del corpo nero) donde il loro nome selettivi.

Lo scambio radiativo dei corpi selettivi ¢ molto complesso poiché oltre alle complicazione della
geometria (e quindi nel calcolo dei fattori di forma) essi impongono il calcolo delle potenze scambiate
anche al variare delle lunghezze d'onda.

Inoltre i corpi selettivi non hanno emissione termica specifica esprimibile in forma analitica ma
quasi sempre in forma tabellare o grafica derivate dalle sperimentazioni pratiche

36 11 tungsteno emette nell’intervallo del visibile, 0.38+0.78 2, pit dei corpi grigi a parita di temperatura. Questa proprieta é
sfruttata per migliorare I'emissione luminosa delle lampade in quanto con il filamento di tungsteno emettono assai meglio
che con filamento di altro materiale.
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9.6 CONCETTO DI FATTORE DI FORMA

Lo scambio radiativo fra due o piu corpi neri é problema di non facile soluzione tranne in casi e
geometrie semplici per altro abbastanza comuni nella realta. Pur tuttavia ¢ opportuno approfondire in
questa sede lo studio del Fattore di Forma in considerazione delle applicazioni che di questo sara fatta nel
prosieguo, ad esempio per lo studio degli scambi radiativi fra corpo umano e pareti di un ambiente per
le condizioni di benessere. In Figura 118 ¢ indicato il caso di due corpi neri che si vedono secondo due
angoli solidi €2 ¢ £2° ed aventi una distanza R fra due punto P e P' giacenti su di essi. In generale la
trattazione per il calcolo del Fattore di Forma richiede ulteriori approfondimenti sullo scambio radiativo.
Dette T, e T, le temperature delle due superfici, si ha il seguente sviluppo. L’intensita emisferica della
superficie A, vale:

dg
[ =— 122 = = d =1, dA cos¢ dQ 142
1 dA& cos ¢1 dQl ql%Z 1 A‘l ¢l 1 [ ]

Figura 118: Scambio radiativo fra corpi neri (Fattore di Forma)
Se la superficie A; ¢ un Corpo Nero (CN) allora si puo dimostrare che lintensita di emissione
emisferica ¢ legata alla emissione globale, come visto in precedenza, dalla relazione seguente:

_Ey_oT! do - 9A 0S¢,
1

l, =
1 2
T T r

Questa relazione vale anche per le grandezze monocromatiche per cui ¢:

allora il flusso che dal corpo nero 1 va verso il corpo nero 2 ¢ dato dalla relazione:

dA dA, cosg, cosg,

r?

dqlﬁZ = Enl

Si definisca ora il Fattore di Forma come la frazione dell'energia complessivamente emessa dal
corpo nero 1 che giunge al corpo nero 2:

d dA dA, cos¢, cosg,
qsz ” A dA, 2¢ [ 1143]

FlZ

nl
Allora si puo scrivere per il flusso che da 1 va verso 2:
Q1—>2 = FlZ A& Enl
Analogamente si puo ragionare per la superficie 2 per cui il flusso che da 2 va verso 1 ¢ dato da:

dA, dA cosg, cosg,

wr?

dq2a1 = En2
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B % ” dA, dA cos¢2 CoS ¢,

21 —
En2

[144]

Si osservi come il Fattore di Forma F ,» dipende solo da grandezze geometriche e non da grandezze
radiative. In pratica esso dipende solo da come le due superfici si vedono mutuamente.
11 flusso radiativo che dalla superficie 2 viene irradiato verso la superficie 1 ¢:

Q2—>l FZl A’Z E

Se le due superfici sono alla stessa temperatura allora vale la relazione:
Q2—>1 = Q1—>2 e qumd' FlZ A& En1=F21 Az Enz
essendo E_=E_, si ha:

Flz A1 = F21A2 [145]

Pertanto ¢ sufficiente conoscere uno solo dei fattori di forma (o di vista) per conoscere, note le
superfici emittenti, I’altro. Del resto data la formulazione analitica di F,, deriva anche:

dA dA, cos¢, cosg,
o= |l

7rr

le—_ 2
AzAzp, Tr

1 J. dA, dA cos¢, cosg,

Ma poiché:

dA dAZ Ccos ¢1 COS ¢, dA, dAi cos ¢2 COS ¢,
] -l

e

risulta anche:

Flz A1 = I:21 Az [146]

Questa relazione ¢ detta relagione di reciprocita o anche teorema di reciprocita.

Dunque il flusso netto scambiato si puo scrivere come:
Q=Q,-Q.,. =AFR0T'-AF0T =
=ocAR,(T'-T,))=-c A F,(T'-T,})

9.6.1 ADDITIVITA DEI FATTORI DI FORMA

Se la superficie Aw risulta dalla somma di Ay (£=1,2,.n) superfici parziali, allora sussiste la
seguente proprieta di additivita dei Fattori di Forma:

Fi(j) :kZ:;,Fik

Moltiplicando ambo i membri per .4;, si ha:

Fiy = AZH ZA& Z&ﬁ

l'ultimo passaggio ¢ lecito per il teorema di reciprocita.
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Figura 119: Additivita dei Fattori di Forma

Ne segue che il generico Fattore di Forma ¢ dato dalla relazione:

Z AR,
_ k=l

Fi(J) - A
oppure , sempre per il teorema di reciprocita, dalla relazione:
Z AFq
Fo—kl

(i
AYJ')

Esempio di calcolo dei fattori di forma

[147]

[148]

Data la situazione di Figura 119 calcolare Fy3fra la superficie 1 e la superficie 3.

Figura 120: Scambio radiativo fra superfici piane (pareti d’angolo)

Si applichi la relazione di additivita dei fattori di forma:

A Fij :kiAkai

coni=3 ; j=(1+2) ; k=1+3. Si ha subito:
1

A3F3(1+2) = AJ.F13 + Az Fzs = F13 = K [A%Fs(nz) - Az Fzs]

I termini del tipo I;,, ¢ F,; sono ricavabili dai diagrammi solitamente disponibili, come
riportati in Figura 120. Applicando il teorema di reciprocita si ha:
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Fy = i Fs
A,

Con F,; dato dalla formula precedente. Oppure mediante le regole dell’additivita si ha:

1
Fyy = % Fs = %E[A%qu) - A3F32:| =Fsu0) ~Fa

In alternativa si puo ancora scrivere, sempre per la regola di additivita, la relazione:

n
Fi) = Z Fi
k=1
ancora con:
=3 ; j=(1+2) ; k=1,+3
e pertanto si ha subito :
F3(1+2) = F31 + F32 = F31 = I:3(1+2) - I:32

Quanto sin qui detto trova applicazione in Architettura anche nella verifica di illuminazione
diurna, come illustrato dalla seguente Figura 121.

Figura 121: Verifica dell'illuminamento diurno in un punto interno di una sala

In questo caso si puo vedere leffetto dovuto alla parte di finestra libera e a quella di una
ostruzione. I.’additivita dei fattori di forma dianzi descritta consente di calcolare il fattore di forma
dovuto alla sola parte di finestra libera.

9.7 PRINCIPIO DELLA SFERA UNITARIA

Un metodo molto applicato deriva dall’applicazione del principio della sfera unitaria derivato dal
teorema di 1agrange. Si osservi la Figura 122.

11 principio della sfera unitaria dice che l'irraggiamento (vedi paragrafo seguente per la definizione)
prodotto da una superficie in un punto P giacente sul piano orizzontale ¢ equivalente a quello prodotto
da un elemento 4§ giacente sulla sfera di raggio unitario avente centro in P e che vede con lo stesso
angolo solido la superficie irraggiante.
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METODO DELLA SFERA UNITARIA

Figura 122: Applicazione del teorema di 1.agrange

Tale irraggiamento ¢ proporzionale anche alla proiezione sul piano orizzontale della superficie dS
intercetta sulla sfera. La dimostrazione ¢ immediata come qui di seguito indicato. L’irraggiamento G ¢
dato da:

|-A-cosf-cosa
R2

E=

A parita di angolo solido si ha:

I-A-cosa=1-A
ove A’ ¢ la proiezione dell’area A sulla semisfera di raggio unitario. Ne segue che I'irraggiamento
G vale:
|-A'cosa
RZ
Si osserva che A'wwsax ¢ la proiezione di A’ sul piano orizzontale interno alla semisfera. Detta A”
questa proiezione si ha:

G=

G:'éﬁ =1-A"

essendo R=1.
9.8 METODO DELLA RADIOSITA

Se le superfici radiative non sono nere il calcolo degli scambi diviene pit complesso perché

occorre tenere conto non solo dell’energia emessa dalle superfici (£0,T%) per effetto della temperatura
alla quale si trovano ma anche dell’energia riflessa. Si definisce, infatti, radiosita la somma:

Ji=pG +¢E, [149]
ove si ha il seguente simbolismo:
] radiosita, [W/ #
p fattore di riflessione della parete,
€ emissivita termica della parete,
E.; emissione globale del corpo nero alla medesima temperatura della parete, [/ 7.

Ricordando che dalla: p+a+7t =1 per un corpo opaco (7=0) e grigio (a=¢), siha p=1- a =I-¢,
allora risulta:
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J,=01-¢)G +¢E, [150]
11 bilancio energetico sul Volume di Controllo vale :

Qi:A(‘]i_Gi) [151]
Allora eliminando G; dalla 1) e 2) , risulta :

Q = Ac (B —J0) [152]
Questa relazione si puo ancora scrivere nella forma equivalente:
Eni — ‘]i
=1 153
Q=== [153]

1
&A
che esprime il flusso termico ), come rapporto fra le differenze delle emissioni e la resistenza
radiativa superficiale del mezzo data dalla relazione:

Rrs = l_gi
&A

D'altra parte I'energia ricevuta da A, ¢ pari a quella emessa da tutte le N superfici che vedono A;:

[154]

G Asz‘]kAkaisz‘]kAFik ZA;Jk Fic [155]

per cui eliminando .4 e combinando con le precedenti equazioni si ottiene :

Q :A(‘]i_Z‘Jk Fik)zAi(‘Ji|:ZFik}_ka F) =

=1
N

:A(ZFikJi_ N_ Fik‘]k):Aii_Fik(‘Ji_ ‘]k)=

k=1

3 -3,
1

N
k=1

AR,

I termini a denominatore dell’ultimo membro sono detti resistenge radiative volumetriche: Si puo
trovare lo stesso risultato con un ragionamento diretto. Considerando due superfici grigie che
scambiano calore allora I'interscambio radiativo ¢ dato dalla relazione (supponendo la temperatura della
superficie 1 maggiore di quella della superficie 2):

Q12 = J1A1F12 - ‘]2A2F21
Per la regola di reciprocita dei fattori di forma si puo scrivere anche:

J,—J
Q12 = AiFlz(‘]l_JZ):sz

AR,
ove, nell’ultima eguaglianza, si ¢ esplicitata la resistenza radiativa volumetrica %F = }{%F .
12 21

. . . .. 37 . . . .. .
Ritornando alla cavita composta da N superfici radiative” allora il sistema di equazioni risolutive
¢ dunque il seguente:

37 11 numero minimo di superfici radiative ¢ pari a 2 supponendo che una di esse almeno sia concava (come in un
forno a legna). In questo caso, come in tutti i casi nei quali si hanno superfici concave, allora occorre tenere conto anche
dell’aliquota di energia irradiata su se stessa e quindi occorre valutare il fattore di vista Fj.
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E —
a- 52
& A
[156]
Q = i i EJK
k=1~
A Fy
Le incognite sono:
Q, ¢ J, (i=1,2..N)
si hanno dunque 2N equazioni in 2N incognite
R,—— -1 [157]
Fij Ai FJiAi

179

La Figura 125 schematizza il calcolo di una rete elettrica (solamente ohmica) equivalente ad uno

scambio radiativo.

9.9 CASO DELLE DUE SORGENTI CONCAVE

Si considerino due superfici non nere generiche tali da formare una cavita chiuse (superfici

convesse-concave) come indicato in Figura 120.
Le equazioni di bilancio sono in generale le seguenti:

Eni _‘]i
Qi - 1_3

[158]

Figura 123: Metodo della radiosita
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Q = En-J
tol-g
& A
‘Jl_‘]l ‘]1_‘]2 ‘]1_‘]2
Q1 = =
1 1 1
AF, AF, AF,
Qz _ J21J1+J21J2 _ leJl
[159]
A Fy AF, AF,
Q _ Enz _‘]2
2 1-g,
& A
|
0.5 ;...)Z.l( = ||
(__f,%-—— -
- 0.5/‘/ B
s, ot T |
uo.s A o2t T s
4 // e A ’/
0.2 / 7 0-5/// ==
L~ // 1.0 //’ // =i
0.1 ~ A
. i
s 2o AT o
o __CL—" :._-— " =5
b) 0.1 0,2 04 0608 1 2 4 6 8 10
Z/X
09 T T T T )'/Ll= o T
0,8 = =TT
0‘7‘__1, ‘;;—-—""6 ]
; ]
Fij 0,6 Y X A//A////%— ——
0,5 / — — ].3 —
0,4 //“——""———- 1.0
// e p— 0,8 7]
2 5 E = 0.6
0.2 /5//.: —_— 0.4
0.1 i 51
1 e 1
<) @ 0 2.0 ‘ 3,0 4.0 5.0 6.0

X/L

Figura 124: Fattori di forma per casi elementari
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; o J K
i
Enl 1 )
AiFik
JN

Figura 126: Schema di scambio radiative fra due superfici formanti una cavita
Poiché per la legge di reciprocita e per la conservazione dell’energia:

AF, =AF, e
le due equazioni intermedie si riducono ad una sola ed il precedente sistema diventa :
Q= En1 — ‘]l

1-¢
1—81 Q(Aigl)zEnl_‘]l
Aeg !

1
‘]1_‘]2 Q :‘]1_‘]2
Q: 1 = (A1F12)

&

1-¢
Q( 2):"]Z_EnZ
Jz_Enz A2

e sommando membro a membro si ottiene la relazione:
Enl B En2
= 160
Q 1-¢ 1 1-g [160]
+ +
Ag AR, Ag

Infine , ricordando che:

E,= GT14 e E.,= O'T24
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si ha:
o =T})
= 161
Q 1-¢ 1 l-¢, [161]
+ +
Asg AR, As
Questa relazione, detta di Christiansen, consente di determinare il fattore di forma:

1
F = 162
2ol-g 1 1-g [162]
+ +
Ag AR, Ag
Utilizzando P'analogia elettrica si puo riportare lo schema radiativo fra le due superfici formanti

cavita nella seguente rete equivalente.

Resistenze
superficiali
Resistenza
spaziale
1- 51 1 1- 82
81 Al Al F12 82 A2
E
B I Js n2

Figura 127: Rete elettrica equivalente

Che puo essere risolta con le classiche regole della Fisica.

9.9.1 SUPERFICI FINITEPIANE E PARALLELE

Nel caso di superfici piani e parallele (quindi con cavita che si chiude allinfinito) si ha la
situazione di figura seguente e il fattore di forma diviene:

1 2

Figura 128: Scambio radiativo fra superfici finite piane e parallele.

4 4
(T
Q- 163
1-¢ 1 l-¢,
+ +
Ae AR, Ag
In realta per superfici finite si dovrebbero considerare gli effetti di bordo: il flusso termico emesso
dai bordi non colpisce esattamente la superficie opposta e quindi si ha una dispersione di linee di flusso.
Pertanto il fattore di forma come sopra calcolato ¢ in eccesso rispetto a quello reale.
Pur tuttavia ¢ consigliabile egualmente utilizzare questa relazione ed evitare le complessita
derivanti dal considerare le superfici finite.
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9.9.2 SUPERFICI INFINITEPIANE E PARALLELE

Ponendo le aree delle superfici:

A=A=A R, =1

si ha, per lo scambio radiativo, la relazione:

4_ 4
Q:M [164]
1 1
—+—-1
& &
e
%
. 2

Figura 129: Scambio radiativo fra superfici infinite piane e parallele.

Se &=¢,= ¢ risulta:

0 TAR T
2
£.1
'

9.9.3 SFERE O CILINDRI CONCENTRICI

Consideriamo due superfici cilindriche o sferiche concentriche, come indicato nella seguente
figura. Ponendo, per evidenti ragioni, il fattore di forma:

Figura 130: Scambio radiativo fra sfere e cilindri concentrici
F,=1
risulta, facendo uso del teorema di reciprocita, che il flusso scambiato vale:
R
LA
g A g

[165]
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9.9.4 PARETE CHE IRRADIA VERSO IL CIELO

Consideriamo il caso della figura seguente: una parete irradia verso la volta celeste.
Risultano essere, per evidenti ragioni geometriche:

A > A,

F =1

pc

Pertanto il flusso irradiato dalla parete vale:

Q=A &, o(T,-T}) [166]

ove T, ¢ la temperatura della volta celeste che deve essere calcolata opportunamente in

‘

considerazione degli assorbimenti differenziati dei vari componenti gassosi dell’atmosfera.

Figura 131: Scambio radiativo fra parete e volta celeste.

9.9.5 SCHERMI RADIATIVI

Un concetto molto utile nelle applicazioni pratiche ¢ quello di schermo radiativo. Date due superfici
radianti si interponga fra di esse una terza superficie, come indicato in figura seguente.

Se le superfici sono di lunghezza infinita (o se c'e piccolo effetto di bordo nel caso di superfici
finite, come gia osservato) si puo portre per i fattori di forma: F;=F,; =1 e quindi , dopo qualche

passaggio, il flusso termico scambiato fra le superfici 1 e 2 diviene:

o AT -T))
Q. = Sl [167]
RS
& & &31 €3

ese: & =&, =&, =&, = ¢ allora la precedente relazione si semplifica nella seguente:

1| AT -TH | 1
Qp =3 % =§(Q12)senza [168]

schermo

Pertanto una parete intermedia di eguali caratteristiche emissive (cio¢ di eguale emissivita rispetto
alle pareti esterne) comporta una riduzione a meta del flusso termico scambiato.
Estrapolando per N schermi intermedi si ha, sempre nell'ipotesi di eguali emissivita:

1 | oA =T/ 1
= = senza 169
Q12 (N N 1) g ] (N N 1) (le )Schermo [169]
&

Quindi il flusso termico fra le due superfici esterne si riduce di un fattore N+7.
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81 1
€1 Q
€23
€2 T
En1 J J E J J En2
1- ¢4 1 1- €4, ﬂ 1 i
g A AF_ ., g5,A €32 AF,, g, A

Figura 132: Schermo radiativo interposto fra due superfici radianti.

Questo risultato trova notevoli applicazioni per la schermatura di sorgenti radiative, ad esempio
di superfici fortemente irradiate dal sole™ che porterebbero ad avere una disuniformita interna della
temperatura media radiante e quindi un forte senso di disconforto termico.

In genere una parete avente piu intercapedini interne riduce fortemente il flusso termico radiativo
rispetto ad una parete normale.

9.10 FORMALISMO MATRICIALE NELLA RADIAZIONE TERMICA

Vediamo qui una generalizzazione del metodo di calcolo dello scambio radiativo fra superfici non
nere formanti una cavita. Nel caso di geometrie complesse occorre sempre utilizzare regole generali
che possono facilmente essere applicate.

Il metodo che si espone porta a scrivere un sistema di equazioni di scambio radiativo che puo
essere facilmente risolto mediante CAD matematici oggi alla portata di tutti o con programmi
appositamente predisposti.

9.10.1 CASO ESEMPIO: CAVITA FORMATA DA TRE SUPERFICI

Si consideri inizialmente una cavita radiativa formata da tre superfici, come indicato nella
seguente figura.

3

Figura 133: Scambio radiativo in una cavita chinsa

Le equazioni di bilancio sono, supponendo note le superfici, i fattori di forma e le emissivita:

38 Si pensi ad una parete che funzioni da muro Trombe-Michell che si porta a temperature di alcune decine di gradi al
di sopra della media delle temperature delle altre pareti di un ambiente solatizzato (vedi applicazioni bioclimatiche).
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Enl_‘]l_‘]l_‘]z

1-g 1

L,

1

& A AR,

EnZ_JZ _Jz_‘]1+

A R

Jz_‘]s

1-¢, 1

1

& A A Fy

En3_‘]3 _ ‘]3_‘]1

A2 F23

L3,

1-¢ 1

1

& A A Fy

ovvero anche:

&

AS F32

Enl—:( +F12+F13) J1+(_F12) ‘]2+(_F13) ‘]3
l1-g 1-g
& &
E,——=(Fy) ,+——+F,+F;) J,+(-F3) J; [170]
1-¢, 1-¢,
&3 &3
En——=0Fy) J,+(-F,) ,+——+F;+F,) J,
1-¢, 1-¢,
Definiti ora le matrici e i vettori seguenti :
Enllgl
_gl _Jl_
&.
E, 2 J
[Cl=| "1-g [3]=|
J;
En3 83
1-¢ -
_ ; _
( —+ F12 + F13) _Flz _FlS
1-¢
&
[A] = —Fy (1_ +F, +Fy) —F,
2
&3
_F31 _Fsz ( _ + I:31"' Fsz)
L 3 _

il sistema di equazioni risulta cosi sintetizzabile:

[C]=[A][J] =

[I=[A" [e]  s71)

186

e quindi risolvibile con le normali regole dell’Analisi Matematica. Il metodo si estende facilmente
al caso di N superfici radiative e quindi al caso generale di cavita radiativa.
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9.1 EFFETTO SERRA NEGLI EDIFICI

L’effetto serra negli edifici ¢ generato dalla trasparenza non simmetrica dei vetri delle finestre.
In Figura 134 si hanno le curve di trasparenza per alcuni tipi di vetri.
Il vetro comune presenta una finestra fra 0,3 e 3 um e pertanto lascia passare quasi la totalita della

radiazione solare che ha il suo massimo a 0,55 pum. La radiazione solare che penetra all'interno degli
ambienti viene da questi assorbita e contribuisce ad innalzare la temperatura di equilibrio.

1

Vetro
comune

Vetro
antisolare

Visibile

0 | | 1
0.2 1.0 2.0 3.0 {m

Figura 134: fattore di trasparenza dei vetri

Le pareti e gli oggetti interni emettono a loro volta una radiazione termica nel campo
dellinfrarosso lontano: supponendo una temperatura media di 27 °C si ha, per la legge di Wien, una
lunghezza d’onda di massima emissione di:

Ne segue che il vetro non lascia passare la radiazione infrarossa proveniente dall’interno e
quindi si ha una sorta di intrappolamento di energia all'interno degli ambienti. Ricordando la relazione:

IPotenzz_Entrante - Potenza_Uscente + Potenza_Sorgenti = Accumu]o_l’otenza‘

Ne segue che se 'ambiente non disperde la potenza entrante aumenta 'accumulo e quindi cresce
la temperatura interna.

E’ proprio quello che succede in estate: la radiazione solare surriscalda gli ambienti, specialmente
quelli eccessivamente vetrati, e quindi si ha la necessita di avere un impianto che fa I'esatto opposto:
estrae il calore accumulato dagli ambienti per raffrescarli.

Le pareti vetrate per effetto della loro natura producono non solamente effetti visivi gradevoli
ma anche (e forse soprattutto) effetti notevoli sul comportamento termico generale di un edificio.

Questi componenti dovrebbero essere considerati sempre con attenzione da parte dei
progettisti perché un loro uso smodato provoca veti e propri disastri energetici.

L’uso di grandi pareti finestrate (finestre e nastro) porta ad avere forti dispersioni termiche in
inverno ed altrettanto forti rientrate di calore in estate, come sopra detto.

Inoltre I'inserimento di grandi superfici finestrate puo avere conseguenze negative anche sulla
verifica dei disperdimenti termici dell’edificio ai sensi della Legge 10/91.

Le superfici vetrate, inoltre, modificano sensibilmente la femperatura media radiante dell’ambiente e
pertanto hanno influenza negativa sulle condizioni di benessere ambientale interna agli edifici.
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9.12 EFFETTO SERRA NELI’ATMOSFERA TERRESTRE

Un comportamento analogo a quanto avviene negli edifici si ha nell’atmosfera terrestre per
effetto dell’assorbimento della CO, presente nell’aria.

2500
— — — — |Corpo nero a 5760 K —
— ﬁ\ ——— |Irradiazione solare —
- / -
2000 / \\\
- / \ _
- / \ m
- ’I \ _
: ~ Extraterrestre .
§ 1500 I { 2
N L \\ i
; f ' 03 \ —
s T Il l\ \ ]
5 - Oz -
£ 1000 ; [ \\\
B : | H,0 | Sulla sup. terrestre (m = 1) B
o \ |
C 1AL \ ]
s00 1 o A
L] H70 -
Iy N { 720 |
- 20 { co:) _
L/ =~ -l _|
oL e N
0 0,5 1,0 1,5 2,0 2,5 3,0

Lunghezza d’onda, pm

Figura 135: Radiazione solare fuori dell’atmosfera e al suolo
In Figura 135 si ha lo spettro della radiazione solare a livello del mare e si puo osservare come

oltre 1 2,7 pum si abbia un assorbimento totale dovuto al vapore acqueo e alla CO.,,.
La radiazione terrestre verso lo spazio ha una lunghezza d’onda data da:

2898 _
290

e quindi si ha un blocco, del tutto simile a quello operato dal vetro.

Poiché la quantita di CO, presente nell’atmosfera cresce con il consumo di combustibili, per
effetto delle trasformazioni chimiche di ossidazione del carbonio, allora si ha un effetfo serra crescente
che porta ad un incremento della temperatura di equilibrio della terra.

Negli ultimi decenni si ¢ avuto un incremento di circa 1 °C della temperatura media terrestre con
conseguenze visibili sul clima.

9.6 um
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10 SCAMBIATORI DI CALORE

Lo scambiatore di calore ¢ un dispositivo capace di trasferire energia termica da un corpo ad un
altro. In genere lo scambio energetico ¢ effettuato mediante due fluidi di lavoro ma questa ¢ solo una
disposizione impiantistica non vincolante per lo scambio termico. Probabilmente lo scambiatore ¢ il
dispositivo piu utilizzato nell'impiantistica (sia civile che industriale), nell’industria e nelle applicazioni
tutte. Qualunque sia la natura dell'impianto (elettrico, elettronico, meccanico, edilizio,....) si hanno
sempre scambi termici da realizzare. Un computer, ad esempio, ha notevoli problemi di smaltimento
del calore generato dal riscaldamento dei suoi componenti elettronici (vedi, ad esempio, il processore
centrale) che impediscono, spesso, 'ingegnerizzazione in sistemi di ridotte dimensioni.

Un getto di calcestruzzo genera calore per effetto delle reazioni di presa del cemento e se non si
prevede opportunamente come smaltitlo si va incontro a seri problemi specialmente quando le
dimensioni del manufatto sono non trascurabili.

Il corpo umano ¢, in un certo senso, uno scambiatore di calore e la nostra vita ¢ regolata da
precisi meccanismi di scambio termico con I'ambiente e di termoregolazione corporea. In una casa
moderna si hanno innumerevoli esempi di applicazione degli scambiatori di calore: nei frigoriferi
domestici, negli impianti di climatizzazione, .....Data la natura del corso si vuole qui dare un cenno alla
problematica degli scambiatori di calore anche in vista di una loro utilizzazione nel corso di Impianti
Termotecnici.

10.1 SCAMBIATORI DI CALORE A CORRENTI PARALLELE

Si studieranno, anche a scopo euristico, gli scambiatori a corrente parallele, cio¢ gli scambiatori
che hanno direzione di flusso parallele (tubi concentrici), vedi Figura 136, sia in modo equiverse (nella
stessa direzione) che controverso (in direzioni opposte), Figura 137.
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Figura 136: Scambiatore di calore a correnti parallele equiverse

Indichiamo con t, la temperatura di ingresso del fluido caldo (che supponiamo fluire nel del
condotto interno) e t, la temperatura di uscita del fluido caldo. Analogamente siano t; e t, le
temperature di ingresso e di uscita del fluido freddo (che fluisce nel condotto esterno).

Indichiamo con m’ la portata del fluido caldo e con m” quella del fluido freddo. Un semplice
bilancio energetico globale fra i due fluidi, supponendo che all’esterno del condotto freddo ci sia un

isolamento termico che impedisce perdite di calore, porta a scrivere 'equazione:

Q=m'c'(t, —t, ) ==m"c"(t; —t; )
ove vale il segno + per correnti equiverse e il segno — per correnti controverse.
Da questa equazione ¢ possibile calcolare una incognita note le altre grandezze.
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Figura 137: Scambiatore di calore a correnti parallele controverse

Con riferimento alla Figura 138, per un elemento differenziale di superficie 45, dette t. e t; le
temperature correnti dei due fluidi di lavoro, si ha ancora il bilancio differenziale:

—
%tc 1
-
E
=
idS |

Figura 138: Modalita di scambio in una sezione intermedia
dg=-c'm'dt, =+c"m"dt,

che puo ancora scriversi nella forma:

dt
dg = df =t—7
c'm' c"'m"

Combinando il secondo e terzo membro si ottiene anche:

ove si sono posti:
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6=t —t,
M=t 4 1
C|ml Cllmll

e la modalita di trasmissione del calore fra i due fluidi porta a scrivere:
dg = KdS (t, —t; ) = Kds@
Eguagliando le due espressioni di dg si ottiene 'equazione differenziale:

_do = KdSé
M

Supponendo costanti i coefficienti (cio¢ le proprieta termofisiche e la trasmittanza termica K) si
ha un’equazione differenziale a variabili separabili che risolta, tenuto conto delle condizioni iniziali
0 =t —t ¢, =t —t

.« » porta alla soluzione:

0 — ae—KMS

ove § ¢ la superficie totale di scambio termico.

te-tf
tic
to-tf tuc
////////////ﬂ,-,-4744'44444——4444*‘tu?
\
|
\
tif ‘
\
|
\

Figura 139: Distribuzione della differenza di temperatura per correnti equiverse

Questa equazione ci dice che la distribuzione della differenza di temperatura all’interno dello
scambiatore ¢ esponenziale ed ha andamenti che dipendono dal verso di flusso. In Figura 139 si ha la
distribuzione per flussi equiversi.

Si osservi che la differenza di temperatura ¢ massima nella sezione di ingresso ed ¢ minima nella
sezione di uscita di entrambi i fluidi. Cio penalizza il funzionamento dello scambiatore poiché a grandi
differenze di temperature si hanno anche grandi irreversibilita del sistema.

Quando si esamina il caso di scambio in controcorrente allora si ha:

M :i_ Ill n
c'm

1 1
Cio significa che M puo assumere valori positivi (¢’'m ’< ¢”’m”), negativi (¢’m’ > ¢”’m”) e nulli
—

(m’=c’m”).
I tre casi sono riportati in Figura 140 (M>0), Figura 141 (M<O0) e in Figura 142 (M=0).
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tc-tf

tic M>0

tc-tf
tuf

Figura 140: Distribugione della differenza di temperatura per controcorrente con M>0

tc-tf

N

M<0

tc-tf

Figura 141: Distribuzione della differenza di temperatura per controcorrente con M<0

So osservi che quando si ha M=0 le curve degenerano in due rette con 0 = costante.

192

I prodotti ¢’ e ¢”m” sono detti capacita termiche di flusso del fluido caldo e del fluido freddo,

rispettivamente.

Si osserva immediatamente che, nel caso di scambio in controcorrente, le differenze di

temperatura fra i due fluidi si mantengono mediamente inferiori al caso di scambio in equicorrente.

Pertanto le irreversibilita prodotte dagli scambiatori in controcorrente sono minori di quelli in

equicorrente, ovvero si hanno modalita di scambio migliori.

Ricordando l'equazione globale di scambio termico e le posizioni sin qui fatte si puo ancora

scrivere:

Q= m'C'(tiC —tuc) Zim"C"(tuf — Tt ):_

Se ricaviamo M dall’equazione di distribuzione di temperatura si ha anche:

ei_eu
Q—KS—Hi
In—-
o

u
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Figura 142: Distribugione della differenza di temperatura per controcorrente con M=0

Si suole porre:

ml el
In—=-
o

u

e quindi il calore scambiato si puo scrivere nella forma:

Q = KSAT,,

10.2 EFFICIENZA DEGLI SCAMBIATORI

Possiamo definire ¢ffcienza di una scambiatore di calore il seguente rapporto:

_ Calore Effettivamente Scambiato
Calore Massimo Scambiabile

I1 calore massimo che puo essere scambiato si ha quando la superficie di scambio termico tende
ad infinito. I’esame dei diagrammi sulle distribuzioni di temperature mostra che, al tendere di
S — oo una delle temperature dei due fluidi tende ad eguagliare quella corrispondente dell’altro fluido.

Ad esempio per I'equicorrente, Figura 139, al tendere ad infinito di S le due temperature di uscita
dei fluidi tendono ad eguagliarsi: t, .=t . Pertanto I'efficienza di scambio per correnti equiverse diviene:

o c'm'(t, —t,)
C'ml(tic _tuf )
Nel caso di correnti controverse si hanno tre casi (a seconda del segno di M).

M>0 cioé ¢’'m’ < c’m”

Allora il fluido caldo ha minore capacita termica di flusso del fluido freddo. Al tendere all'infinito
della superficie la temperatura di uscita del fluido caldo tende a quella di ingresso del fluidi freddo.

[’efficienza diviene:
_c'm'(t, —t,)

. Clm'(tic _tif)
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M<0 cioé I’m’ > c’m”

11 fluido freddo ha minore capacita termica di flusso del fluido caldo. Al tendere all'infinito della
superficie la temperatura di uscita del fluido freddo tende a quella di ingresso del fluidi caldo.
[’efficienza diviene:

B c"m"(tuf —tif)
e\t )
C"m"<tic _tif)

M=0 cioé ¢’m’ = c”’m”
In questo caso si ha un caso limite: 1 due fluidi hanno eguali capacita termiche di flusso e
Pefficienza si calcola indifferentemente con una delle due relazioni sopra viste.

10.2.1 FORMA UNIFICATA DELL’EFFICIENZA DI SCAMBIO TERMICO

Dalle due ultime relazioni si osserva che, indicando con C,;, la minore delle due capacita termiche
di flusso, efficienza di scambio termico ¢ data dal rapporto:
At

8 — min

tic - tif

cio¢ a numeratore si ha la differenza di temperatura, in valore assoluto, del fluido di minore
capacita termica e a denominatore si ha sempre la differenza fra le temperature di ingresso del fluido
caldo e del fluido freddo. II significato dell’efficienza di scambio termico appare evidente da quanto
sopra detto: al crescere dell’efficienza crescono anche le dimensioni dello scambiatore e con esse il
costo. Pertanto nella pratica si utilizzano scambiatori di calore che ottimizzano 'efficienza e il costo.

Ad esempio un valore tipico ¢ N=0.80. Valori piu elevati comportano incrementi di costi notevoli
mentre valori inferiori portano ad avere scambiatori pit economici.

Oltre al valore economico sopra evidenziato Iefficienza ha ha un significato termodinamico
importante. Se I'efficienza ¢ bassa si hanno anche forti differenze di temperature fra i due fluidi e quindi
anche forti irreversibilita di scambio.

Per contro, un valore elevato dell’efficienza comporta minori differenze di temperature e quindi
una minore produzione di irreversibilita termica. Se si avesse (al limite) N=1 si avrebbero differenze di
temperature nulle (forma indeterminata per 1) e quindi si raggiungerebbe la condizione ideale di
scambio termico isotermo.

10.3 PROGETTO DI UNO SCAMBIATORE DI CALORE

Il progetto di uno scambiatore di calore puo essere fatto in due modi principali dei quali si dara
un rapido cenno nel prosieguo. I.’Allievo tenga presente che Egli dovra utilizzare gli scambiatori nel
corso di Impianti e pertanto la fase di progetto ¢ demandata agli specialisti del settore.

10.3.1 METODO DELLE DIFFERENZE MEDIE LOGARITMICHE
E’ questo il metodo piu antico. Si utilizza la relazione gia indicata in precedenza:

ei_eu

0
In—
o

u

Q=KS

Pertanto, se si conoscono le differenze di temperature fra i due fluidi e il flusso termico
scambiato Q =m'c'(t; —tuc) =tm"c" (tuf — 1t )allora si puo ricavare la superficie di scambio .

Le cose sono, nella realta, pit complesse perché il calcolo di K richiede la conoscenza di alcuni
parametri geometrici (diametri dei tubi, come si evince dal §1.2.2).
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Pertanto il progetto procede per tentativi assegnando i diametri e calcolando la lunghezza dei
condotti (S=ndL).

Se ¢ nota la superficie di scambio, S, le precedenti relazioni consentono di calcolare una delle
quattro temperature.

Si osservi che si sono esaminati solamente i casi di fluidi in condizioni di scambio termico
normale e si sono trascurati i casi di scambio termico con cambiamento di fase (vaporizzazione o
condensazione) di uno o entrambi i fluidi.

Si rimanda P’Allievo ai Manuali specializzati per le applicazioni piu particolari.

10.4 SCAMBIATORI CON GEOMETRIA COMPLESSA

Nella pratica 'utilizzo degli scambiatori a correnti parallele sin qui studiati ¢ reso difficile da una
serie di motivi tecnici.

Quasi sempre si utilizzano geometrie piu complesse che consentono di sfruttare meglio gli spazi,
come indicato in Figura 143 per correnti incrociate (vedi percorso tratteggiato).

Fluido

| Freddo

4

| —— —

| | | T
CE e
Fluido ] !
Calcdlo ~ ~_ \

Figura 143: Scambiatore a corrente incrociate del tipo shell and tube
Lo studio analitico di queste geometrie risulta complesso ed ¢ al di fuori degli scopi del presente
capitolo.
Si dira, tuttavia, che per la progettazione si procede in modo semplificato utilizzando la relazione:

Q= KSAT,F

ove F ¢ un fattore che dipende dalla geometrica dello scambiatore e dalle temperature dei fluidi di
lavoro.

Opportune relazioni pratiche o diagrammi sono fornite dai costruttori in manuali specializzati.

Si osserva, pero, che la geometria piu efficiente ¢ quella a corrente parallele in controcorrente.

Le altre geometrie commerciali pongono vantaggi pratici (migliore ingegnerizzazione dei sistemi)
ma non termodinamici.
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Figura 144: Fascio tubiero estratto da uno scambiatore di calore

10.5 METODO NTU: UNITA DI TRASFERIMENTO TERMICO

Da qualche decennio ha preso campo una nuova metodologia di progetto e verifica degli
scambiatori di calore basata sul metodo detto NTU (Number Transfer Unit) ovvero Unita di Traferimento
Termico. Si definisce, infatti, NTU il rapporto:

KS
(Cm)min

con il simbolismo gia visto in precedenza. Esso ha un significato fisico ben preciso: possiamo
scrivere, infatti:

NTU =

_(KS)T
(Cm)min 1

e quindi 'NTU ¢ il rapporto fra il calore scambiato con salto termico AT=1 (mediante scambio
termico KSAT) e trasportato dal fluido, (e),,AT.

NTU =

A seconda delle geometrie utilizzate si pone lefficienza 1 in funzione di NTU , di un parametro
geometrico e del rapporto fra le capacita termiche di flusso ¢’/ ¢"n”.

Oltre che relazioni analitiche si hanno anche grafici, vedi Figura 145 e in Figura 146, che
consentono di effettuare facilmente i calcoli.

Di solito in fase di progetto, fissata la geometria e il rapporto fra le capacita termico di flusso,
scelta Iefficienza (ad esempio N=0.8) si determina dai grafici NTU e dalla sua definizione si calcola S.

Il metodo N'TU consente di effettuare facilmente anche le verifiche termiche: dato lo scambiatore
di superficie S e note le capacita termiche di flusso si calcola NTU e quindi si ha I’efficienza n.Dalla
definizione dell’efficienza si calcola la temperatura incognita desiderata.
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