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INTRODUZIONE ALLA TRASMISSIONE DEL CALORE 

 

La Trasmissione del Calore è per gli Allievi probabilmente la parte più nuova della Fisica Tecnica 
poiché non è mai stata affrontata in altri corsi, come invece avviene, ad esempio, per la Termodinamica. 

Questa Scienza si è sviluppata a partire dalla seconda metà dell‟ottocento quando Fourier enunciò il 
suo postulato sulla conduzione termica attraverso una parete. Quella relazione pose le base, fra l‟altro, 
ad una vera e propria rivoluzione culturale che ha portato negli anni „settanta Ilia Prigogine a formulare le 
sue leggi sulla Termodinamica Irreversibile della quale altre volte si è fatto cenno nello studio della 
Termodinamica Applicata. 

Il postulato di Fourier poneva per la prima volta in forma esplicita la dipendenza fenomenologica del 
flusso di calore ad una differenza di temperatura: 

*
dT

dQ Sd
ds

    

(si vedrà in seguito il simbolismo qui indicato) cosa che non andava d‟accordo con l‟impostazione della 
Termodinamica Classica per la presenza di una freccia nella trasmissione del calore (da temperatura maggiore 
verso temperatura minore e mai viceversa, spontaneamente!). 

Successivamente molte leggi furono formulate sulla stessa falsariga del postulato di Fourier, ad 
esempio la Legge di Fick per la diffusione, la legge di Ampère per la corrente elettrica, la legge di Bernoulli 
per il moto dei fluidi reali. Tutte queste leggi avevano in comune il legame funzionale fra un flusso 

(di calore, di massa, di corrente, …..) con una causa prima e cioè una differenza di potenziale (T, V, 

C, p,…..). 

Si cominciavano a porre le basi per le considerazioni entropiche di Boltzmann e di Gibbs e, negli 
ultimi due decenni, per la stessa Termodinamica Irreversibile di Y. Prigogine. 

In breve vedremo che tutta la Trasmissione del Calore è basata sull‟irreversibilità dovuta alla 
differenza di temperatura. Possiamo allora definire la Trasmissione del Calore più semplicemente come una 
applicazione della Termodinamica dei processi Irreversibili. 

Questa Scienza assume oggi un‟importanza fondamentale in tutti i settori della Tecnica, dalla 
Meccanica all‟Elettronica, dall‟impiantistica alla energetica degli edifici ed industriale e alla stessa vita 
dell‟Uomo. 

I meccanismi di scambio termico sono alla base di tutti i fenomeni reali sia perché direttamente 
voluti o perché indotti da trasformazioni passive per attrito in calore. 

L‟evoluzione dell‟Elettronica, ad esempio, è oggi fortemente legata al miglioramento degli scambi 
termici. Si pensi, ad esempio, all‟enorme densità di potenza termica dei transitori di potenza o dei tubi 
per impianti radar: si raggiungono gli stessi valori di densità di potenza (cioè di kW/m³) degli impianti 
nucleari di potenza. Come fare a raffreddare questi componenti in modo che possano lavorare 
correttamente? 

Tutti sappiamo che un moderno microprocessore consuma una potenza specifica (cioè riferita 
alla superficie) molto elevata (70 W/cm² = 700 kW/m²) e che il suo raffreddamento è un problema 
gravoso da risolvere, specialmente per installazioni su computer portatili dove si hanno spazi ridotti e 
possibilità di scambi di calore con l‟esterno estremamente difficili. 

Le applicazioni e le ricadute industriali della Trasmissione del Calore sono immense e non facilmente 
riassumibili in questa sede.  

Ogni impianto, ogni componente di macchine, ogni struttura progettata e costruita dall‟Uomo è 
soggetta ai fenomeni di scambio termico e quindi di Trasmissione del Calore. E non si può neppure 
lontanamente immaginare una progettazione cosciente e congruente che non tenga conto dei fenomeni 
termici di qualunque natura essi siano. 

Nei prossimi capitoli si affrontano gli argomenti principali della Trasmissione del Calore e in 
particolare gli argomenti classici: 
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 La Conduzione termica; 

 La Convezione termica; 

 L‟Irraggiamento termico. 

Si vedranno alcune applicazioni quali gli scambiatori di calore e i collettori solari. 

L‟impostazione degli argomenti è in questa sede volutamente tradizionale ritenendo 
l‟impostazione della teoria del trasporto solistica ed ostica per gli allievi del corso di Fisica Tecnica. 

 Data la limitatezza del Corso, inoltre, non si potranno sviluppare argomenti importanti presenti 
nei corsi annuali di Trasmissione del Calore. In particolare non si è dato spazio ai fenomeni di diffusione 
oggi di fondamentale importanza, ad esempio, per i fenomeni ambientali. 

Pur tuttavia si è voluto fare alcuni cenni ai metodi di risoluzione numerica sia per la conduzione 
che per la convezione lasciando ai corsi specialistici (Termotecnica, Energetica, Impianti Termotecnici) lo 
sviluppo più approfondito di questi argomenti. 

L‟impostazione che si è data a questo testo è, per necessità sia di spazio che di tempo, limitata alla 
trattazione degli argomenti più importanti.  

Laddove possibile i singoli argomenti saranno presentati in modo completo, cioè incluse le 
dimostrazioni. In alcuni casi si presenteranno solamenti i risultati finali. 

Un po‟ di attenzione ho voluto prestare all‟ebollizione, alla condensazione e ai fluidi bifase dei 
quali si farà cenno anche al calcolo delle perdite di pressione: questi argomenti risultano fondamentali 
nell‟impiantistica di potenza (generatori di vapore, impianti industriali, impianti nucleari,….) 

Una estensione ai testi fondamentali può aiutare ad approfondire gli argomenti trattati e a 
colmare eventuali mancanze di argomenti. 

Si fa presente che nel biennio di laurea specialistica in Ingegneria Meccanica (per tutte le 
specializzazioni) è presente il corso di TermoFluidoDinamica nel quale saranno approfonditi con 
maggior attenzione gli argomenti qui trattati. 

 

Buon lavoro ragazzi! 

 

Catania  05/11/2007 
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1 INTRODUZIONE ALLA TRASMISSIONE DEL CALORE 

Si vuole qui presentare alcuni concetti alla base della Trasmissione del Calore. Non si intendi qui 
esaurita la trattazione di argomenti che da soli richiederebbero un intero corso annuale ma si ritiene 
necessario comunque affrontare gli argomenti che si ritengono più importanti per gli studi futuri degli 
Allievi Ingegneri. 

La Trasmissione del Calore può avvenire con meccanismi diversi che possiamo qui classificare: 

 Conduzione; 

 Convezione; 

 Irraggiamento. 

A questi si aggiunge la Diffusione di massa (e con essa anche di energia) che in questa sede non viene 
affrontata. Ciascun meccanismo di trasmissione è caratterizzato da peculiarità legate ai materiali, alla 
topologia o anche alla geometria. Non tutti questi parametri è necessario che siano presenti nei 
meccanismi di scambio, come vedremo nel prosieguo. 

Si tenga presente che l‟esposizione separata dei meccanismi di scambio non deve mascherare la 
reale difficoltà che si ha nella pratica di affrontare globalmente la Trasmissione del Calore spesso somma di 
due o più modalità diverse. Così, ad esempio, il calore generato da transistor di potenza si trasmette per 
conduzione in superficie dove, per convezione e per irraggiamento viene disperso nell‟ambiente 
esterno.  

Le leggi fondamentali di ciascun meccanismo di trasmissione del calore sono le seguenti: 

Conduzione Termica 

Il già citato postulato di Fourier esprime il flusso termico (W) per conduzione attraverso una 

parete avente facce isoterme, di spessore s (m)e conducibilità termica1 W/mK), e con T1 e T2 le 
temperature superficiali (K) e di superficie S (m²) secondo l‟equazione: 

2 1T T
Q S

s



    

Convezione Termica 

La convezione termica è un fenomeno complesso dato da un insieme di più fenomeni 
apparentemente semplici: essa è il risultato del movimento di fluidi (attivato o non da dispositivi esterni) che 
trasportano nel loro movimento energia termica. La complessità di questi fenomeni è formalmente 
mascherata dalla legge di definizione di Newton che si esprime nella forma: 

( )p fQ h S T T     

ove Q è il flusso in W, h è il coefficiente di convezione termica (W/m²K, di cui dirà nel 
prosieguo), Tp la temperatura della parete calda e Tf la temperatura del fluido (K). 

Irraggiamento Termico 

E‟ una forma particolare di trasmissione del calore attuata mediante onde elettromagnetiche che, una 
volta assorbite da un corpo, si trasformano in energia interna e quindi in calore.  

Tutti i corpi al di sopra dello 0 K emettono onde elettromagnetiche. La legge fondamentale è di 
Stefan – Boltzmann che per corpi grigi2 si esprime nella forma: 

 4 4

0 12 1 2Q SF T T    

                                                
1 Si dirà più diffusamente di questo parametro nel prosieguo. 

2 Si vedrà nel prosieguo la definizione di corpi grigi. 
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con 0 costante pari a 5.67 . 10 –8 W/m²K4,  emissività specifica del corpo (di cui si parlerà nel 
prosieguo) e T la temperatura assoluta (K), F12 è il fattore di vista relativo allo scambio fra corpo 1 e corpo 
2 (di cui parimenti si dirà nel prosieguo). 

1.1 CONDUZIONE IN UNA PARETE PIANA 

Se consideriamo due superfici isotermiche a temperatura T1 e T2, ove é T1>T2, all'interno di un 
materiale che supponiamo, a solo scopo euristico e semplificativo, omogeneo ed isotropo3 allora il più volte 
citato postulato di Fourier dice che (vedi Figura 1): 

2 1*
T T

Q S
s

 


     [1] 

ove si ha il seguente simbolismo: 

   é una proprietà termofisica del corpo e viene detta conducibilità termica. Le sue unità 
di misura sono, nel S.I. [W/(mK)] mentre nel S.T. sono [kcal/(hm°C)]; 

 s  lo spessore di materia fra le due superfici isoterme considerate, unità di misura [m]; 

 S  é la superficie attraverso la quale passa il calore; unità di misura  [m2]; 

  é l'intervallo di tempo considerato; unità di misura [s]; 

 Q* é l'energia termica (in J) trasmessa nell'intervallo t attraverso la superficie S di materiale 

avente spessore s e conducibilità termica  e temperature T1 e T2. 

La [1] si può scrivere anche in forma differenziale: 

*
dT

dQ Sd
ds

     [2] 

Il segno negativo che compare nella [1] e [2] deriva dall'enunciato stesso del secondo principio della 
termodinamica secondo il quale il calore si trasmette, spontaneamente, da temperature maggiori verso 
temperature minori; la differenza T2 - T1 é negativa e pertanto il segno meno serve a rendere positiva la 
quantità di calore trasmessa uscente dalla superficie più calda.  

1.1.1 LA CONDUCIBILITÀ TERMICA 

I coefficiente  rappresenta una proprietà termofisica del corpo in esame. Ciò significa che il 
suo valore é funzione solo del tipo di materiale scelto e dalle sue condizioni fisiche (cioè a quale 
temperatura e in quale stato fisico, solido o liquido o gas, si trovi). Nella Tabella 1 seguente sono 

riportati alcuni valori di  per i materiali più usuali. I valori sopra indicato mostrano come  vari molto 
dai materiali gassosi a solidi e in quest'ultimo caso ai conduttori.  

Questi ultimi presentano, infatti, i valori di  più elevati, in accordo con la teoria della conduzione 
elettrica che li vede primeggiare sugli altri materiali. In effetti il meccanismo di conduzione termica é 
associato strettamente, ove possibile, al meccanismo di conduzione elettronica: sono, infatti, sempre gli 
elettroni che oltre a trasportare elettricità trasportano energia (di agitazione termica) lungo i metalli.  

Per la conduzione termica di tipo elettronico il parallelismo fra conduzione elettrica dovuta agli 
elettroni liberi nella banda di conduzione e conduzione termica ad essi associati è ben descritto dalla 
relazione di Wiedemann – Franz – Lorenz la quale ci dice che: 

t

e

G T



   

ove G è una costante pari a 24.5 109 W²/A²K². In definitiva il meccanismo conduttivo, sia 
elettrico che termico, è lo stesso ed è dovuto essenzialmente al movimento della cariche elettroniche. 

                                                
3 Un corpo si dice omogeneo se ha caratteristiche chimiche costanti in tutti i suoi punti e si dice isotropo se il suo 

comportamento non dipende dalla direzione considerata. Ad esempio l'acqua é un materiale omogeneo ed isotropo, il legno 
é omogeneo ma non isotropo poiché ha caratteristiche che variano con la direzione delle fibre. 
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Appare a prima vista strano che il diamante abbia valori di  elevatissimi: esso, si ricorda, é un 
cristallo perfetto di atomi di carbonio disposti in modo geometricamente esatto ai vertici di un 
icosaedro.  

S

T1> T2

Q

s

Il calore si trasmette dalla superfice a temperatura T1
verso la superfice a temperatura inferiore T2, nel verso
indicato. 
Le superfici sono isoterme e il materiale omogeneeo e
isotropo, di spessore s e estensione S.
Le caratteristiche trasmissive del materiale sono date
dal coefficiente di conduciblità termica.
Il postulato di Fourier si esprime dicendo che la quanti-
       
                 
tà di energia termica trasmessa é proporzionale, secon-
do il coefficiente di conducibilità, alla differenza di tem-
peratura (T1-T2) e alla superfice S ed é inversamente
proporzionale allo spessore di materiale s fra le due su-
perfici considerate.

 

Figura 1: Postulato di Fourier per la conduzione. 

Materiale Conducibilità   [W/(mK)] 

Vapore acqueo saturo a 100 °C 0,0248 

Ammoniaca  0,0218 

Elio 0,1415 

Ossigeno 0,0244 

Acqua 0,5910 

Alcool Etilico 0,1770 

Mercurio 7,9600 

Olio di oliva 0,1700 

Pomice 0,2300 

Polistirolo espanso (25 kg/m³) 0,0350 

Sughero in lastre 0,0500 

Calcestruzzo 0,93-1,5 

Laterizi 0,7-1,3 

Terreno asciutto 0,8200 

Acciao 30-50 

Ferro 75 

Piombo 35 

Oro 296 

Rame 380 

Argento 419 

Diamante 2100 

Tabella 1: Conducibilità di alcuni materiali 

Il diamante, proprio per il fatto di non avere elettroni liberi di conduzione, é anche il miglior 
isolante elettrico. Allora come mai conduce così bene il calore?   
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In realtà é proprio la sua struttura cristallina perfetta la giustificazione dell'elevato valore di : i 
cristalli, infatti, oscillano perfettamente in modo elastico e così possono trasmettere l'agitazione termica 
delle molecole da un punto all'altro molto bene.  

Pertanto nei cristalli puri la conduzione avviene non più per via elettronica bensì per via elastica
4
. 

Ciò spiega anche perché il ferro conduca meglio il calore dell'acciaio: si ricorda, infatti, che 
l'acciaio é una lega del ferro e quindi una composizione di ferro con percentuali di carbonio, zinco, 
nichel, cromo, ecc, e pertanto questi componenti ostacolano la conduzione reticolare del ferro e la 
conduzione termica é solo elettronica e ad un livello inferiore di quella del ferro puro.  

Quanto sopra detto giustifica l'affermazione che  sia una proprietà termofisica dei corpi e 
quindi reperibile in tutti i manuali specializzati. Tutte le proprietà termofisiche (e in genere tutte le proprietà 

fisiche) sono catalogate e raccolte in Manuali tecnici specialistici. La conducibilità termica  varia con la 
temperatura dei corpi in modo diverso a seconda dello stato fisico in cui si trovano.  

In genere, tranne alcune eccezioni riportate nei manuali tecnici, la conducibilità termica  cresce 
con la temperatura nei solidi e nei liquidi.  

Nei gas l'aumento della temperatura comporta un incremento dell'agitazione atomica o 

molecolare e quindi un maggiore intralcio reciproco fra gli atomi o le molecole e quindi   diminuisce.  

Fra le eccezioni importanti alla regola sopra indicata si ricorda che l'acqua fra 0 e 4 °C ha densità 

maggiore del ghiaccio e anche  maggiore. La relazione [2] può essere scritta anche in modo più 

comodo, ponendo " Q
Sq  , nella seguente forma : 

" ( )
T

q grad T T
s

  


        [3] 

ove si ha: 

 q‖ calore trasmesso per unità di tempo e di superficie (detto anche flusso termico specifico). 
Unità di misura [W/m2] o [kcal/(hm2)].  

La trasmissione del calore per conduzione nei corpi é materia alquanto complessa da studiare al 
di fuori del caso limite sopra indicato con il postulato di Fourier. 

1.2 EQUAZIONE GENERALE DELLA CONDUZIONE 

Allorquando si desidera studiare il problema della trasmissione del calore in un corpo di 
geometria non semplice occorre scrivere e risolvere l‟equazione generale della conduzione ottenuta da un 
bilancio di energia per un elemento di volume interno ad un corpo. Per un generico corpo solido 
possiamo scrivere l‟equazione di bilancio dell‟energia, come già indicato in Termodinamica, nella forma: 

Energia_Entrante – Energia_Uscente + Energia_Sorgente = Energia_Accumulata 

e quindi, in forma analitica: 

" '"
S

V V

q ndA q dv udv



   

     [4] 

In questa espressione il primo termine rappresenta il flusso termico netto (differenza fra quello 
entrante ed uscente) attraverso la superficie del corpo, il secondo termine è relativo all‟energia generata 
internamente (sorgente) e il secondo membro rappresenta l‟energia accumulata che, per un solido, coincide 
con la sola energia interna u. Applicando il teorema della divergenza al primo membro si può scrivere: 

" "
S

V

q ndA q dv        [5] 

                                                
4  Si suole dire che la conduzione é di tipo fononica mutuando l'attributo dal fonone che é la più piccola quantità di energia 
oscillatoria (suono) a data temperatura in un cristallo, in analogia con il fotone che é la più piccola quantità di energia di 
un'onda elettromagnetica (luce). 
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Pertanto sostituendo nella [4], tenendo conto che è  "q T     per Fourier, passando ai 

differenziali si ha: 

2 1q T
T

a 

 
  


  [6] 

ove q’’’ è il calore per unità di volume (W/m³) generato all‟interno del corpo, a è la diffusività 

termica data dal rapporto ca 
 . Il laplaciano 2T può essere espresso in vari modi a seconda della 

geometria di riferimento. Per le geometrie più comuni si hanno le seguenti espressioni: 

2 2 2
2

2 2 2
per coordinate rettangolari

T T T
T

x y z

  
   

  
   [7] 

2 2 2
2

2 2 2 2

1 1
 per coordinate cilindriche

T T T T
T

r r r r z

   
    

   
  [8] 

La risoluzione dell‟equazione della conduzione non è agevole al di fuori di geometrie semplici ed 
è oggetto di studi approfonditi che fanno ricorso a metodologie matematiche complesse5.   

Oggi si cerca di superare a tali complessità con il ricorso ai metodi numeri approssimati che 
possono essere utilizzati su computer da tavolo (vedi §1.2.6).  

Qualunque sia il metodo utilizzato per integrare l‟equazione occorre porre correttamente le 
condizioni al contorno, in genere spazio-temporali, che possono essere essenzialmente di quattro tipi. 

Condizione del 1° tipo (di Dirichlet:) 

 Occorre conoscere le temperature in tutti i punti della superficie ad un dato istante, cioè occorre 

conoscere la funzione T(x,y,x,) per l‟istante iniziale; 

Condizione del 2° tipo (di Neumann) 

 Occorre conoscere i gradienti di temperatura in tutti i punti della superficie ad un dato istante, cioè 

occorre conoscere la funzione 
T(x,y,x, )

n




 per l‟istante iniziale. Se si ricorda il postulato di 

Fourier appare evidente che una tale condizione equivale a conoscere il flusso termico (
T

q
n




 


) 

in ogni punto della superficie. 

Condizione del terzo tipo 

 Matematicamente si esprime nell‟essere il gradiente di temperatura proporzionale alla temperatura stessa. 
Se si considera il caso di corpo immerso in un mezzo fluido esterno avente temperatura Tf  e si 
ricorda l‟equazione di Newton sulla convezione (vedi §4) si intuisce come questa condizione 
equivalga a porre il flusso conduttivo uscente dalla superficie pari a quello convettivo scambiato 
con il fluido. Si riconosce facilmente il significato fisico di questa posizione. Infatti per la [3] si ha, 
anche: 

T
q

n



 


 

( )fq h T T   

                                                
5 Ad esempio con il metodo integrale, con il metodo dei complessi o della trasformata di Laplace per i casi di trasmissione 

monodimensionale non stazionaria, metodi dell‟integrale di convoluzione (teorema di Duhamel) per transitori termici di cui sia 
nota la risposta al gradino  o all‟impulso oppure si utilizzano le equazioni di Sturm-Liouville per i casi più complessi. 
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( )f

T
h T T

n



  


 

da cui deriva: 

1
f

T h
T T

n  


  


 

e quindi la condizione del 3° tipo equivale a imporre che il flusso termico specifico uscente dal 
corpo sia pari a quello scambiato per convezione termica con il fluido circostante. 

Condizione del quarto tipo: 

 si tratta di una combinazione della condizione del secondo tipo (di Neumann) fra due corpi solidi a 
contatto superficiale. Infatti la condizione in oggetto si esprime dicendo che il gradiente uscente 
dal primo corpo deve essere uguale a quello entrante nel secondo corpo, ovvero anche: 

1 2
1 2

s s

T T

n n
 
 

  
 

 

In definitiva la condizione del quarto tipo rappresenta una condizione di congruenza al contorno 
nel passaggio fra due corpi. 

1.2.1 PARETE PIANA 

L‟equazione della conduzione (vedi [6]) è integrata per uno strato piano indefinito, come 
rappresentato in Figura 2, e quindi con la sola dimensione x che fornisce contributo variabile alla 
distribuzione della temperatura. Ciò porta ad avere il seguente sviluppo: 

2 0T    [9] 

che integrata due volte fornisce l‟integrale generale: 

T ax b    [10] 

Le costanti a e b si determinano in base alle condizioni al contorno: 

1     per 0T T x   

2     per T T x s   

Y

X

 

Figura 2: Parete piana indefinita 

Effettuando i calcoli si trova: 

1 2
1

T T
T x T

s


    [11] 
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che rappresenta una distribuzione lineare di temperatura (nell‟ipotesi di  costante) per la parete 

piana indefinita nell‟ipotesi di  costante (materiale omogeneo ed isotropo). Nella realtà le pareti sono 
di dimensioni finite e quindi si hanno sempre effetti di bordo da tenere in conto e che in questa sede, 
per sola semplicità, si trascurano.  

Applicando la [3] si ottiene: 

1 2"
T T

q
s




   [12] 

la cui derivazione poteva essere fatta direttamente mediante il postulato di Fourier considerato 
che le superfici isoterme, essendo la parete indefinita, coincidono con piani paralleli alle facce esterne. 

1.2.2 CONDUZIONE DEL CALORE IN UNO STRATO CILINDRICO 

Nel caso in cui si abbia uno strato cilindrico (detto anche manicotto cilindrico), come in Figura 3, 
l‟applicazione della [6]) in coordinate cilindriche porta ad avere: 

2

2

1
0

d T dT

dx r dr
   

che può essere scritta anche nella forma più comoda da integrare: 

1
0

d dT
r

r dr dr

  
  

  
 

che integrata due volte conduce all‟integrale generale: 

1 2( ) lnT r C r C    [13] 

Le costanti di integrazione C1 e C2 si determinano mediante le condizioni al contorno (del 1° 
tipo) seguenti: 

1 1

2 2

( )

( )

T r T

T r T




 

Risolvendo il sistema e sostituendo nella [13] si ottiene la distribuzione della temperatura nel 
manicotto cilindrico: 

1 2
1

1 1

2

( ) ln

ln

T T r
T r T

r r

r


   

Applicando la [3] si ottiene il flusso termico: 

1 2

2

1

1
ln

2

T T
Q

r

l r 


   [14] 

ove l é la lunghezza del manicotto,  é la conducibilità termica.  

Se la differenza s =r2-r1 é piccola rispetto ad r1 allora si dimostra che anziché usare la relazione 
[14] si può ancora utilizzare la [3]. Infatti risulta: 

2 1

1 1 1 1

ln ln ln 1
r r s s s

r r r r

   
      

   
 

ove l‟ultimo termine rappresenta lo sviluppo in serie di Taylor arrestato al primo termine.  

Sostituendo questo risultato nella [14] si ottiene: 
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1 2 1 2 1 2

1 1

1

2 (2 )

T T T T T T
Q

s s s

l r lr S    

  
    

e pertanto il flusso termico risulta ancora dato dalla [3]. 

In pratica se lo spessore del manicotto é piccolo esso si comporta come se fosse una parete piana, 
come sopra dimostrato.  

Ciò risulta utile quando si deve calcolare il flusso trasmesso attraverso una parete curvilinea: se il 
raggio di curvatura è grande allora si può considerare la parete piana ed applicare le solite relazioni. 

La superficie di scambio termico da prendere in considerazione é quella interna o quella esterna a 
seconda il lato di scambio termico che interessa. 

r1

r2

Nel caso di uno strato cilindrico di materiale
omogeneo ed isotropo con conducilità termi-
ca si ha una relazione del flusso termi-

 co specifico che dipende dal rapporto dei rag-
gi esterno ed interno.



 

Figura 3: Trasmissione per conduzione in un manicotto cilindrico  

1.2.3 RAGGIO CRITICO 

Possiamo immediatamente fare una semplice applicazione dei concetti sopra esposti 
determinando il raggio critico di isolamento per un condotto cilindrico. Si abbia un condotto, come indicato 
in Figura 4, con raggio esterno pari ad r1 e raggio di isolamento r. Il flusso termico scambiato verso 
l‟ambiente esterno nel quale si suppone il fluido a temperatura tf vale: 

1

1

1 1
ln

2 2

ft t
Q

r

l r rlh  






 

Isolante

tf

t1

r

r1

 

Figura 4: Condotto cilindrico isolato 

A denominatore si ha la resistenza termica totale somma di due resistenze: quella del condotto 

circolare di raggio r1,, cioè 
1

1
ln

2

r

l r 
, e quella dell‟isolante termico, cioè 

1

2 rlh
.  

Poiché la prima resistenza ha andamento logaritmico con r mentre la seconda è con andamento 
iperbolico, si può immaginare che esista un valore minimo dato dalla condizione: 

1

1 1
ln 0

2 2

tdR d r

dr dr l r rlh  

 
   

 
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Il valore cercato, detto raggio critico, vale: 

criticor
h


  

La derivata seconda della resistenza totale è positiva e quindi si ha un punto di minimo. In Figura 
5 si ha la rappresentazione di quanto detto. In corrispondenza del minimo della resistenza totale, R t, si 
ha un massimo del flusso trasmesso verso il fluido esterno e pertanto si possono fare due 
considerazioni: 

 Se il raggio totale r (tubo più isolante) è minore del raggio critico rc allora un amento dell‟isolante 
porta ad avere una diminuzione della resistenza totale e quindi anche un incremento del flusso 
trasmesso. Questo caso interessa i cavi elettrici per i quali si desidera che l‟isolante esterno, con 
funzioni sia di isolante elettrico che termico, disperda più potenza possibile per evitare il 
riscaldamento del conduttore di rame interno; 

 Se il raggio totale r è maggiore del raggio critico rc allora un incremento dell‟isolante comporta un 
aumento della resistenza totale, ossia anche una diminuzione del flusso trasmesso all‟esterno. E‟ 
questo il caso dei condotti per acqua calda o fredda e per vapore per i quali si desidera limitare il 
più possibile i disperdimenti verso l‟esterno. 

r

R

r
c

Ri

Rc

Rt

 

Figura 5: Andamento delle resistenza 

Poiché il raggio critico dipende sia dalla conducibilità termica dell‟isolante che dal valore del 
coefficiente di convezione esterna, si comprende come il valore corrispondente sia praticamente 

imposto nelle applicazioni. Ad esempio per  = 0.032 W/mK (buon isolante termico) ed h =10 W/m²K 
(convezione naturale) si avrebbe rc = 0.0032 m.  

Pertanto per condotti di diametro maggiore di 6.4 mm si ha convenienza ad isolare (r > rc) 
mentre per condotti con raggio inferiore a 6.4 mm (tubi piccoli usati, ad esempio, negli impianti 
frigoriferi) non si ha convenienza ad isolare e quindi vengono lasciati nudi.  

Per far variare il raggio critico si può agire, per dato isolante (e quindi per dato ) sul meccanismo 
di convezione termica, ad esempio, passando dalla convezione naturale a quella forzata che, come si 
vedrà, produce un incremento di h. 

1.2.4 CONCETTO DI RESISTENZA TERMICA PER CONDUZIONE 

La [3] può essere scritta in una forma del tutto equivalente: 

1 2"
T T

q
s




  

del tutto formalmente analoga alla relazione di Ohm per la conduzione elettrica: 
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1 2V V
i

R


  

ove l'analogia (detta elettro-termica) é fra le seguenti grandezze: 

 T1-T2 , differenza di temperatura, con  V1-V2 , differenza di tensione; 

 q,  flusso termico, con i   flusso di corrente; 

 s/,  resistenza termica, R resistenza elettrica. 

Pertanto al rapporto: 

t

s
R


  

si dà il nome di resistenza termica di conduzione. 

1.2.5 CONDUZIONE TERMICA NEI MATERIALI IN SERIE E IN PARALLELO 

L'analogia elettro-termica può facilmente portare a trovare la relazione del flusso termico 
attraverso materiali in serie e in parallelo. Nel caso di materiali in serie (vedi Figura 6a) si ha q costante 
e quindi combinando la [3] per i due materiali si ottiene la relazione: 

1 2

1 3 1 3
1 2

1 2

1 2

" " "
t t

T T T T
q q q

s s R R

 

 
   



  [15] 

In pratica se si hanno due o più materiali in serie si sommano le resistenze termiche come nel caso del 
collegamento in serie dei conduttori elettrici. 

Per materiali in parallelo, (vedi Figura 6b), si ha che é comune la temperatura della facce 

esterne mentre i flussi termici si sdoppiano in q1 e q2 ciascuno dato dalla [3] con pari T ma con s/ 
dato da ciascuno strato. In definitiva si ha la relazione : 

    1 2 1 2 1 2
1 2 1 2 1 2 1 2

1 2 1 2

1 2

" " "
T T T T

q q q T T T T G G
s s s s

 

 

  
          

 
 [16] 

Pertanto nei casi di materiali in parallelo si sommano le ammettenze termiche date dagli inversi delle 
resistenze termiche. 

Nei casi misti di materiali in serie e in parallelo si applicano le regole sopra viste in cascata 
partendo dalla faccia più esterna a sinistra e andando verso la faccia più esterna a destra. 

Quanto sopra detto a proposito della [15] e della [16] riveste grande importanza nelle applicazioni 
alla termofisica degli edifici. Infatti se colleghiamo in serie e parallelo strati di materiali aventi 
caratteristiche trasmissive molto diverse fra loro si possono avere effetti indesiderati.  

s1 s2

 

T1 T2 T3

S

q q

T1 T2





S1

S2

s

q1

q2

q1

q2

Serie
Parallelo

a b
 

Figura 6: Modalità di trasmissione per conduzione in serie e in parallelo 
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In particolare, se un materiale è molto più conduttore degli altri allora il flusso termico si addensa 
in esso più che negli altri. Si ha un effetto di by pass del calore detto ponte termico che risulta molto 
negativo, ad esempio, nelle prestazioni termiche delle pareti degli edifici.  

Si consideri, ad esempio il caso di una parete avente una finestra inserita nella muratura. Essendo 
il vetro molto più conduttore del calore della muratura conduce meglio il calore e funge da by pass per la 
parete.  

Poiché la temperatura nelle zone di contatto fra materiali a diversa conducibilità è poco variabile 
(per la condizione del 4° tipo) ne consegue che la parete in vicinanza del vetro si porta ad una 
temperatura più bassa di quella in zone maggiormente lontane.  

E‟ facile, pertanto, che si raggiungano valori di temperatura inferiore alla temperatura di rugiada e 
quindi che si formi condensa superficiale interna che produce ammuffimento e decomposizione dei 
materiali componenti.  

Lo stesso fenomeno si ha a contatto fra la muratura (ancora di più se isolata) e gli elementi 
strutturali in calcestruzzo (notevolmente più conduttore della muratura) e quindi se non si provvede ad 
isolare la zona di contatto si rischia di avere condensa di vapore e quindi danni alle pareti stesse. 

1.2.6 PARETE PIANA CON SORGENTE DI CALORE INTERNA 

L‟equazione generale della conduzione [6] fornisce, con riferimento alla geometria di Figura 7, 
l‟equazione differenziale: 

2

2

'''
0

d T q

dx 
    [17] 

con le seguenti condizioni al contorno: 

    per x=LpT T  

e ancora: 

q=0     per x=0  

Risolvendo la [17] si ottiene l‟integrale generale: 

2

1 2

'''

2

q
T x C x C


      [18] 

Applicando le sopra indicate condizioni al contorno si ottiene la nuova distribuzione di 
temperatura nello strato piano: 

 2 2'''

2
p

q
T T L x


    

Tp

Tp

To

q'''

Y

X

L

L

0

 

Figura 7:  Strato piano monodimensionale con sorgente interna 
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Come si può osservare (e come indicato in Figura 7) la distribuzione di temperatura è ora 
parabolica e non più lineare, come la [11] indicava nel caso di assenza di sorgente interna. 

Il caso qui studiato si può presentare, ad esempio, studiando la distribuzione di temperatura in un 
getto di cemento durante la reazione esotermica di presa, oppure nella generazione di calore per effetto 
Foucault nelle lamelle di un trasformatore o di una macchina elettrica e nella produzione di calore per 
effetto Joule nei conduttori. 

In genere si può affermare che la sorgente interna di calore porta ad avere distribuzioni di 
temperatura di grado superiore di uno rispetto ai casi senza sorgenti interne. 

1.2.7 CONDUZIONE STAZIONARI BIDIMENSIONALE 

Si vuole qui dare un breve cenno alla risoluzione della [6] nel caso di regime stazionario, senza 
sorgenti di calore interne e per in caso bidimensionale semplice: una lastra piana rettangolare aventi 
dimensioni a e b e con temperatura esterna pari a T1 su tre lati e T2 sul quarto lato, come indicato in 
Figura 8. La [6] fornisce la seguente equazione differenziale: 

2 2

2 2
0

T T

x y

 
 

 
 [19] 

Per integrare la [19] occorre ipotizzare una condizione di omogeneità della funzione T(x,y) 
cercata, cioè si suppone che sia possibile scrivere: 

( , ) ( ) ( )T x y X x Y y    [20] 

Sostituendo nella [19] si ottiene l‟equazione differenziale: 

2 2

2 2

1 1d X d Y

X dx Y dy
    [21] 

Poiché ciascuno dei due membri è funzione di una sola variabile deve necessariamente essere una 

costante il valore comune. Indicato con -2 tale costante si ha, dalla [21]: 

2
2

2

2
2

2

0

0

d X
X

dx

d Y
Y

dy





 

 

  [22] 

Gli integrali generali di ciascuna delle due equazioni differenziali sono i seguenti: 

sin cosX A x B x

Y Cshn y Dchs x

 

 

 

 
 

y

x

T2

T1 T1

T1

a

b

 

Figura 8: Strato piano bidimensionale 
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Pertanto per la [20] si può scrivere: 

  ( , ) sin cosT x y A x B x Cshn y Dchs y        [23] 

Le quattro costanti di integrazione (2 per x e 2 per y) si determinano con le condizioni: 

1

1

1

2

       per   0

       per   a

       per   y 0

       per   y b

T T x

T T x

T T

T T

 

 

 

 

 

Risulta più agevole risolvere ponendo 1T T   e pertanto la [23] diviene: 

   ( , ) sin cosx y A x B x Cshn y Dchs y          [24] 

e le condizioni al contorno: 

 2 1

0            per   0

0            per   a

0            per   y 0

-T    per   y b

x

x

T









 

 

 

 

 

La prima e la terza condizione comportano B=0 e D=0. La seconda condizione fornisce: 

0 sinAC a shn y    

ovvero, assumendo 0shn y  : 

0 sin a  

per la legge dell‟annullamento del prodotto. Questa equazioni ammette soluzioni per: 

     con  0,1,2,3,........
n

n
a


     

Sostituendo in [24] si ottiene: 

 
1

sin
n

n

n x n y
AC shn

a a

 






   
    

   
   [25] 

ove si è escluso il caso n=0 perché non fornisce contributo. Le nuove costanti (AC)n si ricavano 
con la quarta condizione al contorno, cioè: 

 0 2 1

1

sin
n

n

n x n b
T T AC shn

a a

 






   
      

   
  [26] 

Se ora si confrontano i termini di questa equazione con quello dello sviluppo in serie di Fourier di 

0 2 1T T    tra x ed a si ottiene: 

2 1 ( ) 'sinn

n x
T T f x C

a

 
    

 
  

e pertanto la [26] diviene, dopo alcuni passaggi: 

 
 

2 1

1

1 1
2 sin

n

n

n y
shn

n x a
T T

n bn a
shn

a












 
         
  
 
 

  

In Figura 8 si ha anche la rappresentazione grafica delle isoterme e delle linee di flusso. 
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Come si vede il problema diviene molto complesso già per un caso di geometria semplice 
(bidimensionale) e regolare. Diventa esplicitamente irrisolvibile per i casi più comuni della realtà e 
pertanto occorre utilizzare metodi di calcolo non esatti. 

1.2.8 CONDUZIONE IN REGIME VARIABILE 

La risoluzione della [6] nel caso di regime variabile porta ad avere equazioni differenziali in 
coordinate spazio-temporali di complessa risoluzione. Data la limitazione di tempo del presente Corso 
si ritiene di non approfondire ulteriormente gli sviluppi analitici per i quali si rimanda ai testi specialistici 
di Trasmissione del Calore.  

Si vuole qui sottolineare l‟importanza che il transitorio termico (dato proprio dal regime variabile) 
ha in vari campi di applicazione fra i quali il comportamento termofisico dell‟edificio. 

Spesso, infatti, si supporranno, per semplicità di calcolo, condizioni stazionarie (più facili da 
studiare) ma nella realtà queste non si verificano mai.  

Si pensi, ad esempio, alle variazioni climatiche esterne (che sono le condizioni forzanti per 
l‟edificio) che risultano variabili durante il giorno (per effetto del cammino solare apparente e delle 
condizioni climatiche esterne) e durante i vari mesi dell‟anno. Si desidera qui presentare alcuni casi 
semplici di transitorio termico che, però, risultano molto interessanti nelle applicazioni pratiche. 

1.2.9 TRANSITORIO DI RISCALDAMENTO E RAFFREDDAMENTO DI UN CORPO 
A RESISTENZA TERMICA TRASCURABILE. 

Questo argomento, pur se semplificativo di alcuni aspetti termotecnici, è molto importante 
perché ci consente di fare alcune considerazioni utili sul piano pratico dei transitori dei corpi. 

Supponiamo per il momento di avere il corpo a resistenza termica interna trascurabile6 a temperatura 
iniziale Ti e che questo sia immerso in un fluido avente temperatura costante (ambiente di grande 
capacità termica) Ta. Se un corpo ha resistenza termica interna trascurabile (quindi è un ottimo 

conduttore di calore, ossia ha  elevato, come, ad esempio nei metalli) allora la temperatura interna del 
corpo varia molto poco e si può assumere che essa si mantenga uniforme (la medesima T in qualunque 
punto) in tutto il corpo stesso.  

Quest‟ipotesi facilita molto i calcoli perché nella [6] non vi è più il contributo della variazione 
spaziale ma resta solo quello temporale che può essere determinato facilmente con il seguente 
ragionamento. Il corpo si raffredda se T0>Ta e possiamo scrivere la semplice equazione di bilancio 
energetico: 

i uQ Q Accumulo   

che in forma analitica diviene: 

0 ( )a

dT
hA T T mc

d
    

Indicando con aT T   la precedente equazione diviene: 

d
hA mc

d





    [27] 

che è una semplice equazione differenziale a variabili separabili e a coefficienti che possiamo 
ritenere costanti. Integrando si ha: 

0i

d hA
d

mc

 







    

                                                
6 Se la resistenza interna di un corpo fosse nulla allora la temperatura sarebbe uniforme. L‟ipotesi di resistenza 

trascurabile è necessaria per potere assegnare un solo valore di temperatura, con poco errore, a tutto il corpo. Ciò è vero se 

la conducibilità termica è elevata e se lo spessore è piccolo (R = s/).  
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da cui si ottiene: 

 hA
mc

i e


 
 

   

Ricordando la posizione per la differenza di temperatura si ha: 

 
( )

hA
mc

a i aT T T T e
 

      [28] 

In Figura 9 si ha l‟andamento del transitorio di raffreddamento (Ti >Ta) e di riscaldamento (Ti < 
Ta). La velocità di variazione della temperatura T del corpo nel tempo è data da: 

( )( )
( )

hA
a mc

i a

d T TdT hA
T T e

d d mc



 


      [29] 

e all‟istante  =0 si ha: 

( )
( )a

i a

d T TdT hA
T T

d d mc 


      [30] 

La tangente all‟origine delle curva di raffreddamento, avente pendenza dT
d

, interseca 

l‟ordinata (T - Ta) = 0 in corrispondenza al tempo 
c

mc
hA

   detto costante di tempo. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10
10

0

t ( )

T ( )

0.80   

Figura 9: Andamento del transitorio di riscaldamento e/o di raffreddamento  

Ricordando che mc è una capacità termica e 1/hA è una resistenza termica si può dire che la costante di 

tempo è  c= RC, prodotto della resistenza termica per la capacità termica. In pratica si può studiare il 
raffreddamento di un corpo in analogia alla carica/scarica di un condensatore in un circuito RC.  

Osservando il diagramma di Figura 9 si può ancora dire che dopo un tempo pari a c si ha una 
diminuzione del 63.2% del salto iniziale e che dopo 4÷5 costanti di tempo il transitorio si è esaurito.  

Pertanto il tempo di raffreddamento e/o di riscaldamento del corpo dipende dal prodotto RC: 
una maggiore massa e quindi una maggiore capacità termica comporta un maggior tempo di 
raffreddamento o di riscaldamento, a parità di resistenza termica.  

Qualche insegnamento in più possiamo ancora avere da questo studio, seppure semplificato, di 
transitorio di raffreddamento/riscaldamento di un corpo. L‟esponente dell‟equazione di raffreddamento 
può scriversi sotto altra forma che lascia intravedere interessanti osservazioni: 

c

mc Vc V c

hA hA A h

 
      [31] 

L‟ultimo membro ci dice che la costante di tempo è tanto maggiore (per cui si hanno periodi di 

raffreddamento e di riscaldamento lunghi) quanto maggiore è, a parità del rapporto c/h, il rapporto 
V/A cioè il rapporto di forma dell‟oggetto.  
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L‟iglu esquimese ha la forma emisferica e per questo solido il rapporto V/A è il massimo 
possibile: la sfera, infatti, ha il maggior volume a parità di superficie disperdente o, se si vuole, la minor 
superficie disperdente a parità di volume.  

Pertanto la forma di quest‟abitazione è geometricamente ottimizzata per il minimo disperdimento 
energetico e quindi per un maggior transitorio di raffreddamento.  

Analoga osservazione si può fare per la forma dei forni di cottura a legna: anch‟essi hanno forma 
emisferica che consente loro di immagazzinare meglio il calore nella massa muraria e di disperderla il 
più lentamente possibile, a parità di condizioni esterne, rispetto ad altre forme geometriche. 

1.2.10 REGIME VARIABILE IN UNA LASTRA PIANA INDEFINITA 

Si consideri una lastra piana indefinita di spessore 2L, come indicato in Figura 10. Le condizioni 
di geometria indefinita in y e in z comportano la possibilità di descrivere nella sola coordinata x 
l‟equazione della conduzione: 

2

2

T T
a

x 

 


 
  [32] 

2L X

Y

Z

 

Figura 10: Lastra piana indefinita 

Ove con a si indica la diffusività termica del materiale di cui è fatta la lastra. La [32] rappresenta 

un‟equazione differenziale alle derivate parziali in x e in  per la cui soluzione ipotizziamo che si possa 
determinare una funzione a variabili separate del tipo: 

     ,T x t X x     [33] 

con X(x) funzione della sola x e  funzione solo del tempo.  

Quest‟ipotesi è valida se vale il principio di omogeneità delle condizione al contorno che sono: 

 a) =0 per 0 ≤x ≤ 2L     = H

 b  per  x=0    H

 c  per  x=2L    

Operando la sostituzione della [33] nella [32] si ottiene l‟equazione: 

2

2

d X d
a X

dx d





  

dalla quale separando le variabili si ottiene: 

2
2

2

1 1dX d

X dx a d




 
    [34] 
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ove si è posto -² nell‟ultimo membro per congruenza fisica7. La precedente equazione equivale 
alle due seguenti: 

2 0
d

a
d


 


   [35] 

e ancora: 

2
2

2
0

dX
X

dx
   [36] 

Abbiamo trasformato l‟equazione differenziale spazio -  temporale nella somma di due equazioni 
differenziali funzione una del solo tempo ed una della sola ascissa. Gli integrali generali sono: 

 
2

1

aC e        [37] 

  2 3 cosX x C sen x C x    [38] 

Le tre costanti (2 per l‟equazione nello spazio ed 1 per l‟equazione nel tempo) vanno determinate 
mediante le condizioni al contorno ed iniziali. L‟integrale generale può essere scritto, per l‟omogeneità 
della soluzione posta nella [33], nella forma: 

   
2

1 2 3, cosaT x C e C sen x C x      

che può ancora scriversi nella forma: 

   
2

, cosa

m nT x e C sen x C x      [39] 

con costanti Cm e Cn  da determinare con le condizioni al contorno ed iniziali. 

La condizione  per  x=0 e  comporta che deve essere Cn =0 per >0. 

Per la condizione  per  x=2L e scartando la soluzione banale Cm =0, deve essere  

sen L =0 e pertanto: 

2         per  n=1, 2, ..., L n    

da cui derivano gli autovalori: 

2
n

n

L


   

per ciascuno dei quali si ha un integrale particolare della [39]. Ne segue che la soluzione generale è 
data dalla somma di tutti le soluzioni particolari e pertanto deve essere: 

 

2

2

1

,
2

n
a

L

k

k

n x
T x C e sen

L


 


   
 



 
  

 
   [40] 

Per la condizione iniziale =0 per 0 ≤x ≤ 2L  e   = si ha: 

 
1

i k k

k

H C sen x




   [41] 

Se osserviamo la forma della soluzione generale [40] si può dire che essa rappresenta lo sviluppo 
in serie di Fourier della distribuzione di temperatura a primo membro. Pertanto risulta: 

2

0

1

2

L

k i

n x
C H sen dx

L L

 
  

 
   [42] 

da cui si ha: 

                                                
7 Cioè per non avere fenomeni divergenti all‟infinito. 
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 
2

1 cosi
k

H
C k

n



      [43] 

Si osservi che risulta Ck =0 per k = 2, 4, 6, …. E pertanto la soluzione generale diviene: 

 

2

2

1

4 1
,

2

n
a

Li

k

H k x
T x e sen

k L


 




   
 



 
  

 
   [44] 

con k = 1, 3, 5, …..  

Nota la distribuzione iniziale di temperatura Hi si può risolvere la precedente soluzione. Ad 
esempio se la distribuzione iniziale è di tipo generico f(x) allora la soluzione diviene: 

   
2

2

0
1

1
,

2 2

n
a L

L

k

k x k x
T x e sen f x sen dx

L L L


  


   
 



   
    

   
   

sempre con k= 1, 3, 5, …. 

Le condizioni iniziali possono esesre diverse da quelle indicate in precedenza che erano del tipo 
Dirichlet.  

Si possono avere anche condizioni di tipo Neumann o miste. In ogni caso si tratta sempre di 
seguire la procedura sopra descritta per pervenire a soluzioni generali valide sempre per geometrie 
elementari (strato piano indefinito) valide solo a scopo euristico. 

Pertanto non si procederà altre in questa trattazione limitandoci a far osservare come non appena 
ci si allontana dalle condizioni geometriche semplicissime (caso monodimensionale) si deve affrontare 
un problema molto complesso8 non sempre (o meglio, quasi mai) risolvibile analiticamente in modo 
esplicito. 

Vedremo, pertanto, nella trattazione dei metodi numerici come superare questi limiti che la 
soluzione dell‟equazione della conduzione ci pone. 

1.2.11 TRANSITORIO TERMICO IN UN MEZZO SEMINFINITO 

E‟ questo un caso molto importante per l‟analisi dei disperdimenti in strati di notevole spessore, 
come ad esempio nel suolo. Esso, infatti, può intendersi come un mezzo seminfinito, cioè ha origine 
sulla superficie terrestre e si estende in profondità in modo tale da poterlo considerare infinitamente 
profondo, come indicato in Figura 11. 

Temperatura alla superficie imposta 

La [6] diviene: 

2

2

T T
a

x 

 


 
  [45] 

Le condizioni iniziali sono: 

T(x,0)=Ti 

e sulla superficie: 

T(0,)= To 

La soluzione della [45] non è semplice a causa della doppia variabilità spazio-temporale. 
Considerato lo scopo del corso se ne trascura lo sviluppo analitico e si scrive subito la soluzione: 

                                                
8 Nei classici testi di trasmissione del calore si possono leggere interessanti capitoli dedicati allo studio di 

conduzione in regime transitorio per geometrie semplici bi e tridimensionali. I risultati di queste analisi sono sempre riportati 
in forma grafica con abachi adimensionali dalla complessa interpretazione e dal non sempre agevole utilizzo. Questa 
trattazione non apporta nulla di nuovo e/o di interessante alle conoscenze dell‟Allievo in questa fase di studio. Meglio 
spendere qualche parola in più per affrontare le moderne metodologie di analisi dei problemi termici complessi. E‟ ciò che 
verrà fatto nel prossimo capitolo per la conduzione e più avanti per la convezione e epr l‟irraggiamento. 
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2

0

2
1 1 ( )zi

o i

T T
e dz erf

T T



 



    

    [46] 

ove è 
2

x
a




   ed inoltre: 

2

0

2
( ) zerf e dz






   

la funzione errore di Gauss. 

To

Ti

T(x,r)

T emperatu ra  in iz iale







x

T

 

Figura 11: Strato seminfinito—distribuzione della temperatura istantanea 

Si definisce funzione errore complementare la funzione: 

( ) 1 ( )erfc erf    

L‟andamento della temperatura dato dalla [46] è rappresentato nella seguente Figura 12. 

1

4.67810
3

 ( )

20 

0 0.5 1 1.5 2
0

0.5

1

 

Figura 12: Andamento della temperatura in uno strato seminfinito con T imposta  

Flusso alla superficie imposto 

Se allo strato di Figura 11 si impone che sia: 

"( ,0) 0q x   

e che alla superficie sia: 
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0"(0, ) "q q   

allora l‟equazione [45] si può ancora scrivere nella forma (differenziando rispetto ad x): 

3 2

3

T T
a

x x 

 


  
  [47] 

Essendo: 

T
q

x



 


  [48] 

 si può ancora scrivere: 

2

2

q q
a

x 

 


 
  [49] 

che è formalmente analoga alla [45] e pertanto la soluzione è: 

2

0
0

" 2
1 1 ( )

"

zq
e dz erf

q






      [50] 

La distribuzione di temperatura si ottiene integrando la [48] per cui si ottiene: 

0

0 2
p i

q x
T T erfc dx

a 

  
   

 
  

che fornisce la soluzione: 

 

2

0
4 0

2

2

x

a

i

a
q

q x
T x T e x erfc

a







  

 
  
   

      
 

 [51] 

1.2.12 REGIME PERIODICO STABILIZZATO 

Un caso molto importante per le applicazioni pratiche (sia in campo industriale che civile) si ha 
quando si applica una forzante (cioè una temperatura) variabile in modo periodico ad uno strato piano 
seminfinito.  

E‟ questo il caso, ad esempio, della variazione della temperatura ambientale esterna negli edifici, 
della variazione periodica di temperatura all‟interno di un cilindro di un motore a combustione interna.  

Per studiare questo caso supporremo inizialmente che la variazione di temperatura sia di tipo 
sinusoidale e quindi ci si riferisca alla più semplice variazione periodica.  

L‟importanza di questo caso si deduce immediatamente se si pensa che una qualunque forzante 
periodica può essere scomposta in una serie di Fourier in termini di seni e/o coseni e quindi in termini 
di funzioni periodiche elementari e pertanto la soluzione generale è data dalla somma (se rimangono 
valide le ipotesi di linearità del problema) delle soluzioni parziali.  

Con riferimento alla Figura 13 si supponga di applicare alla superficie esterna dello strato 
seminfinito una variazione di temperatura periodica sinusoidale della forma: 

0(0, ) sinmT T T    

con: 

 f   pulsazione ed f la frequenza; 

 Tm la temperatura media, [°C]; 

 T0 la variazione di temperatura massima ; [°C]

Per comodità di calcolo poniamo mT T    e pertanto la precedente si può scrivere: 



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

21 

  00, sinT     







x



 c T m
T o

T(0,t )

x

 

Figura 13: Variazione periodica di temperatura in uno strato seminfinito  

L‟equazione della conduzione diviene, in regime variabile monodimensionale: 

2

2

1

x a

 



 


 
 

Se ora definiamo la temperatura coniugata: 

  00, cosT     

possiamo riferirci all‟equazione della conduzione per la soluzione coniugata: 

2

2

1

x a

 



 


 
 

Deriviamo ora la temperatura complessa data dalla combinazione lineare: 

     , , ,c x x j x        

soluzione dell‟equazione complessa: 

2

2

1c c

x a

 



 


 
 

con la condizione al contorno: 

 0, j

c oT e      

In forma euleriana la temperatura complessa si scrive nella forma: 

   , j

c x X x e     

Sostituendo questa espressione nell‟equazione differenziale complessa e tenendo conto della 
proprietà dell‟esponenziale si ottiene: 

 
2

2
0

d X
j X x

dx a


   



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

22 

con l‟ovvia condizione al contorno: 

  00X T   

Poiché al tendere ad infinito del tempo la temperatura reale e quella complessa debbono sempre 

essere finite allora si deve avere  X    . La precedente equazione differenziale è notevolmente più 

semplice di quella originaria perché è una equazione differenziale ordinaria nella sola X(x) le cui 
soluzioni dell‟equazione caratteristica sono date, per il teorema di De Moivre9 sulle potenze dei numeri 
complessi, da: 

   1 1
2

f
j j j

a a a

  
       

Pertanto l‟integrale generale dell‟equazione differenziale diviene: 

 
   1 1

1 2

f f
j x j x

a aX x Ae A e
 

  
   

La condizione della non divergenza della temperatura porta ad avere A2 =0 e quindi la soluzione 
finale diviene: 

 
 1

1

f
j x

aX x Ae


 
  

La soluzione complessa completa diviene quindi: 

 
 

1,

f
j xf

j x aa
c x Ae e




 

 
      

Ritornando alla forma trigonometrica si ha: 

  1, cos sin
f

x
a

c

f f
x Ae x j x

a a

  
   

     
          

     

 

Se vogliamo la soluzione alla forzante reale (coefficiente dell‟immaginaria nella forma complessa) 
allora dobbiamo interessarci al coefficiente dell‟immaginario anche della soluzione e pertanto si ha: 

  1, sin
f

x
a

f
x Ae x

a

 
  

  
   

 
 

che, per  la condizione limite ad ascissa x =0, fornisce: 

  00, sin
f

x
a

f
T e x

a

 
  

  
    

 
  

Si osservi che si ha anche 
2

f

a a

 
  e quindi la soluzione cercata si può anche scrivere nella 

forma seguente: 

                                                

9
 Nel caso di numero complesso z=a+ib i ha che cos sin

2 2
z z j

  
   

 
. Nel nostro caso si ha: 

 0 cos sin 1
2 2 2

j j j
a a a

       
         

   
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  2
0, sin

2

x
ax T e x

a

 
  

  
    

 
 

L‟andamento della funzione ( , )x   è riportato nella Figura 14. 

La precedente ci dice che la variazione della temperatura ad una distanza x dalla superficie ha 
sempre lo stesso periodo della variazione di temperatura imposta alla superficie ma di ampiezza 
decrescente esponenzialmente con la distanza, essendo tale ampiezza data dalla: 

2
0

x
a

xT T e


    

 0 2 a

T e a
x

0
2

 

T0

T0

x







 

Figura 14: Andamento delle oscillazioni all’interno dello strato 

Lo sfasamento dell‟onda di temperatura cambia con x secondo la relazione: 

22

2

xa

a




 

    

L‟onda termica viaggia ad una velocità che è possibile calcolare imponendo che sia: 

0 0
2a


    

dalla quale si ricava: 

0

2v a





   

Pertanto la velocità di propagazione dell‟onda termica nello strato dipende sia dalla frequenza 

(tramite ) che dalla diffusività termica del mezzo stesso (a). 

Il flusso termico specifico che attraversa la superficie esterna vale: 

0x

q
x






 
   

 
 

E tenendo conto della soluzione sopra trovata si ottiene: 
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0( ) sin
4

q T
a

 
  

 
   

 
 

Pertanto anche il flusso termico è periodico ed è sfasato di /4 rispetto alla temperatura. Se 

integriamo la precedente su un semiperiodo nel quale il flusso termico è positivo (da =-/4 a 

=3/3) si ottiene l‟energia immagazzinata dal corpo: 

3
4

4
0 0

2
sin

4

gw

Q T d T
a a






  
  



 
     

 
  

Ne segue che sebbene l‟ampiezza del flusso termico sia maggiore per elevate pulsazioni l‟energia 
termica immagazzinata nel semiperiodo è tanto maggiore quanto più piccola è la frequenza 
dell‟oscillazione di temperatura della forzante esterna.  

Le applicazioni delle relazioni qui esposte sono numerose nella Termofisica degli edifici.  

Le pareti esterne, infatti, si possono considerare strati di spessore tale da considerare valide le 
ipotesi di spessore seminfinito.  

Un‟onda termica che possiamo assimilare alla variazione periodica sinusoidale (che si ha tutti i 
giorni fra il dì e la notte) porta alla trasmissione all‟interno degli edifici con velocità data dalla 

0

2v a





   e con sfasamento dato dalla 
2

2

x

a



  .  

Anche l‟ampiezza dell‟onda subisce l‟attenuazione e pertanto si conclude che pareti di grande 
spessore e con materiali non conduttori attenuano e sfasano molto (come avviene nelle antiche 
abitazioni con mura spesse o nelle chiese con mura spesso oltre gli 80 cm). 

Viceversa una parete avente poca massa e buon conduttrice (come sono le pareti in calcestruzzo 
o le pareti di materiale leggero oggi molto utilizzate nell‟edilizia corrente) porta ad attenuazioni e 
sfasamenti modesti: la variazioni termiche esterne si trasmettono in breve tempo (entro 0,5÷2 ore) 
all‟interno degli ambienti, diversamente dalle pareti spesse e pesanti che ritardano di alcune ore la 
trasmissione dell‟onda termica.  
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2 METODI AVANZATI PER LA CONDUZIONE TERMICA 

Lo studio della conduzione termica e in particolare la risoluzione dell‟equazione generale della 
conduzione nei casi concreti richiede notevoli sviluppi matematici che non sempre si concludono 
positivamente. Già con forme reali diverse da quelle geometricamente elementari si hanno sviluppi 
matematici notevoli con risultati espressi da serie di funzioni che portano inevitabilmente ad errori di 
troncamento.  

Allo stesso modo i fenomeni transitori non risultano agevoli da trattare giacchè alla complessità 
derivante dalla forma geometrica si aggiunge anche la condizione transitoria (presenza del 2° membro 
nell’equazione della conduzione) che porta ad avere una variabile di integrazione in più. 

Si vedranno in questo capitolo alcuni metodi che definiamo avanzati perché solitamente 
richiedono strumenti matematici tipici dei corsi superiori di Analisi Matematica.  

Tali metodi, tuttavia, sono ancora applicati a casi semplici e concreti per non appesantire 
eccessivamente la trattazione. 

Va tuttavia osservato che proprio le osservazioni sopra riportate sulla complessità della soluzione 
per i casi reali ha portato oggi a sviluppare metodi di risoluzione alternativi (vedi i metodi numeri per la 
conduzione) che utilizzano algoritmi semplificati, ma con errore controllato, di possibile utilizzo in 
programmi di calcolo. Il grande sviluppo della trasmissione di calore degli ultimi decenni è dovuto 
proprio a questi algoritmi. 

2.1 METODO INTEGRALE 

Questo metodo, la cui validità è generale e si applica anche per la convezione termica, consente di 
risolvere l‟equazione generale della conduzione sia per casi lineari che non lineari.  

La soluzione che si ottiene è di solito approssimata ma è importante precisare che l‟equazione 
integrale alla base di questo metodo è di per sé esatta mentre la tecnica risolutiva porta ad avere 
approssimazioni. 

Questo metodo è stato originariamente utilizzato da von Karman e da Pohlhausen per risolvere i 
problemi della convezione termica (integrazione delle equazioni della conservazione della quantità di 
moto e dell‟energia) ma si applica molto bene anche a tutti i problemi che obbediscono ad equazioni di 
tipo diffusivo come, ad esempio, nella conduzione non stazionaria nei solidi. 

Landahl ha usato questo metodo nel 1953 anche in Biofisica ed in seguito vari ricercatori lo 
hanno utilizzato per numerosi problemi pratici, specialmente di tipo non lineari, in transitorio termico. 

T
p

 =0 ,    T= T
1

x

 

Figura 15: Strato piano seminfinito 

Si consideri lo strato piano seminfinito di Figura 15 e si supponga che inizialmente sia a 
temperatura uniforme Ti.  
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All‟istante =0 si vari la temperatura della faccia esterna (x=0) con il valore Tp e questo valore sia 

mantenuto costante anche per >0. Assumendo proprietà termofisiche costanti, l‟equazione della 
conduzione in regime variabile monodimensionale (la sola dimensione considerata è la x) diviene: 

2

2

1T T

x a 

 


 
 

con le condizioni limiti: 

 T(x,0)=Tp 

  lim ,x iT x T   

con a diffusività termica della lastra. Definiamo ora una quantità () detta profondità di penetrazione 
o anche strato termico in modo tale che siano soddisfatte le seguenti condizioni: 

 
 ,

,        e          0i

T
T T

x

 
 


 


 

In pratica per valori di x oltre () il solido è ancora alla temperatura iniziale Ti e pertanto non si 

ha flusso oltre questa profondità. Integriamo l‟equazione della conduzione da 0 a () ottenendo: 

  
2

20 0

1T T
dx

x a

   



 


    

Il termine a primo membro diviene: 

 
2

20
0 0

0

x x x

Flusso

T T T T
dx

x x x x

 

  



   
   

   


 

Il termine a secondo membro può essere riscritto applicando la regola di Leibnitz: 

   
 

 
        ' ' , , ' , '

y

y
y

y f x y f y y y f y y y



              

che per (y) e (y) costanti diviene: 

   ' ' ,yy f x y



    

Pertanto si ha: 

 
 

 
 

0 0
, ,

iT

T d d
dx T x dx T

d d

    
  

  



 

  
 

Per quanto detto sulla definizione dello strato () si ha anche: 

 
  

0 0
, i

T d d
dx T x dx T

d d

    


  


 

   

L‟equazione della conduzione integrata diviene, allora, per effetto degli sviluppi sopra esposti: 

 
 

0
0

1
, i

x

T d d
T x dx T

x a d d

  


 

  
     

  

che può ancora essere scritta nella forma: 

 
 

0
0

, i

x

d T
T x T dx a

d

 


  


       
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Questa è detta equazione di bilancio energetico in forma integrale e rappresenta un modo diverso di 
rappresentare il fenomeno della conduzione: non più in forma differenziale ma in forma integrale 

rispetto al volume di controllo fra la superficie iniziale e lo strato di penetrazione a profondità (). 

Si osservi che questo risultato poteva immediatamente essere dedotto scrivendo il bilancio 

energetico nello strato fra x=0 ed x=() e cioè: 

 
0

i

x x

dT dT d
c T T

dx dx d

  
 

 
     

 
 

e quindi integrando fra 0 e () si ottiene la precedente equazione integrale. Si osservi che questa 
equazione è del tutto esatta e rappresenta un diverso modo di scrivere l‟equazione generale della 
conduzione. In questo caso, infatti, il bilancio non è più effettuato per un elemento di volume ma per 
un volume finito (detto volume di controllo) compreso fra la faccia esterna (x=0) e lo strato di penetrazione (a 

profondità x = ()). La soluzione di questa equazione, tuttavia, non è agevole poiché, come si può 

osservare facilmente, si hanno due incognite contemporaneamente () e T(x,). E‟ proprio nel 
tentativo di voler risolvere questa indeterminazione che si introducono errori di calcolo che sono però 
di piccola entità. 

In definitiva assumiamo di conoscere la distribuzione di temperatura T(x,) e risolviamo 

l‟equazione integrale per trovare (). Poiché il profilo di temperatura non è a priori noto siamo 
costretti ad immaginalo sulla base di osservazioni sperimentali o per analogia con casi similari. E‟ questa 
la limitazione del metodo. Nel caso in esame si supponga di avere una distribuzione polinomiale della 
temperatura, cioè supponiamo che sia una distribuzione quadratica del tipo: 

  2,T x a bx cx     

I coefficienti polinomiali sono calcolabili imponendo le condizioni al contorno già indicate. 

Si ottengono allora i seguenti valori: 

2
   ,       2     ,     c=-

i p i p

p

T T T T
a T b

 

 
   

Ne segue che il profilo di temperatura è dato dalla relazione: 

  2
,

1 2
i

p i

T x T x x

T T



 

    
     

    
 

Il profilo reale di temperatura non è parabilico ma si discosta poco da questo andamento, come si 
vedrà fra poco. Ora possiamo risolvere l‟equazione integrale: 

 
 

0
0

, i

x

d T
T x T dx a

d

 


  


       

essendo T(x,) nota. Sostituendo ed effettuando i calcoli si ottiene: 

6
d

a
d





  

poiché (0)=0, la precedente equazione fornisce: 

12a   

Ora anche la distribuzione di temperatura è univocamente determinata. 

Il flusso alla superficie (x=0) è dato dalla relazione: 

 
0

1
"

3

p i

p

x

T TT
q

x a






 
   

 
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La soluzione esatta porta al risultato: 

 ,

2

i

p i

T x T x
erfc

T T a





  
  

  
 

e il flusso alla superficie iniziale è dato da: 

 
 1

"
p i

p

T T
q

a




 


  

Un confronto con la soluzione approssimata ottenuta con il metodo integrale porta ad valutare 
l‟errore finale che risulta pari al 2.3% e quindi del tutto accettabile nelle applicazioni pratiche. La bontà 
del metodo integrale deriva dal fatto che esso si propone come un algoritmo generale per la risoluzione 
di problemi complessi anche non lineari.  

Qualora si fosse ipotizzato un profilo di temperatura cubico, iterando lo stesso metodo visto in 
precedenza, si sarebbe ottenuta una soluzione approssimata con un errore del 6% rispetto alla soluzione 
esatta. Va detto che non sempre si dispone di una soluzione esatta con la quale paragonarsi ed è per 
questo motivo che il metodo integrale risulta valido.  

Esso, infatti, ci permette di ottenere risultati validi (cioè con approssimazione accettabile) anche 
nei casi difficili dove la soluzione teorica (esatta) non è possibile trovare. Questo metodo consente di 
ottenere soluzioni anche per problemi non lineari quali, ad esempio, il caso di conducibilità termica 
dello strato variabile o condizioni al contorno non lineari.  

Si rimanda alla letteratura tecnica specializzata per lo studio di questi casi. 

2.2 METODO DELLA TRASFORMATA DI LAPLACE 

Un metodo efficace per la soluzione di problemi in transitorio termico monodimensionale è 
quella dell‟utilizzo della Trasformata di Laplace cioè di una trasformazione di variabili da reali a complesse 
ma con la possibilità di risolvere in modo apparentemente più semplice i problemi monodimansionali. 

2.2.1 DEFINIZIONE DELLA TRASFORMATA DI LAPLACE 

Brevemente si ricorda che questa trasformata è definita nel campo dei numeri complessi dalla 
relazione: 

      
0

£ ptF p f e f t d 


    

ove F(p) è la trasformata di Laplace e p è una variabile complessa. La trasformata esiste se l‟integrale 
sopra indicato converge per alcuni valori di p. In particolare debbono essere soddisfatte le seguenti 
condizioni: 

 La funzione f() è continua o continua a tratti in qualunque intervallo 0<<1 con 0>0; 

  lim 0nt f    per n tale che sia 0 < n < 1; 

 la funzione f() è di ordine esponenziale  per t  . 

Ad esempio, si può facilmente calcolare la trasformata di Laplace per casi semplici quale la 

funzione lineare  (con  >0). Infatti si ha: 

  20

1
£ pe d

p

  


   

per p>0. Allo stesso modo si ha per f()=1: 

 
0

1
£ 1 pte d

p



   

per p>0. Per f()=e


 si ha: 
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 
0

1
£ pe e e d

p

   



 

  

per p>. Allo stesso modo si procede per f()=sin() che fornisce £(sin)=/(p²+²) con 

p>0. Ed ancora £(cos)= p/(p²+²).  

 

Tabella 2: Tabelle delle trasformate di Laplace – Parte 1° 

Sulla base della linearità delle definizioni sopra indicate si ha: 

       1 1 2 2 1 1 2 2£ £ £C f C f C f C f                 

Nei manuali specializzati (vedasi anche il corso di Teoria dei Sistemi) si hanno tabelle che 
forniscono le trasformate di Laplace per un grande numero di funzioni.  

Si definisce anche la trasformata di Laplace delle derivate, cioè: 
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   £ 0
df

pF p f
d

 
  

 
 

per  > 1. Analogamente si ha per la trasformata di Laplace di un integrale: 

   
0

1
£ f F p

p



  
    

 

Tabella 3: Tabelle delle trasformate di Laplace – Parte 2° 

Oltre alla trasformata diretta di Laplace si definisce anche la trasformata inversa, cioè: 

   1£f F p      

e quindi deve essere: 
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   
0

pte f t d F p


   

Nei manuali si hanno tabelle già predisposte che consentono di trovare sia le trasformate dirette 
che le inverse. 

Per trovare la trasformata inversa di una funzione non presente in tabella si cerca di scomporla in 
somma di funzioni semplici delle quali è facile conoscere le trasformate di Laplace. Un metodo molto 
seguito (vedi Teoria dei Sistemi) è la scomposizione mediante il polinomio di Heaviside. Si dimostra, infatti, 
che vale la relazione: 

 

 
.....

N p A B

D p s a s b
  

 
 

ove A, B, … sono determinati mediante le relazioni: 

  

 
s a

N p s a
A

D p



  

  

 
s b

N p s b
B

D p



  

e così via per gli altri fattori. Noto lo sviluppo di Heaviside si calcolano le trasformate inverse 
poiché ogni funzione fratta è facilmente invertibile mediante le tabelle. 

 

Tabella 4: Tabelle delle trasformate di Laplace – Parte 3° 
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2.2.2 APPLICAZIONE AL CASO DELLA PARETE PIANA 

Si consideri una parete piana di spessore 2L, avente proprietà termofisiche costanti, alla 

temperatura iniziale Ti . All‟istante =0 si cambia la temperatura delle facce esterne portandola al valore 
Tw e tale valore sia mantenuto costante per tutto il tempo di evoluzione del transitorio. 

Posta l‟origine nella mezzeria della parete, l‟equazione della conduzione diviene: 

2

2

1T T

x a 

 


 
 

con le condizioni iniziali: 

 T(x,0) = Ti,   

  0,
0

T

x





 

 T(L,) = TW 

Applichiamo il metodo delle trasformate di Laplace trasformando ambo i membri della 
precedente equazione: 

2

2

1
£ £

T T

x a 

   
   

   
 

Per le proprietà della trasformata di Laplace sopra citate si ha: 

2 2

2
£

T d T

x dx

 
 

 
 

avendo indicato con T  la trasformata di Laplace di T: 

     
0

, £ , ,pT T x p T x e T x dt 


       

e ricordando che questa dipende solo da  e non da x. Inoltre: 

 £ , i

T
pT x p T



 
  

 
 

Pertanto l‟equazione della conduzione trasformata diviene: 

2

iTd T p
T

dx a a
    

Le condizioni al contorno sono ora date da: 

 
 0,

0
dT p

dx
  

  , wT
T L p

p
  

L‟avere trasformata l‟equazione della conduzione nel piano (x,p) ha portato all‟eliminazione del 
tempo e quindi ad avere una equazione differenziale nella sola variabile x. Integrando si ottiene: 

     1 2, cosh sinhT x p C mx C mx   

ove si è posto m²=p/a e C1 e C2 sono le costanti di integrazione che si determinano con le 
condizioni al contorno sopra indicate. In particolare per x=0 si ha C2=0  e per x =L si ha: 

 
1

cosh

i wT T
C

p mL


   
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pertanto si ha: 

 
 

 

cosh
,

cosh

i
i w

mxT
T x p T T

p mL

 
    

 
 

Per trovare la funzione temporale occorre ora invertire la trasformata di Laplace sopra ottenuta. 
Dal confronto con la Tabella 4 si ottiene: 

   
     

2 2

2

2 1

4

1

1 2 14
, 1 cos

2 1 2

n n a

L
i i w

n

n x
T x T T T e

n L


 









    
      

    
  

che corrisponde alla soluzione trovata con i metodi tradizionali. 

2.2.3 APPLICAZIONE ALLO STRATO SEMINFINITO 

Il metodo delle trasformate di Laplace si applica vantaggiosamente anche per lo studio dello 

strato seminfinito già visto in precedenza. L‟equazione della conduzione, ponendo =T(x,)-Ti,  è: 

2

2

1

x a

 



 


 
 

con le condizioni al contorno: 

 (x,0) =0

 (0,)= Tw – Ti = w

  lim , 0x x   

La trasformazione dell‟equazione differenziale della conduzione porta ad avere: 

2
0

d p

dx a


   

con le condizioni limiti: 

  , wx p
p


   

  lim , 0x x p   

La soluzione dell‟equazione trasformata porta all‟integrale generale: 

  1 2, mx mxx p C e C e    

con C1 e C2 costanti di integrazione e m² =p/a. Le condizioni al contorno portano ad avere C2=0 
ed inoltre è: 

1
wC
p


  

Pertanto si ha: 

  /, x p amx

w

x p e e

p p







   

La trasformazione inversa, mediante la Tabella 3, fornisce il risultato: 

   , ,

2

i

w w i

x T x T x
erfc

T T a

  

 

  
   

  
 

che coincide con la soluzione esatta di Blasius. 
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2.3 USO DELLE FUNZIONI ORTOGONALI DI STURM - LIOUVILLE 

Si dicono ortogonali le funzioni che rispettano la regola: 

      0   per     m n
b

m n
a

x x w x dx     

con w(x) detta funzione peso. Una tipica funzione ortogonale è la funzione trigonometrica sin(x) per 
la quale risulta, ponendo la funzione peso pari ad 1: 

0
sin sin 0   per   n m

L m n
x x dx

L L

    
    

   
  

si hanno numerose altre funzioni che godono della proprietà dell‟ortogonalità fra le quali anche la 
funzione cos(x) e alcune finzioni di Bessel.  

Queste funzioni sono di grande importanza per la soluzione di una categoria di equazioni 
differenziali dette di Sturm – Liouville. Esse sono definite dalla relazione: 

      0
d dy

p x q x w x y
dx dx


 

     
 

 

con le condizioni al contorno del tipo: 

 
  2 2

1 1 1 10 0
dy a

y a con
dx

        

 
  2 2

2 2 2 20 0
dy b

y b con
dx

        

Le soluzioni delle equazioni di Sturm – Liouville si dimostra che appartengono alla famiglia di 
funzioni ortogonali come sopra definite. Le serie di Fourier e le trasformate finite di Fourier rientrano 
in queste classi di funzioni ortogonali. Così, ad esempio, l‟equazione differenziale, di tipo Sturm – 
Liouville:  

2
2

2
0

d y
y

dx
   

con condizioni al contorno: 

 y(0) =0  

 y(L) =0 

è soddisfatta dalla funzione: 

 
1

sinn

n

n
f x A x

L





  

ove si ha: 

 
0

2
sin

L

n

n
A f x xdx

L L


   

Analogamente alle serie di Fourier basate sulle funzioni seno e coseno si hanno le serie di Hankel 

basate sulle funzioni ortogonali di Bessel J(r) . Queste funzioni sono importanti per la risoluzione di 
problemi in coordinate cilindriche. Infatti le equazioni generali di bilancio portano ad avere equazioni 
differenziali della forma: 

 
2

2 2 2 2 0
d R dR

r r r R
dr dr

      

con le solite condizioni al contorno. La soluzione generale di queste equazioni differenziali è del 
tipo: 
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     R r AJ r BY r     

con J(r) e Y(r) funzioni di Bessel di ordine .  

La serie di Hankel utilizza le funzioni ortogonali di Bessel ed è della forma: 

   n mf r A J r   

ove i coefficienti An sono dati dalle relazioni (del tutto analoghe a quelle della serie di Fourier): 

   

 

0

0

0

2

0

r

n

n r

n

f r J r rdr
A

J r rdr












 

Con la stessa tecnica si possono utilizzare le Trasformate finite di Fourier (dirette ed inverse) per la 
risoluzione delle equazioni differenziali del tipo Sturm – Liouville.  
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Figura 16: Grafico della funzione J0(x) 
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Figura 17: Grafico della funzione J1(x) 
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Figura 18: Grafico della funzione J0(√x) 

Nella Figura 16 si ha l‟andamento della funzione J0(x) mentre in Figura 19 si ha l‟andamento della 
funzione Y0(x). Si osservi come questo tipo di funzioni (J0(x) e Y0(x)) siano ad andamento oscillante e 
smorzato. 

In Figura 17 si ha l‟andamento della funzione J1(x) che appare ancora di tipo oscillatorio 
smorzato, come la J0(x). In Figura 18 si ha l‟andamento di J0(√x). 

Analogamente in Figura 20 si ha l‟andamento di Y1(x) che appare ancora oscillatorio e smorzato 
come la Y0(x). 
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Figura 19: Grafico della funzione Y0(x) 
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Figura 20: Grafico della funzione Y1(x) 
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Le funzioni di tipo I0(x) ed I1(x) e le funzioni K0(x) e K1(x) sono con andamento smorzato, come 
riportato nella Figura 21 e nella Figura 22. Queste funzioni sono le analoghe delle funzioni esponenziali 
smorzate (del tipo e-mx). 

I0 x( )

I1 x( )

x  

Figura 21: Grafico della funzione I0(x) e I0(x) 

K0 x( )

K1 x( )

x  

Figura 22: Grafico della funzione K0(x) e K1(x) 

Si rimanda ai testi specializzati per  ulteriori approfondimenti sull‟argomento. 
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3 METODI NUMERICI PER LA CONDUZIONE 

Si è potuto osservare nei capitoli precedenti come la soluzione dell‟equazione generale della 
conduzione sia molto difficile e complessa non appena si affrontano geometrie che non siano quelle 
elementari esaminate. Anzi si può senz‟altro affermare che la soluzione analitica esatta per i casi reali 
non è ottenibile sia per la complessità dell‟equazione del calore sia per la complessità della geometria da 
affrontare.  

Oggi esistono metodologie risolutive dei problemi di conduzione che possono essere utilizzate 
nell'ambito di codici di calcolo elettronici anche di larga diffusione. Fra i metodi utilizzati si hanno 
quelli alle differenze finite e agli elementi finiti. Considerate le finalità del presente corso si farà cenno 
brevemente ai metodi semplificati alle differenze finite rinviando il lettore ai testi specializzati indicati in 
bibliografia. 

3.1 METODI ALLE DIFFERENZE FINITE 

Alla base di questi metodi vi è la sostituzione approssimata, nelle equazioni differenziali che 
derivano dall‟equazione generale della conduzione, delle differenze infinitesime con differenze finite. 
Questo porta ad ottenere, in genere, un sistema di equazioni algebriche che può essere affrontato e 
risolto con i metodi classici dell‟Analisi Matematica.  

Naturalmente questa sostituzione non è indolore e comporta sempre l‟introduzione di un errore 
nella precisione del calcolo. I risultati ottenibili con queste metodologie sono oggi molto affidabili e con 
un errore che può (per quanto compatibile con la precisione del computer utilizzato) essere controllato mediante 
un‟opportuna scelta dei parametri di calcolo e dell‟algoritmo di risoluzione. Per la formulazione delle 
differenze finite si può utilizzare lo sviluppo in serie di Taylor come qui riportato10: 

   
2 2 3 3

2 3
..........

2 3!
i i

i i i

dT h d T h d T
T x h T x h

dx dx dx

    
         

     
[52] 

Si ha anche 

   
2 2 3 3

2 3
..........

2 3!
i i

i i i

dT h d T h d T
T x h T x h

dx dx dx

    
         

     
[53] 

Dalla [52], troncando al secondo termine, si ha: 

 
 

( )
0

i i

i

T x h T xdT
h

dx h

  
  

 
   [54] 

e dalla seconda, con analogo procedimento: 

 
 

( )
0

i i

i

T x T x hdT
h

dx h

  
  

 
   [55] 

Le due ultime relazioni rappresentano delle eguaglianze fra i primi membri (derivate della temperatura 
calcolate nel punto i) e il secondo membro nel quale compaiono rapporti di differenze finite e un termine, 
detto errore, del tipo 0(h) cioè del primo ordine.  

                                                
10 Vale la pena osservare che la [52] è una identità e quindi il primo membro è eguale al secondo membro e viceversa. 

Ma è facile convincersi che questa identità è solo teorica ed è normalmente accettata dal nostro cervello per la sua già citata 
grande capacità di astrazione matematica. E‟ praticamente impossibile, infatti, sommare infiniti numeri e quindi il secondo membro 
non è di fatto risolvibile. In genere un problema che pone una simile indeterminazione genera soluzioni non esatte oggi definite 
caotiche. Alla luce di quanto appena detto appare evidente che la risoluzione numerica che qui si sta affrontando non è una 
mera semplificazione calcolistica bensì una rivoluzione di pensiero profonda: un problema correttamente posto in modo ideale ma non risolvibile 
nella realtà trova una modalità risolutiva che appare non formalmente corretta ma che risulta capace di produrre una soluzione reale. In 
definitiva l‟approssimazione che qui si introduce non è una ignoranza metodologica ma una necessità risolutiva conseguente 
all‟indeterminazione effettiva che lo sviluppo di Taylor pone. 
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Se conoscessimo l‟errore11 0(h) potremmo utilizzare le differenze finite a secondo membro senza 
commettere errori. Purtroppo 0(h) dipende dagli sviluppi degli altri termini (infiniti) delle serie che sono 
stati trascurati e non possono essere calcolati senza effettuare tutti i calcoli (infiniti) necessari.  

Pertanto se trascuriamo 0(h) si può solo scrivere: 

 ( )i i

i

T x h T xdT

dx h

  
 

 
  [56] 

e ancora: 

  ( )i i

i

T x T x hdT

dx h

  
 

 
  [57] 

Si hanno segni circa-eguale e non più eguale e pertanto se sostituiamo i primi membri con i secondi 
membri (differenze finite) commettiamo certamente un errore che è dell‟ordine 0(h). Le due ultime 
relazioni si possono scrivere, utilizzando una simbologia tipica dell‟analisi numerica, nella forma più 
comoda e compatta: 

1i i

i

T TdT

dx x

  
 

 
  [58] 

e ancora: 

1i i

i

T TdT

dx x

 
 

 
  [59] 

Sono queste due forme possibili di sviluppo alle differenze finite dette, rispettivamente, la [58] 
differenze finite in avanti (o anche forward) e la [59] differenze finite all’indietro (o anche backward). E‟ possibile 
anche ottenere una terza forma facendo la differenza delle [52] e [53] sempre arrestate al secondo 
termine; si ottiene: 

   
2

i i

i

T x h T x hdT

dx h

   
 

 
 [60] 

che viene scritta in forma simbolica nella forma: 

1

2

i i i

i

T TdT

dx x

  
 

 
   [61] 

detta differenze finite centrali. Allo stesso modo utilizzando le [52] e [53] con sviluppo arrestato al 
terzo termine si, facendo la somma membro a membro: 

     
 

2
2

2 2

2
0

i i i

i

T x h T x h T xd T
h

dx h

    
  

 
 [62] 

Ne consegue che, a meno di errori proporzionali a 0(h2) si può scrivere: 

     2

2 2

2i i i

i

T x h T x h T xd T

dx h

    
 

 
  [63] 

In forma simbolica si può ancora scrivere: 

2

1 1

2 2

2i i i

i

T T Td T

dx x

 
   

 
 

  [64] 

                                                
11 In realtà non potremmo mai conoscerlo con precisione perché, come detto in precedenza, dovremmo sommare 

infiniti termini! 
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che esprime, a meno dell‟errore 0(h2), la derivata seconda, calcolata nel punto i, in funzione delle 
differenze finite. Abbiamo adesso predisposto l‟apparato matematico necessario a trasformare 
l‟equazione della conduzione: 

2 ''' 1q T
T

a 


  


  [65] 

in forma algebrica alle differenze finite. 

3.2 DIFFERENZE FINITE NELLA CONDUZIONE STAZIONARIA 

Si abbia un corpo nel quale si desideri studiare la distribuzione della temperatura, ossia conoscere 

come varia T(x,y,z,). Si suddivida il corpo (che per semplicità qui raffiguriamo nel piano (x,y)) con un reticolo 

avente passi x e y nelle due direzioni. Con riferimento al reticolo alla Figura 23 e partendo dal nodo 
centrale di figura (indicato con i pedici i,j) si può riscrivere la [6] nella forma esatta, supponendo di essere in 
regime stazionario e in assenza di sorgenti di calore interne: 

2 2

2 2
0

T T

x y

 
 

 
   [66] 

 





 

Figura 23: Reticolo piano per il metodo alle differenze finite 

Per trasformare la [66] in equazione alle differenze finite si deve utilizzare la [64] sia per la direzione 
x che per la direzione y.  
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In pratica si hanno le seguenti posizioni, perle derivate prime nella forma forward: 

1, ,i j i jT TT

x x

 


 
   [67] 

, 1 ,i j i jT TT

y y

 


 
   [68] 

e ancora: 

2
1, 1, ,

2 2

2i j i j i jT T TT

x x

  


 
  [69] 

2
, 1 , 1 ,

2 2

2i j i j i jT T TT

y y

  


 
  [70] 

per le derivate seconde.  

Sostituendo la [69] e la [70] nell‟equazione [66] si ottiene: 

  , 1, 1, , 1 , 12 1 i j i j i j i j i jT T T T T           

ove si è indicato con: 

2

x

y


 
  

 
 

il fattore di reticolo.  

Qualora =1 si ottiene la relazione: 

1, 1, , 1 , 1

,
4

i j i j i j i j

i j

T T T T
T

     
  

che fornisce immediatamente il valore della temperatura nel punti (i,j) note che siano quelle dei 
quattro punti ad esso adiacenti (vedi Figura 23).  

Questo suggerisce il procedimento di calcolo, sia manuale che automatico, che occorre seguire 
per la determinazione delle temperature nei punti di un corpo: 

 si traccia un reticolo con passi trasversali e longitudinali eguali (x = y); 

 si fissano le temperature iniziali al contorno (condizione del 1° tipo) o si fornisce qualunque altro 
tipo di condizione al contorno (vedi più avanti); 

 si calcola, per ciascun punto interno del reticolo prefissato, la temperatura come media delle 
temperature dei punti adiacenti; 

 si calcola la differenza (errore) fra il valore ora calcolato e quella del ciclo precedente (tranne per il 
primo ciclo di calcolo nel quale, invece, si memorizza il valore calcolato e si azzera l'errore per il punto esaminato); 

 calcolate le temperature e gli errori per tutti i punti del reticolo si confronta l'errore di ciascun 
punto con quello massimo che si desidera ottenere: se per tutti i punti si ha un errore calcolato 
inferiore a quello massimo prefissato allora si possono fermare le iterazioni altrimenti si riprende 
dall'inizio e si procede fino a quando la condizione di errore massimo si è verificata. 

Va precisato, però, che l‟errore non può essere fissato a piacere senza tenere conto della 
precisione di calcolo che si può raggiungere sia con lo strumento di elaborazione utilizzato sia in 
conseguenza dei passi di reticolo scelti.  

Qualora si desidera avere una precisione maggiore occorre raffittire il reticolo e viceversa.  
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Se la precisione di calcolo del computer non consente precisioni elevate12 è bene limitare l‟errore 
massimo desiderato, ad esempio si può cercare una precisione del decimo di grado o al massimo del 
centesimo di grado (seconda cifra decimale!) altrimenti si rischia di avere tempi di calcolo inaccettabili e 
soluzioni irraggiungibili. 

La determinazione della temperatura nei punti del corpo può essere ottenuta iterativamente con 
l‟algoritmo indicato ovvero si può anche scrivere un sistema di equazioni, una per ciascun punto 
incognito, e risolvere il sistema in unico passo di calcolo.  

Non si pensi che questa soluzione sia migliore della prima e che con essa si possa trascurare quanto detto a 
proposito dell’errore di calcolo. La risoluzione di un sistema algebrico di grandi dimensioni (a seconda dei casi si 
va da poche centinaia a migliaia di equazioni da elaborare) porta intrinsecamente il problema della precisione di 
calcolo sia per il tipo di rappresentazione numerica utilizzato (in singola o in doppia precisione) sia per la 
precisione massima di calcolo consentita (numero di byte utilizzato dal processore).  

Inoltre la stessa risoluzione del sistema di equazioni utilizza metodi iterativi interni alle librerie di 
calcolo (ad esempio il metodo della triangolarizzazione,….) che sono fortemente condizionati dalla precisione 
di calcolo utilizzata nel senso che i risultati finali sono dipendenti da questa precisione. 

Se consideriamo un sistema di 1000 equazioni (relativo a 1000 punti interni al corpo) e si fa 
riferimento al metodo di Cramer per la risoluzione allora il determinante del sistema sarà la somma di 
1000 termini ciascuno composto dal prodotto di 1000 elementi di righe e colonne diverse della matrice 
del sistema.  Se ogni numero della matrice è composto da tre cifre più due decimali ne risulterà che i 
1000 prodotti saranno dell‟ordine di 102x1000 e quindi certamente superiori alla massima 
rappresentazione interna di qualsivoglia computer.  

Pertanto è bene normalizzare la matrice in modo da avere numeri avente parte intera di una cifra 
e parte decimale di cinque cifre. Il problema dell’overflow numerico sussiste ancora. Meglio utilizzare la 

rappresentazione scientifica del tipo X.XXXXXEYY ma anche in questo caso l‟esponente YY ha un 

limite massimo che dipende dalla precisione (ad esempio 23 per la doppia precisione nei computer da tavolo).  

Qualunque sia il metodo di risoluzione che si intende adottare occorre sempre considerare con 
molta attenzione i problemi di calcolo che ne derivano in relazione alla precisione consentita dal 
computer utilizzato. Non si commetta l‟errore di credere che il computer esegue sempre in modo esatto 
i calcoli: si rischia di commettere errori grossolani ed avere spiacevoli sorprese. 

3.3 FORMULAZIONE DELLE CONDIZIONI AL CONTORNO 

Se le condizioni al contorno sono del primo tipo (di Dirichlet) allora basta conoscere la 
temperature di tutti i punti che ricadono sulla superficie esterna del corpo da studiare. Può succedere, 
però, che anche in questo caso si possano incontrare difficoltà nell‟applicare l‟equazione della 
conduzione per la tipologia della forma geometrica esterna del corpo.  

In generale per determinare le condizioni al contorno (ma anche per arrivare alle equazioni alle 
differenze finite vere e proprie) si può seguire il metodo dell‟equazione di bilancio termico scritta alle 
differenze finite.  

                                                
12 I computer digitali lavorano sempre con numeri binari e con essi cercano di rappresentare tutte le grandezze che 

possono elaborare. La precisione di calcolo che è possibile raggiungere dipende dal numero di bit (cifra binaria che assume valori 
0 o 1) che il computer può elaborare per ogni numero. Di solito i bit vengono raggruppati in gruppi di otto detti byte. Nei 
computer da tavolo (del tipo Personal Computer) il numero di byte utilizzati per i calcoli va da 4 (singola precisione) a otto (doppia 
precisione). E‟ chiaro che al crescere dei byte per rappresentare ogni numero reale cresce anche l‟occupazione della memoria di 
calcolo (RAM) utilizzata e pertanto si ha sempre un compromesso fra la precisione e l‟occupazione della memoria. Con le 
tipologie prima indicate le precisioni che si possono ragionevolmente raggiungere sono di due ÷ tre cifre per la singola 
precisione e tre ÷ cinque cifre per la doppia precisione. In pratica l’insieme dei numeri reali esterni non trova una corrispondenza 
biunivoca con l’insieme dei numeri rappresentati nel computer che sono sempre finiti! Pertanto è perfettamente inutile cercare una 
precisione di calcolo che non è raggiungibile con il sistema di calcolo utilizzato. Nel caso si richieda una precisione eccessiva 
(e quindi irraggiungibile con il calcolo) si avrà un ciclo senza fine e quindi occorre sempre inserire un controllo interno al ciclo 
stesso che consenta di uscire qualora si sia raggiunto un numero massimo prefissato (ad esempio 20) di iterazioni. Con i 
computer di classe più elevata si possono oggi raggiungere precisioni altrettanto più elevate. E‟ questo il caso dei computer 
di grandi dimensioni (supercomputer o mainframe) che utilizzano normalmente 128 o 256 bit (64 byte!) per i calcoli. 
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Si consideri il caso indicato in Figura 24 nella quale si ha la rappresentazione schematica di un 
corpo lambito da un fluido avente temperatura Tf e coefficiente di convezione h. Consideriamo il 
volume13 tratteggiato (corrispondente a mezzo reticolo adiacente alla superficie lambita dal fluido).  

Possiamo scrivere per questo volume (detto di controllo, vedi Figura 24) il bilancio energetico: il 
calore uscente da esso per conduzione, in regime stazionario e senza sorgente di calore interna, è pari a 
quello entrante nel fluido per convezione termica, cioè si ha: 

 1, , , 1 , , 1

,

,

2 2

i j i j i j i j i j

i j f

T T T T T Ti jx x
x h x T T

x x x
  

     
     

  
 

Sviluppando questa uguaglianza e ponendo: 

x
Bi h




   [71] 

detto Numero di Biot14 si ottiene la relazione desiderata di bilancio energetico: 

 , 1, , 1 , 1

1 1

2 2
i j i j i j i j fT T T T BiT

Bi
  

 
      

  [72] 

Anche questa equazione è scritta in forma algebrica e può essere utilizzata per risolvere problemi 
aventi condizioni al contorno del 3° tipo (conduzione più convezione). In genere le condizioni al contorno 
possono essere di complessa definizione (anche geometrica) in funzione della forma del corpo, della 
tipologia di scambio (e quindi del tipo di condizione al contorno). Nella seguente Tabella 5 si hanno alcuni 
casi, fra i più usuali, per i quali si riportano le equazioni esplicite per la determinazione delle 
temperature ai nodi di contorno. 

3.4 CONDUZIONE STAZIONARIA CON SORGENTI DI CALORE 

E‟ un caso direttamente derivato dall‟applicazione dell‟equazione di Poisson: 

2 2

2 2

'''
0

T T q

x y 

 
  

 
  [73] 

Le uniche differenze nella risoluzione di questo caso si hanno nella necessità di aggiungere q’’’/ 
alle equazioni del tipo già viste in precedenza. Si lascia al lettore lo sviluppo. 

3.5 CONDUZIONE STAZIONARIA IN GEOMETRIA CILINDRICA 

L‟equazione di Laplace e di Poisson  in geometria cilindrica divengono, rispettivamente: 

2 2

2 2

1
0

T T T

r r r z

  
  

  
  [74] 

e ancora: 

2 2

2 2

1 '''
0

T T T q

r r r z 

  
   

  
  [75] 

Sostituendo gli sviluppi alle differenze finite delle derivate prime e seconde espresse in funzione 
di r e di z (si lascia al lettore la rielabornazione nelle nuove variabili) la [75] (più generale della [74]) 
diviene: 

                                                
13 Si suppone uno spessore unitario del corpo in esame. Del resto abbiamo già detto di rappresentare solamente 

una schematizzazione bidimensionale per chiarezza espositiva. 

14 Non si confonda il numero di Biot con il numero di Nusselt ( Nu hL  ), di questo numero adimensionale si 

parlerà per la convezione termica) che sembra formulato in modo analogo a Biot. Nel primo caso (Biot) ci si riferisce ad un 

coefficiente di convezione h del fluido e ad un coefficiente di conducibilità termica   unitamente al fattore geometrico x 
del corpo solido. Nel secondo caso (Nusselt) tutti i parametri sono riferiti al fluido nel quale avviene la convezione termica. 
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ove l‟asse z corrisponde all‟indice j e l‟asse r corrisponde all‟indice i. 
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
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







 

Figura 24: Condizione al contorno del terzo tipo – Convezione esterna 
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Tabella 5: Condizione al contorno per conduzione stazionaria 
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3.6 CONDUZIONE IN REGIME VARIABILE MONODIMENSIONALE 

Si vuole ora brevemente fare un cenno alle metodologie di calcolo numerico applicate al caso 
della conduzione in regime variabile. L‟equazione da risolvere è sempre la [65] che per regime in unica 
dimensione x diviene: 

2

2

T T
a

x

 


 
   [76] 

Pertanto ricordando lo sviluppo all‟indietro della derivata prima dato dalla [59], ora scritta in 

funzione del tempo si può scrivere : 

1j j

m m

m

T TT

 

  
 

  
  [77] 

Il simbolismo utilizzato è il seguente: il pedice m indica il punto nel reticolo lineare (caso 
monodimensionale) e l‟apice j indica l‟istante di tempo per cui j è l‟istante attuale e j+1 è l‟istante 
successivo. 

Lo sviluppo della derivata seconda (dato dalla [64]) ora diviene: 

 

2
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22

2j j j

m m m

m

T T TT

x x

 
   

 
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   [78] 

L‟equazione della conduzione si scrive quindi nella forma: 

 

1

1 1

2

2j j j j j

m m m m mT T T T T
a

x



   


 
  [79] 

Risolvendo rispetto alla temperatura 1j

mT   si ottiene l‟equazione esplicita: 

   1

1 11 2j j j j

m m m mT Fo T Fo T T

       [80] 

in cui 
 

2
aFo

x
 


 è detto numero di Fourier del reticolo.  

La relazione [80] ci dice che la temperatura nel punto m al tempi j+1 è funzione della temperatura 
nei punti m, m+1 ed  m-1 al tempo j.  

In definitiva si ha una incongruenza di calcolo dovuta alla diversità nel riferimento temporale a 
due istanti diversi. Ciò comporta la possibilità di avere incongruenze numeriche che non trovano riscontro 
nell‟evoluzione del fenomeno conduttivo.  

In pratica può aversi il caso che la temperatura nel punti m intermedio fra m-1 ed m+1 possa non 
seguire il Secondo Principio della Termodinamica e quindi avere temperature corrispondenti decrescenti in un 
verso o nell‟altro. 

Per evitare questa incongruenza (che, si ripete, è solo matematica) occorre, nella [80], imporre che i 
coefficienti delle temperature di tutti i termini a secondo membro siano positivi. Poiché il numero di 
Fourier è positivo per definizione deve essere: 

1 2 0Fo      [81] 

e quindi deve essere: 

 
2

0.5
a

Fo
x


  


  [82] 

Quest‟ultima condizione impone una scelta del passo spaziale x e del passo temperale  non 
più in funzione della precisione di calcolo desiderata ma anche in funzione della diffusività termica a del 

corpo in esame: tanto maggiore è a tanto maggiore può essere x e viceversa.  
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In termini pratici questo significa che, in condizioni transitorie, il passo spaziale x è fortemente 
dipendente dal tipo di materiale e dal passo temperale e questo può comportare un raffittimento 

notevole di x con conseguenti appesantimento del calcolo complessivo. 

3.7 CONDUZIONE IN REGIME VARIABILE BIDIMENSIONALE 

La trattazione del caso transitorio bidimensionale segue da vicino quanto visto nel paragrafo 
precedente.  

L‟equazione della conduzione ora è nella forma: 

2 2

2 2

T T T
a

x y

   
  

   
  [83] 

In forma numerica alle differenze finite diviene: 
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a
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
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

 
  [84] 

nella quale i pedici m ed n indicano le coordinate di reticolo x e y e l‟apice j e j+1 indicano il 
passo temporale. Ordinando i termini si ottiene l‟equazione: 

   1

, , 1, 1, , 1 , 11 4j j j j j j

m n m n m n m n m n m nT Fo T Fo T T T T

            [85] 

ove è ancora 
 

2
aFo

x
 


e si è scelto, per semplicità, x = y. 

Ricordando quanto detto nel §3.6 la condizione di congruenza numerica (cioè che i coefficienti delle 
temperature a secondo membro debbono essere non negativi) è: 

1
1 4 0    da cui    

4
Fo Fo       [86] 

La scelta del passo temperale (dati x e a) deve essere fatta secondo la [86] e non più liberamente. 
Ciò comporta quasi sempre un notevole appesantimento del calcolo. 

La formulazione delle condizioni al contorno per il caso non stazionario può ancora essere fatta 
con il metodo del bilancio energetico già illustrato.  

Si tralascia in questa sede lo sviluppo che può essere trovato nei manuali specializzati di 
Trasmissione del Calore. 

3.8 METODO GRAFICO DI BINDER SMITH 

La [82] suggerisce una semplificazione che trova applicazione nella risoluzione grafica della [80].  

Se poniamo la condizione limite: 

0.5Fo   

si ottiene dalla [85] la semplice relazione: 

1 1 1

2

j j
j m m

m

T T
T   

  [87] 

Pertanto la temperatura al tempo j+1 è la media aritmetica delle temperature all‟istante j dei punti 
contigui al punto m. 

In Figura 25 si ha la rappresentazione grafica dei primi tre intervalli di tempo nel transitorio di 
una striscia (problema monodimensionale) avente una temperatura iniziale sul lato a sinistra. 
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


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Figura 25: Costruzione grafica di Binder – Smith 

3.9 USO DEI CODICI DI CALCOLO 

Oltre al metodo alle differenze finite, sopra esposto, si hanno vari metodi fra i quali si cita quello 
agli elementi finiti. Il metodo di soluzione delle equazioni alle derivate parziali (PDE) con il metodo agli 
elementi finiti è del tutto generalizzato e viene applicata alla soluzione di qualsivoglia problema 
matematico e fisico. 

Esistono numerosi software commerciali che seguono questa metodologia di soluzione e che 
contribuiscono a risolvere numerosi problemi reali ben lontani dalla semplicità dimensionale descritta in 
precedenza. 

Applicare un qualsivoglia metodo numerico significa rinunciare ad ottenere la soluzione esatta 
negli infiniti punti del dominio ma accontentarsi di una soluzione approssimata in un numero finito di 
punti (che saranno chiamati nodi) individuati con criteri che dipendono dal metodo numerico prescelto. 
Il processo con cui si individuano i nodi nel dominio è definito “discretizzazione”. 

A conclusione della procedura di discretizzazione si perviene sempre ad un sistema di equazioni 
lineari la cui soluzione consente di ottenere valori approssimati dell‟incognita nei nodi. Come si vedrà, 
con il metodo agli elementi finiti tale sistema è ottenuto utilizando formulazioni di tipo integrale del 
principio di conservazione espresso tramite l‟equazione differenziale che si vuole risolvere ed 
approssimando a tratti la variabile incognita in modo tale che l‟equazione stessa risulti soddisfatta 
mediamente in opportuni sottodomini detti elementi. L‟applicazione del metodo comprende i seguenti 
steps: 

 il dominio è discretizzato, cioé suddiviso in elementi che non devono sovrapporsi né lasciare 
buchi; il numero e la collocazione dei nodi negli elementi determina poi la tipologia degli elementi 
stessi; 

 in base al tipo di elemento vengono scelte opportune funzioni di forma (o di interpolazione) per 
l‟approssimazione della variabile incognita all‟interno e lungo i contorni degli elementi, cioé nelle 
posiziono non nodali; 

 per ogni elemento viene formulata un‟equazione di tipo matriciale basata su una forma integrale 
dell‟equazione differenziale da risolvere; 

 le equazioni di ogni elemento vengono poi “assemblate” per formare un sistema globale di 
equazioni lineari; 
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 il sistema globale viene risolto per determinare i valori nodali delle incognite considerate.  

Formulare un modello, oppure semplicemente scegliere tra quelli disponibili quello che, con il 
minimo di complessità, sia in grado di riprodurre in modo soddisfacente l'evoluzione temporale e la 
distribuzione spaziale delle variabili termofisiche in una determinata distribuzione di flusso termico è un 
compito tutt'altro che banale. E' necessario, innanzitutto, definire quali siano le proprietà fisiche che 
caratterizzano il comportamento di materiali e acquisire poi conoscenza fenomenologica degli effetti 
(l'osservazione visiva ne è una fase fondamentale); ciò comporta l'uso di strumenti e nozioni della fisica 
e dell'analisi matematica e richiede infine, e soprattutto, cautela e consapevolezza nell'adozione delle 
ipotesi e delle approssimazioni che è indispensabile adottare. 

L'avvento e la diffusione dei calcolatori nel mondo scientifico e tecnologico hanno contribuito, 
come già evidenziato in precedenza, allo sviluppo e alla crescente consapevolezza del concetto di 
“approssimazione‖: concetto che investe, ad esempio, la teoria dell'approssimazione numerica della 
soluzione di un sistema di equazioni, ovvero di un modello matematico, con il quale si intende 
descrivere il comportamento di un determinato sistema fisico. In questo ambito, in mancanza di una 
soluzione analitica, o esatta, del modello matematico, si accetta di conoscerne una soluzione 
approssimata che possieda il livello di accuratezza ritenuto sufficiente. 

Ma il concetto di approssimazione interviene pesantemente anche nel processo che porta alla 
formulazione del modello fisico (dal quale discende, poi, quello matematico), che quasi mai può riprodurre 
per intero la complessità del mondo fisico reale. Infatti il problema che si incontra, ancor prima di 
pensare ad un modello fisico, consiste nel definire quale sia il livello di scala della realtà. 

Il mondo fisico reale può essere infatti descritto a vari livelli, a partire da quello subatomico e 
passando successivamente a quelli atomico, molecolare, microscopico, macroscopico (quello alla scala 
dimensionale della meccanica classica) e infine astrofisico (planetario o galattico). Ma non sempre un 
modello, per risultare efficace, deve necessariamente contemplare la totalità dei livelli di scala della 
realtà (quello della meccanica classica ne è appunto un chiaro esempio). In pratica, il problema si 
traduce quindi nel definire quale sia il minimo livello di scala della realtà che debba essere preso in 
considerazione affinché un modello possa rappresentare la realtà al livello di scala desiderato. 

Tuttavia, per definire le proprietà fisiche microscopiche (o statistiche) delle sostanze fluide 
gassose, che intervengono nel modello di continuo deformabile, pur non considerando necessariamente 
le scale subatomiche, è necessario però dedurle a partire dalla scala atomica o molecolare. E ciò è 
dovuto semplicemente al fatto che tali proprietà fisiche microscopiche dipendono proprio dalla 
struttura atomica e molecolare: dipendono infatti, sia dal tipo, sia dal moto degli atomi, che è governato 
essenzialmente dalle equazioni di Boltzmann.  

Solo basandosi sulle scale molecolari è quindi possibile definire, ad esempio, la temperatura di un 
gas come misura dell'energia cinetica media delle molecole, la pressione come risultato degli urti delle 
molecole sulle pareti di un recipiente, la viscosità attraverso la diffusione della quantità di moto 
prodotta dall'agitazione termica, e così via (in modo analogo si possono ovviamente definire le 
proprietà fisiche statistiche delle sostanze fluide liquide). A livello di scala molecolare, le variabili 
fondamentali del problema (e del modello fisico) sono quindi le masse e le velocità delle singole 
molecole mentre, a partire dal livello microscopico, le variabili del problema (e del modello fisico) 
diventano, ad esempio, la temperatura, la densità, la pressione e la viscosità, definibili attraverso medie 
delle variabili del modello al livello della scala dimensionale inferiore. 

In generale, possiamo affermare che ogni livello di scala della realtà è compiutamente 
rappresentabile in funzione di un determinato insieme di variabili fondamentali e che misure delle 
proprietà medie di tali variabili consentono di definire le variabili fondamentali al livello di scala superiore, 
immediatamente successivo. 

Si rinvia ai testi specializzati l‟approfondimento di questi metodi di calcolo e si vuole qui 
presentare qualche esempio. 
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Distribuzione di temperatura in un isolatore contenente due tubi di acqua calda 

La geometria è ancora semplice anche se non risolvibile con procedure analitiche tradizionali. Si 
tratta, nel piano, di una circonferenza esterna (isolante) contenente due circonferenze affiancate interne 
(tubi). L‟equazione differenziale da risolvere è: 

   0div grad T   

Le condizioni iniziali sono: T= 273 K per la zona esterna (isolante), 323 K per la tubazione a 
sinistra e 353 K per la tubazione a destra. La griglia di calcolo è la seguente: 

 

Figura 26: Formazione della griglia di calcolo per l’esempio considerato 

La distribuzione della temperatura è data nella seguente figura 

 

Figura 27: Curve isoterme per l’esempio analizzato 
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Figura 28: Distribuzione spaziale della temperatura 

 

Figura 29: Distribuzione del flusso 

Numerosi altri esempi potrebbero essere qui presentati. Va considerato che i problemi di sola 
conduzione sono relativamente semplici nel panorama dei codici di simulazione commerciali. Questi 
sono orientati alla soluzione di problemi di CFD (Computer Fluid Dynamics) molto più complessi di quelli 
esposti in questo paragrafo. 

Si parlerà di questi codici di calcolo più avanti. 
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4 ALETTE 

Uno dei dispositivi più utilizzati nello smaltimento del calore in dispositivi meccanici e/o 
elettronici sono le alette costituite da lamine di materiale buon conduttore poste sopra la superficie di 
un corpo che si vuole raffreddare in aria o in un fluido gassoso.  

E‟ importante osservare subito che, come si dimostrerà più avanti, le alette risultano convenienti 
solo quanto lo scambio di calore all‟esterno della superficie da raffreddare è attuato in aria o in un 
fluido aeriforme generico. Questo, infatti, per le sue caratteristiche termofisiche determina modalità di 
scambio per convezione peggiori di quelle che si avrebbero con un fluido liquido e pertanto le alette 
consentono di migliorare lo scambio globale. 

Per studiare il comportamento delle alette occorre idealizzare il problema come raffigurato in 
Figura 30. Sia questa idealizzata come una sbarra di sezione rettangolare attaccata ad una parete a 
temperatura T0.  

L‟aletta sia sottile e la conducibilità termica del materiale elevata in modo che si possa ritenere a resistenza 
termica trascurabile e quindi descrivibile con un solo valore di temperatura per ogni sezione x. 

x x+dx
x

T
0

 

Figura 30: Schematizzazione di una aletta 

Per la generica sezione ad ascissa x ed x + dx, detta S la superficie e P il perimetro, si può scrivere 
che il flusso termico di conduzione alle ascisse x ed x + dx valgono:: 

x

x

dt
q S

dx
    [88] 

x dx

x dx

dT
q S

dx




   

Sviluppando in serie di Taylor il secondo membro della precedente si ottiene: 

2

2x dx x

x

dT d T
q S S dx

dx dx
      

Pertanto il bilancio termico (a regime stazionario) della striscia elementare di ampiezza dx ad ascissa 
x è il seguente: 

 
2

2 f

d T
S dx hP T T dx

dx
    

Semplificando e ponendo =T – Tf ed ancora : 

hP
m

S
  



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

52 

si può scrivere: 

2
2

2
0

d
m

dx


   

Nell‟ipotesi di proprietà termofisiche e geometriche costanti la precedente si può ritenere una 
equazione differenziale del secondo ordine, omogenea a coefficienti costanti il cui integrale generale è: 

mx mxAe Be     [89] 

con A e B costanti di integrazione da calcolare con le ipotesi di condizione al contorno da 
definire ancora. Possiamo ipotizzare tre casi. 

4.1 BARRA INFINITAMENTE LUNGA 

In questa ipotesi la temperatura nella sezione terminale della barra si porta in equilibrio con quella 
del fluido e pertanto risulta: 

0 0             per x=0fT t    

e ancora 

0       per x    

Pertanto la [89] diviene: 

0

mxe    

Quindi la differenza di temperatura iniziale diminuisce esponenzialmente. Il flusso termico che la 
sbarra smaltisce nel fluido è allora pari, a regime stazionario, al flusso che esce dalla parete all‟ascissa 
x=0 e cioè: 

0 0

0

l

x

dt
q S Sm hP S

dx
    



     

Senza la presenza dell‟aletta la stessa parete avrebbe disperso, attraverso la superficie S il flusso: 

0sq hS  

La convenienza dell‟aletta si ha quando si verifica: 

l sq q  

ovvero anche: 

0 0Sm hS    

ossia quando hm


 . Ricordando l‟espressione di m deve anche essere P hS  . Pertanto la 

convenienza dell‟utilizzo dell‟aletta si ha quando il materiale è un buon conduttore (grande ) ovvero il 
coefficiente di convezione h è piccolo. In pratica si può anche scrivere: 

S
h

P
   

per cui essendo il rapporto S/P omogeneo ad uno spessore fittizio lo  si può ancora scrivere: 

0 1l

h
  

Quindi la resistenza di conduzione l0/ deve essere inferiore alla resistenza di convezione 1/h. 
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4.2 SBARRA CON TERMINAZIONE FINALE ADIABATICA 

In questo caso le condizioni al contorno sono: 

0 0             per x=0fT t    

e ancora: 

0       per x
x L

d
L

dx






    

La soluzione dell‟equazione generale fornisce le costanti: 

0

mL

mL mL

e
A

e e






 

0

mL

mL mL

e
B

e e








 

e quindi la soluzione diviene: 

 

 
0

cosh

cosh

m L x

mL
 

    

Il flusso termico uscente dalla parete all‟attacco della sbarra vale: 

 0

0

tanhl

x

d
q S mS mL

dx


  



    

La convenienza dell‟aletta si ha quando questo flusso risulta superiore a quello senza aletta. 

4.3 SBARRA DI LUNGHEZZA FINITA (CASO GENERALE) 

Le condizioni al contorno divengono: 

0 0             per x=0fT t    

e ancora: 

       per x
x L

d
hS L

dx


 



    

Le costanti di integrazioni divengono: 

   

0

2
cosh

mL mLh
e e

mA
h

mL senh mL
m

 









 

   

0

2
cosh

mL mLh
e e

mB
h

mL senh mL
m

 



 





 

Pertanto la soluzione generale (detta di Ten Bosh) diviene: 

   

   
0

cosh

cosh

h
m L x senh m L x

m
h

mL senh mL
m

 



        



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Il flusso termico all‟attacco dell‟aletta vale: 

 

 
0

0 1
l

x

h
tagh mL

d mq S mS
hdx

tagh mL
m

   






  



 

con il solito confronto si può stabilire la convenienza dell‟aletta. 

4.4 EFFICIENZA DELLE ALETTE 

Si definisce efficienza delle alette il rapporto fra il flusso effettivamente scambiato e quindi 
uscente dalla parete con l‟aletta e quello che si avrebbe nelle condizioni ideali con temperatura di aletta 
pari a quella della base di attacco, cioè: 

reale

ideale

q

q
   

Nel caso di aletta con flusso trascurabile all‟estremità (caso 2, generalmente realizzato con buona 
approssimazione  nelle condizioni reali) si ha: 

   0

0

tanh tanhS m mL mL

hPL mL

 



   

In Figura 31 si ha l‟andamento dell‟efficienza per alette rettangolari. Per le alette sottile si ha: 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
0.999

0.2

 m L 

50.05 m L  

Figura 31: Efficienza di una aletta rettangolare 

h
mL L


   

e quindi l‟efficienza è tanto maggiore quanto minore è la lunghezza L e quanto maggiore è il suo 

spessore 2 e quanto maggiore è la conducibilità  del materiale e quanto minore è il coefficiente di 
convezione termica h. Nota l‟efficienza dell‟aletta si calcola facilmente il flusso reale mediante la 
relazione: 

0reale idealeq q hS      

Se si prende in considerazione la soluzione di Ten Bosh si ha: 

tanh( )

tanh( )

h
mL

m
hL

mL mL











 

il cui andamento è riportato in Figura 32. 
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4.5 PARETE ALETTATA 

Nel caso che una parete di superficie A con n alette sia immersa nell‟ambiente, detta  l‟efficienza 
delle alette, il flusso totale disperso vale: 

   0s t a L fq h A nS nS T T       

avendo indicato con At l‟area totale della superficie, Sa la superficie di attacco di una singola aletta,  
SL la superficie di scambio di una aletta, T0 la temperatura della superficie e Tf quella dell‟ambiente. 

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2
1.019

0.201

 m L  h L 

50.15 m L  

Figura 32: Efficienza di una aletta rettangolare con soluzione esatta 

Per la validità di questa relazione occorre assicurarsi che la distanza fra le alette sia superiore (di 

almeno il doppio) a quello dello strato limite che, per valori correnti in aria, è di 23 mm. 

4.6 ALETTE ANULARI 

Si consideri una superficie circolare come indicato in Figura 33 e si faccia l‟ipotesi di piccolo 
spessore, H, rispetto alla lunghezza netta dell‟aletta L=r2-r1.  

Nell‟ipotesi di resistenza termica delle alette trascurabile si può immaginare che il campo termico sia 
monodimensionale e che pertanto la distribuzione della temperatura sia funzione solo del raggio r, cioè 
sia T =T(r).  

La sezione trasversale dell‟aletta è As=2  r H e la superficie relativa al tratto di lunghezza dr vale 

dAs = 2 r dr.  

Il flusso trasmesso ad ascissa r vale: 

2r r

r r

dT dT
q A rH

dr dr
       

e che quello ad ascissa r + dr vale: 

2 ( )r dr r dr

r dr r dr

dT dT
q A r dr H

dr dr
   

 

      

ove, sviluppando in serie di Taylor si ha: 

2

2

r dr r r

dT dT d T
dr

dr dr dr

   

e che il flusso disperso per convezione termica dalla aletta vale: 

 a f sdq h T T dA   

Pertanto il bilancio termico di una striscia dr ad ascissa r è dato da: 
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r a r drq q q    

e quindi, sostituendo le espressioni precedenti e riarrangiando i termini si ha: 

   
 

2

2

1
2 0

f f

f

d T T d T T h
T T

dr r dr H

 
     

Abbiamo, quindi, una equazione differenziale di Bessel di ordine zero la cui soluzione generale è: 

   1 0 2 0fT T C I mr C K mr    

ove si posto, al solito: 

r1

r2
H

 

Figura 33: Rappresentazione di una aletta circolare di spessore costante 

2h
m

H
  

e si sono indicate con: 

 K0 la funzione di Bessel modificata di prima specie; 

I0 la funzione di Bessel modificata di seconda specie. 

Le costanti di integrazione vanno determinate con le condizioni al contorno: 

1 0( )T r T  

alla base di attacco e ancora per r=r2: 

2

2

0r r r

r r

dT
q A

dr




    

cioè supponiamo che all‟estremità delle alette il flusso sia trascurabile (come già visto per le alette 
rettangolari).  

L‟andamento della soluzione è rappresentata in Figura 34. 



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

57 

1 2 3 4 5

1

2

3

4

5

6

 

Figura 34: Distribuzione della temperatura nelle alette cilindriche  

L‟efficienza di un‟aletta anulare è data in Figura 35 al variare del rapporto dei raggi. 

 

Figura 35: Efficienza alette anulari 

4.7 PROFILO OTTIMIZZATO DELLE ALETTE 

In precedenza si è visto il caso semplice di profilo rettangolare delle alette.  

In effetti al crescere della distanza dalla parete il profilo rettangolare non consente le migliori 
condizioni di scambio poiché presenta la stessa resistenza termica di conduzione pur con profilo di 
temperatura che decresce esponenzialmente dalla parete di attacco.  

Uno studio più approfondito consente di dimostrare che la sezione migliore è quella con profilo 
iperbolico, cioè con andamento rastremante verso la fine delle alette, come illustrato dal secondo profilo 
in Figura 36.  

Questa sezione consente anche di ridurre al minimo il materiale presente nelle alette. 

Nelle applicazioni pratiche si preferisce costruire le alette con profilo triangolare per le minori 
difficoltà costruttive che queste presentano e per la poca differenza rispetto a quella iperbolica. 
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Figura 36: Profilo rettangolare, iperbolico e triangolare  

4.8 APPLICAZIONI NUMERICHE AL PROBLEMA DELLE ALETTE 

Con i codici di simulazione già visti in precedenza è possibile risolvere i problemi relativi alle 
alette. Ad esempio per una sezione di tubo con flangia raffreddata esternamente, con equazioni già 
indicate nei precedenti paragrafi,  da aria porta alle seguenti soluzioni. 

 

Figura 37: Griglia di calcolo 
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Figura 38: Distribuzione della temperatura in una flangia 

 

Figura 39. Distribuzione del flusso per un tubo flangiato 
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5 LA CONVEZIONE TERMICA 

Uno dei problemi tecnico-scientifici in assoluto più complesso da studiare è la convezione 
termica. Con questo termine si suole definire un insieme di fenomeni di trasporto di massa ed energia per mezzo 
di un fluido riscaldato (o raffreddato).  

La convezione termica é stata originariamente studiata da Newton che ne ha proposto una 
formulazione funzionale ancora oggi utilizzata nella pratica. Newton non aveva i mezzi di osservazione 
che oggi noi possediamo e pertanto non poteva rendersi conto della complessità del problema della 
convezione termica.  

In particolare Egli non si accorse dello strato limite (vedi Figura 40) meccanico e termico che si 
formava fra fluido non disturbato e parete. 

W w w w

PARETE FISSA

Strato limite laminare

Strato limite turbolento

Substrato laminare

Corrente fluida indistrubata

Zona di effetto
della parete

 

Figura 40: Formazione dello strato limite dinamico sopra una lastra piana 

La convezione termica nasce dall'azione congiunta di trasporto di materia e di energia. Il termine 
convezione deriva dal latino conveho che significa trasporto. Senza materia in movimento non si può avere 
convezione termica ma solo conduzione. La convezione termica può essere di due tipi: 

Convezione termica naturale: 

Il movimento di materia si origina per effetto del solo campo di temperatura esistente fra zone 
diverse di un sistema termico. Se consideriamo una piastra piana verticale di materiale conduttore 
qualunque (ferro, rame, alluminio,...) portata ad una temperatura Tp. Si supponga che questa piastra sia 
immersa in un fluido (aria, acqua,..) avente una temperatura Tf < Tp (vedi Figura 41).  

Per effetto della temperatura Tp dell'energia termica passa per conduzione dalla piastra al fluido 
che si scalda rispetto alla temperatura iniziale Tf e pertanto si dilata. Ciò porta ad avere una diminuzione 
di densità del fluido caldo rispetto a quello freddo e quindi si genera, per effetto della forza di gravità 
che agisce sempre verso il basso, un alleggerimento termico che fa spostare il fluido caldo verso l'alto e 
quello freddo verso il basso e quindi un moto rotatorio orario che é il flusso convettivo propriamente 
detto.  

Il moto rotatorio orario é generato dalla forza di gravità che sposta più in basso il fluido freddo 
rispetto a quello caldo. Questo spostandosi porta con sé la maggiore energia interna dovuta alla 
maggiore temperatura e pertanto si ha il trasferimento di calore dalla piastra al fluido freddo come 
effetto finale della trasmissione di calore. E' bene ricordare che nella convezione naturale il movimento del 
fluido avviene per il solo effetto della forza di gravità sugli strati di fluido a diversa densità; 

Convezione forzata 

Il movimento del fluido avviene non solo (o anche non più) per effetto dell'alleggerimento termico 
sopra descritto ma per l'azione meccanica di una macchina sul fluido (ad esempio una pompa o una ventola). 
Pertanto il fluido non si sposta più in relazione alla distribuzione di temperatura e all'azione della forza 
di gravità bensì per azione meccanica esterna. Ne consegue che il movimento del fluido può essere 
pilotato come si desidera nelle zone ove si vuole avere lo scambio termico.  
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Se si riprende l'esempio del radiatore termico domestico dianzi  proposto si vede facilmente che 
senza azioni esterne si ha il movimento dell'aria riscaldata dalla piastra secondo traiettorie che 
dipendono solo dalla geometria del sistema e dalle differenze di temperature.  

Se, invece, si utilizza una ventola a monte della piastra ecco che l'aria riscaldata può essere inviata 
dove si vuole e in quantità desiderata. Si ha, così, la convezione forzata. In entrambi i casi (naturale o forzata) 
la convezione si presenta come una somma di fenomeni complessi associati sia al campo di velocità 
(spostamento delle masse di fluido) che al campo di temperatura (direttamente e indirettamente legato al campo di 
velocità).  

Si tratta sempre di fenomeni molto complessi che rappresentano una delle problematiche più 
ardue di tutta la Scienza e la Tecnica. Queste problematiche non sono limitate solamente agli scambi 
termici, come questo capitolo può far pensare, ma a numerosissimi campi della tecnica, della biologia, 
della meteorologia, armamenti militari, ….  

Praticamente ogni campo scientifico è interessato dai problemi convettivi e la loro risoluzione ha 
sempre avuto caratteri strategici prevalenti su tutti gli altri. Data la limitatezza di questo corso di 
Trasmissione del Calore si cercherà di semplificare al massimo la soluzione di queste problematiche con 
metodologie di studio semplificate.  

Nella realtà lo studio della Convezione Termica è sempre stato un argomento arduo, difficile, ostico 
e che solo in parte trova soluzione oggi con l‟utilizzo di codici di calcolo costosi e complessi che 
richiedono le maggiori risorse in assoluto rispetto a qualsivoglia applicazione software. 

Convezione termica confinata 

Se il fluido si trova all‟interno di un volume delimitato da pareti fisiche, ad esempio in un 
condotto, allora la convezione termica si dice confinata.  

Lo spessore dello strato limite termico, come pure quello dinamico, è al massimo pari alla 
distanza fra le pareti a diversa temperatura.  

In questo caso le condizioni di conservazione della massa impone che ci sia una circolazione 
interna (vedi anche quanto si dirà sulle cavità termiche) fra le stesse pareti. 

Convezione termica aperta 

In questo caso si ha una parete e la convezione termica avviene in uno spessore di strato limite 
termico indefinito e sempre crescente.  

Si può avere anche convezione termica in assenza della stessa parete ma in presenza di fluidi a 
diversa temperatura (ad esempio una corrente di aria calda che incontra una corrente di aria fredda o anche un getto di 
vapore che trascina aria fredda in moto convettivo, come avviene nei getti e nei pennacchi dei quali si dirà nel prosieguo). 

La convezione aperta interessa molto la climatologia e le applicazioni impiantistiche ambientali. 

5.1 EQUAZIONE DELLA CONVEZIONE TERMICA 

Newton ebbe il grande merito di semplificare la grande complessità del problema (non sappiamo se 
coscientemente o non) scrivendo per la convezione termica la seguente legge di definizione: 

* ( )p fQ hS T T       [90] 

ove si ha il seguente simbolismo: 

 Q* quantità di energia trasmessa per convezione termica. Unità di misura [J] o [kcal]; 

 h  é il coefficiente di convezione. Unità di misura [W/(m2°C)] o [kcal/(hm2°C)];  

 S  superficie di scambio termico. Unità di misura in [m2]; 

 Tp,- Tf  differenza di temperatura fra piastra e fluido (o viceversa se Tf >Tp). [K] o [°C]; 

  tempo intercorso, unità di misura [s] o [h]. 

Si è usato il termine di definizione perché questa legge in realtà definisce univocamente il coefficiente di 
convezione nella forma: 
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*

( )p f

Q
h

S T T 




 
 

In pratica, come meglio si vedrà più avanti, non conosciamo h se non mediante il rapporto 
indicato a secondo membro. E questo perché le modalità di scambio termico non sono univoche, nel 
senso che una stessa parete con le stesse distribuzioni di temperatura superficiale e con lo stesso fluido 
può dar luoghi a scambi di calore diversi a seconda della geometria e topologia  assunta.  

Ecco perché la legge di Newton è importante: essa ha semplificato la definizione analitica di un 
fenomeno complesso con una semplice introduzione di un coefficiente di convezione noto il quale si può 
conoscere il flusso termico effettivamente scambiato. Possiamo definire questo anche un coefficiente di 
ignoranza, anche alla luce di quanto si dimostrerà nel prosieguo.  

Il coefficiente h non é una proprietà termofisica ma dipende da un grande numero di fattori fra i 
quali si ricordano: 

 le proprietà fisiche del fluido: densità , viscosità dinamica vedi più avanti), calore specifico a 

pressione costante cp, coefficiente di conducibilità termica ; 

 la differenza di temperatura fra i corpi; 

 la velocità del fluido w se in convezione forzata o il coefficiente di dilatazione15 cubica  del fluido se si 
è in convezione naturale; 

 la geometria della scambio termico che può essere rappresentata da un parametro geometrico (ad 
esempio il diametro di un condotto, la distanza fra due piastre,....). 

Per rendersi conto che h varia con la configurazione geometrica, come sopra accennato, a parità 
di tutto il resto, si consideri l'esempio dato in Figura 41. 

Tp

Tf

x

y

Fluido non disturbato

Pa
re

te

Strato limite termico

Profilo di velocita'

Profilo di temperatura

 

Figura 41: Schematizzazione della convezione termica fra parete e fluido  

Se la piastra si suppone calda e il fluido, per esempio aria, freddo si ha convezione (cioè si ha 
movimento di fluido per via naturale) se la piastra é orizzontale in basso o verticale o con un angolo di 
inclinazione qualunque.  

Non si ha convezione termica se la stessa piastra, a pari temperature e condizioni del fluido, si 
pone orizzontale ma in alto rispetto al fluido (ad esempio un soffitto caldo) perché il fluido dilatato é già in 
alto rispetto a quello freddo che si trova in basso. 

                                                
15 Si definisce coefficiente di dilatazione di un corpo, come si è visto in Termodinamica Applicata, il coefficiente 

 




F
HG
I
KJ

1

v

v

t p

cioè la variazione relativa di volume al variare della temperatura e pressione costante. Questo coefficiente è 

proprietà termofisica dei corpi e lo si può trovare nei manuali tecnici specializzati. Per un gas ideale esso vale 1/T (con T 

temperatura assoluta) e quindi per i gas si può ritenere   circa pari al suddetto valore. 
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Quindi non é possibile conoscere il  coefficiente di convezione dati i soli parametri 
termofisici del fluido e le temperature di scambio: occorre specificare anche la geometria di 
scambio e ciò rende di fatto lo studio della convezione termica molto complesso.  

Se si fa riferimento al flusso termico (Q*/) (omogeneo ad una potenza [J/s]=[W]), la [90] si può 
ancora scrivere: 

Q h S T    

 ove T é la differenza di temperatura (maggiore meno minore) fra corpo e fluido.  

La suddetta relazione, pur nella sua grande semplicità, non ci consente di affrontare la convezione 
termica con la stessa semplicità con la quale abbiamo affrontato la conduzione termica poiché h, come 
già detto, non è una proprietà termofisica reperibile nei manuali per i vari materiali.  

Questo coefficiente deve essere determinato, sperimentalmente o analiticamente, per tutte le 
configurazioni di scambio che si intende utilizzare. Oggi si dispongono di migliaia di relazioni per il 
calcolo di h e sempre più questo numero cresce con l‟aumentare dei casi reali di scambio studiati. Per il 

flusso termico specifico q‖ = Q/S si ha la relazione: 

"q h T    [91] 

5.2 RESISTENZA TERMICA PER CONVEZIONE 

Con ragionamento analogo a quanto visto per la conduzione termica, riscrivendo 
opportunamente la [91], si può definire una Resistenza termica di Convezione data dalla seguente relazione: 

1

1
R

h

  

con il solito simbolismo visto in precedenza. Mediante la resistenza termica per convezione è 
possibile risolvere qualsiasi problema di trasmissione del calore fra strati in serie e in parallelo. 

5.3 TRASMITTANZA TERMICA 

Si consideri la situazione indicata in Figura 42 ove si hanno due fluidi separati da una parete, ad 
esempio si può considerare un muro esterno che separa l‟ambiente interno (e quindi l’aria all’interno di 
esso) dall‟ambiente esterno (cioè dall’aria esterna). Considerando una situazione a regime stazionario si ha, 
essendo tutti gli elementi disposti in serie, che il flusso termico é costante sia nel fluido 1, che negli 
strati di parete e poi nel fluido 2. Applicando quanto é stato detto per la trasmissione del calore in serie 
si può scrivere la seguente relazione : 

1 1 1 2 2 3 3 2

1 2

1 1 2 2

"
1 1

p p p p p pT T T T T T T T
q

s s

h h 

   
     

Applicando la regola del componendo ai secondi membri si ottiene infine la seguente relazione: 

1 2

1 2

1 1 2 2

"
1 1

T T
q

s s

h h 




  

  [92] 

e il termine: 

1

1 j

i j

K
s

h 



 
  [93] 

é detto trasmittanza termica. 
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T1

T2

Tp1 Tp2 Tp3

h1

h2

 

 

Figura 42: Trasmissione del calore fra due fluidi separati da una parete composta.  

A denominatore si hanno le sommatorie delle resistenze termiche per convezione interne alla 
parete, per conduzione e per convezione esterne alla parete. Dalla [92], tenuto conto della [93], si può 
scrivere: 

"q K T   

e per il flusso totale attraverso la parete: 

"
1 j

i j

T
q

s

h 




 
 

5.4 LE EQUAZIONI FONDAMENTALI PER LA CONVEZIONE 

Per affrontare lo studio della convezione termica occorre prima predisporre l‟apparato fisico 
matematico per la piena descrizione fenomenologica. Troviamo, quindi, le equazioni descrittive dei 
fenomeni fisici fondamentali che interessano la convezione termica e per fare ciò applichiamo, 
pertanto, i principi fondamentali della Termodinamica e della Meccanica dei Fluidi. 

5.4.1 CONSERVAZIONE DELLA MASSA 

Il principio di conservazione della massa porta a scrivere, per un sistema aperto: 

e u

V

m m dm



 

    

In forma integrale possiamo scrivere: 

A V

V ndA dV 



  

 
 

 

Ricordando il teorema della divergenza di Green si può ancora scrivere: 

 
V V

div V dV dV 



 

 


 

Ovvero anche, in forma differenziale: 

 div V










   [94] 

Introducendo l‟operatore derivata sostanziale dato da: 
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D
u v w

D x y z 

   
   
   

 

allora la [94] si può scrivere nella forma: 

0
D

V
D





  


  [95] 

Questa è detta equazione di conservazione della massa in forma differenziale. 

5.4.2 CONSERVAZIONE DELL’ENERGIA 

Il primo principio della Termodinamica per un sistema aperto in forma integrale può essere 
derivato da quanto già visto per sistemi aperti con scambi di materia in corrispondenza a tubi di flusso 
finiti. Con riferimento alla Figura 43 si può scrivere il bilancio: 

2 2

1 2
1 1 1 1 1 2 2 2 2 2

2 2
sorgente

Ew w
m gz p v e Q L m gz p v e Q 



    
             

   

    

ove risulta, per l‟accumulo a secondo membro: 

2

2

s

M

E w
dm gz u e


 

  
    

   
  

In forma integrale la precedente equazione  può essere scritta nella forma: 

2

"
2

A A V V

w
h gz V ndA q ndA qdV L e dv 



  
         

 
   

      [96] 

ove si ha: 

SUPERFICIE DI SEPARAZIONE

LAVORO USCENTE    L'

CALORE ENTRANTE  Q'

MASSA ENTRANTE

MASSA USCENTE

SISTEMA

2

1
1 1 1 1 1 1

2

w
m gz u p v e
 

    
 



2

2
2 2 2 2 2 2

2

w
m gz u p v e

 
    

 



2

2M

w
E gz u e dm




 
    

 


 

Figura 43: Sistema aperto con flussi localizzati 

 
2

2
A

w
h gz V ndA
 

    
 


 
 scambio totale (quantità entrante meno quantità uscente) di 

metalpia 
2

2

w
h gz
 

  
 

della massa elementare; 

 "
A

q ndA 
 

 scambio termico totale di calore (entrante meno uscente); 
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 
V

qdV   generazione interna di calore, con q  potenza termica generata 

per unità di volume; 

 L  Potenza meccanica totale scambiata (somma del lavoro positivo 
e del lavoro resistivo); 

 
V

e dv




   accumulo di energia nel sistema con e energia specifica dell‟unità 

di massa del sistema. 

Se ci si riferisce alle condizioni di regime permanente possiamo scrivere: 

2

"
2

A A V

w
h gz V ndA q ndA qdV L
 

        
 
  

       [97] 

Possiamo ancora applicare il teorema della divergenza ma lo sviluppo risulta piuttosto lungo poiché 
occorre tenere conto del lavoro fatto da tutte le forze agenti sull‟elemento di volume, fra le quali le 

tensioni normali   e tangenziali .  

La forma finale dell‟equazione dell‟energia, riferita all‟entalpia, è: 

h h h T T p p p
u v u w q

x y x x y y x y
     

 

             
            

              
  

ove si ha: 

2 2 22
2

2
3

u v u v u v

y dx x y x y
 

              
              

              

 

detto termine dissipativo. In forma simbolica la precedente equazione dell‟entalpia si può scrivere: 

 
Dh Dp

T q
D D

  
 
        [98] 

Ricordiamo ora che vale la relazione (vedi Termodinamica Applicata): 

p

p

v
dh c dT v T dp

T

 
     

 

che può ancora essere scritta facendo apparire la densità =1/v: 

1

1
p

p

dh c dT T dp
T





   
   
     
  
   
   

 

E, infine, tenendo conto della definizione del fattore di dilatazione termica: 

1 1

p p

v

v T T






    
     

    
 

si ha: 

 
1

1pdh c dT T dp


    

per cui la [98] si può scrivere nella forma: 
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 p

DT Dp
c T T q

D D
   

 
       

Nel caso di fluidi a comportamento incomprimibile e nel caso che Dp
D

 sia trascurabile la 

precedente equazione si può scrivere, in forma semplificata: 

 p

DT
c T q

D
  


      

Se il mezzo è omogeneo ed isotropo ( = costante) allora si può ancora scrivere: 

2

p

DT
c T q

D
  


      

Nel caso in cui il termine dissipativo sia trascurabile16 e non ci sia generazione interna di calore è: 

2

p

DT
c T

D
 


   

Le ultime due equazioni dell‟energia sono molto utilizzate per lo studio della convezione termica. 

5.4.3 EQUAZIONE DELL’ENTROPIA PER SISTEMI APERTI 

L‟equazione di Clausius per i sistemi chiusi vista nel corso di Termodinamica Applicata è: 

Re

irreversibile

ale

Q
dS S

T


   

Per un sistema aperto in forma integrale questa diviene: 

1
irr

A V A V

dQ
s dV sV ndA sdV

T d
  

 


   

   
 

 

Questa equazione risulta utile nella pratica quando si vuole ottimizzare l‟efficienza dei sistemi 
termodinamici nel senso di determinare le condizioni di minore produzione di entropia. Una 
applicazione tipica si ha nell‟ottimizzazione progettuale degli scambiatori di calore. 

5.4.4 CONSERVAZIONE DELLA QUANTITÀ DI MOTO 

La legge di conservazione della quantità di moto, di Newton, in forma finita è data da: 

V
e u

M
F M M




  




   

Per  derivare la forma differenziale occorre considerare, fra le forze in gioco, anche le tensioni 

normali  e tangenziali  che agiscono sull‟elemento di volume oltre alle forze di volume (ad esempio il 
peso, le forze elettromagnetiche, ..) X, Y, Z.  

Poiché la precedente equazione è vettoriale occorre effettuare il bilancio nelle direzioni di moto 
Ad esempio per la direzioni x si ha l‟equazione: 

   yxxx
u v up

X
x x y x y

      
    

    
 

che può essere semplificata per l‟equazione di continuità [95] nella forma: 

  yx

xx

u u u u
X p u v w

x y x y z


 



      
       
      

 

                                                
16 Per velocità piccole rispetto a quelle del suono nel mezzo a pari condizioni   si dimostra trascurabile. 
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Analogamente per la direzione y si ha: 

  xy

yy

v v v v
Y p u v w

x x x y z


 



      
       
      

 

e per l‟asse z si ha: 

  zx
zz

w w w w
Z p u v w

z z x y z


 



     
       
      

 

Per eliminare gli sforzi  e  dalle precedenti equazioni si ricorda che per i fluidi newtoniani gli 
sforzi sono proporzionali ai gradienti di velocità (legge di Newton) con costante di proporzionalità pari 
alla viscosità dinamica.  

Lo sviluppo (sostituzione degli sforzi con relazioni funzioni dei gradienti di velocità) porta alle 
equazioni di Navier – Stokes : 

2
2

3
xx

u u v w

x x y z
  

    
    

    
 

2
2

3
yy

v u v w

y x y z
  

    
    

    
 

2
2

3
zz

w u v w

z x y z
  

    
    

    
 

xy yx yz zx

u v w

y z x
    

   
      

   
 

Sostituendo queste equazioni nelle precedenti equazioni di conservazione della quantità di moto 
si ottiene l‟equazione vettoriale simbolica: 

2DV
p V F

D
 


   


 

  [99] 

Questa equazione descrive in modo completo i fenomeni meccanici dovuti al moto delle 
particelle di fluido ed è fondamentale per lo studio della convezione termica. 

5.5 EQUAZIONI DELLO STRATO LIMITE 

E‟ noto che il moto di un fluido sopra una superficie porta alla formazione dello strato limite, 
vedi Figura 44, all‟interno del quale la velocità del fluido risente della presenza della parete per effetto 
delle forze viscose.  

Si ricordi che si definisce strato limite dinamico lo spazio nel quale si ha una variazione di velocità 
fini al 99% di quella indisturbata, al di fuori dello stesso strato limite. 

Per effetto dei fenomeni di aderenza si possono fare alcune ipotesi semplificative per le equazioni 
di bilancio viste in precedenza.  

In particolare si può assumere che siano valide le assunzioni che: 

 La velocità longitudinale u sia molto maggiore delle altre due componenti v e w; 

 Che il gradiente di velocità u
y




 sia molto maggiore di tutti gli altri gradienti delle altre componenti di velocità 

rispetto a qualunque asse; 

 Che il gradiente di temperatura T
y




 sia molto maggiore di tutti gli altri gradienti di temperatura T
x




 e 

T
z




. 
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In queste ipotesi le equazioni di Navier – Stokes portano ad avere componenti di sforzi normali  
nulli in tutte le direzione mentre gli sforzi tangenziali non nulli sono: 

zx xz

u

y
  

 
   

 
 

Substrato Laminare

Strato Turbolento

Strato Laminare

Inizio Moto turbolento
x

Profilo di velocita'
laminare

profilo di velocita'
turbolento

Vortici

 

Figura 44: Profili di velocità nello strato limite sopra una lastra piana  

Inoltre se il fluido si suppone incomprimibile la sua densità, , non varia e pertanto l‟equazione di 
continuità diviene: 

0
u v

x y

 
 

 
 

L‟equazione della quantità di moto nella direzione x diviene: 

2

2

1u u p u
u v

x y x y




   
   

   
  

mentre la proiezione sull‟asse y porta ad avere: 

0
p

y





 

Infine l‟equazione dell‟energia, con il termine dissipativo , nello strato limite si semplifica nella 
forma seguente: 

22

2

T T T u
u v a

x y y y

    

    
    

 

Queste ultime tre equazioni (nel piano) rappresentano le cosiddette equazioni dello strato limite che 
descrivono compiutamente tutta la fenomenologia (meccanica e termica) della convezione termica. 

L‟integrazione di queste equazioni non è affatto semplice e rappresenta uno dei problemi più 
complessi di tutta la Scienza e la Tecnica. Queste equazioni descrivono fenomeni complessi i più vari, 
dalla meteorologia terrestre, alle correnti marine, agli scambi convettivi di tutti i corpi, … 

Si osservi come le equazioni di continuità e di quantità di moto consentano di risolvere il campo 
di moto (u e v) mentre l‟equazione della temperatura fornisce il campo termico, T.  

La risoluzione delle prime due equazioni può essere considerata indipendente dalla terza fino a 

quando non si abbia parametri ( e ) dipendenti dalla temperatura.  
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Ciò non sempre si verifica e in particolare con la convezione naturale si ha proprio questa 
dipendenza (ipotesi di Bussinesque) e pertanto le tre equazioni risultano accoppiate e non possono essere 
risolte separatamente, con aggravio notevole dei calcoli.  

Pertanto possiamo considerare disaccoppiati le equazioni meccaniche da quella dell‟energia solo 
per la convezione forzata mentre per quella naturale questa separazione non è più possibile. 

5.5.1 IL COEFFICIENTE DI CONVEZIONE TERMICA 

Scriviamo qui di seguito le equazioni dello strato limite: 

0
u v

x y

 
 

 
 

2

2

1u u p u
u v

x y x y




   
   

   
  A) 

22

2

T T T u
u v a

x y y y

    

    
    

 

Si può immediatamente osservare che in esse non compare il coefficiente di convezione termica h. Come 
mai? In effetti queste equazioni descrivono i fenomeni fondamentali che costituiscono il fenomeno 
complesso della convezione termica: il fluido si riscalda, si sposta e trasporta con sé l‟energia interna 
(fenomeno di trasporto). Se vogliamo determinare h occorre considerare che l‟equazione di Newton è 
una semplificazione macroscopica della complessità dei fenomeni suddetti. Newton pose in relazione la 
temperatura della parete e quella del fluido indisturbato mediante la nota equazione: 

 " p fq h T T   

Va ancora considerato che la parete trasmette il flusso: 

0

"
y

T
q

y




 
   

 
 

Deve allora essere: 

 
0

p f

y

T
h T T

y




 
   

 
 

e pertanto risulta: 

 
0y

p f

T

y
h

T T




 
  

 



  [100] 

Quindi se si conosce il gradiente di temperatura nel fluido all‟attacco della parete (per y=0) allora 
è possibile calcolare il coefficiente h. Pertanto la risoluzione delle equazioni dello strato limite e in 
particolare del campo di temperatura (per altro dipendente da quello di velocità) porta al calcolo di h mediante 
la relazione precedente. 

5.5.2 I PARAMETRI DI SIMILITUDINE 

Se si trascura l‟effetto del gradiente di pressione nell‟equazione della quantità di moto e del 
termine dissipativo nell‟equazione dell‟energia allora le equazioni dello strato limite divengono: 

0
u v

x y

 
 

 
 



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

71 

2

2

u u u
u v

x y y


  
 

  
  B) 

2

2

T T T
u v a

x y y

  
 

  
 

Appare evidente l‟identità formale delle ultime due equazioni che hanno a primo membro il 

termine convettivo u v
x y

 


 
 relativo, rispettivamente, alla velocità in direzione del moto, u, e alla 

temperatura e a secondo membro il termine di attrito o di flusso di conduzione entrambi con analoga 
forma matematica17.  

Si osserva ancora che il gradiente di pressione dipende dalla geometria di scambio e non dalle 

caratteristiche dello scambio convettivo. Ad esempio, per il moto all‟interno di condotti circolari p
x




 

è dato dalla relazione di Weissbach 
21

2

up
x d

 



. Pertanto quanto detto sul formalismo matematico 

può ancora ritenersi valido in presenza del gradiente di pressione.  

Il termine dissipativo, invece, dipende dal campo di velocità e pertanto la sua presenza costituisce 
una differenza formale non trascurabile. Sorge spontanea la domanda se sia possibile modificare queste 
equazioni per renderle adimensionali. Ponendo: 

* ; *
x y

x y
L L

   

* ; *
u v

u v
u u 

   

*
p

T T
T

T T









 

2
*

p
p

u 

  

allora le equazioni dello strato limite, A),  inizialmente scritte divengono: 

* *
0

* *

u v

x y

 
 

 
 

2

2

* * 1 *
* * *

* * * Re *

u u p u
u v

x y x y

   
   

   
 

2

2

* * 1 *
* *

* * Re Pr *

T T T
u v

x x y

  
 

   
 

con i numeri adimensionali di Reynolds e di Prandtl definiti, come è noto, da: 

Re
wL wL

 
   

Pr
pc

a

 


   

                                                
17 Proporzionalità, tramite a e  alla derivata seconda della velocità e della temperatura. 
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Queste nuove equazioni sono ora adimensionali e consentono di risolvere il campo di velocità 
adimensionale, u* e v*, e di temperatura, T*.  

In genere si hanno funzioni del tipo: 

*
* * *, *, ,Re

*

dp
u u x y

dx

 
  

 
 

*
* * *, *, ,Re

*

dp
v v x y

dx

 
  

 
 

E ancora per la temperatura adimensionale: 

*
* * *, *, ,Re,Pr

*

dp
T T x y

dx

 
  

 
 

Si ricordi che *
*

dp
dx

 dipende dalla geometria, come pure la lunghezza di riferimento L. Se si 

applica la relazione [100] per il calcolo di h allora si ha: 

*
*

* 0

* *
Re,Pr, , *

* *

x
x

y

h L T dp
Nu f x

y dx


   
     

   
 

Il valore medio di hx* dipende da: 

*
0

1 *
* Re,Pr,

*

L

x

dp
Nu Nu dx f

L dx

 
   

 
  

con Nu numero di Nusselt. Per data geometria e quindi per assegnato *
*

dp
dx

 si ha il legame 

funzionale: 

 Re,PrNu f   [101] 

Questa relazione è molto importante perché ci indica un legame funzionale fra il numero di 
Nusselt (che contiene h) e i numeri adimensionali di Reynolds e di Prandtl. Il numero di Prandtl è anche 
dato dal rapporto fra la viscosità cinematica (detta anche diffusività meccanica) e la diffusività termica. 

5.5.3 ANALISI ADIMESIONALE PER LA CONVEZIONE FORZATA 

L‟analisi adimensionale mediante l‟applicazione del teorema di Buckingam18 trova esattamente gli 
stessi risultati visti sopra con l‟adimensionalizzazione delle equazioni dello strato limite. Non sfugge 
certamente il significato fisico del precedente sviluppo: partendo dalle equazioni costitutive della 
convezione termica (forzata) si è pervenuti alla definizione del legame funzionale fra le grandezze 
termofisiche in gioco presenti nei numeri adimensionali Nu, Re e Pr.  

Ancora dalle equazioni di Navier - Stokes per lo strato limite per la convezione forzata si ha che la 
velocità del fluido è  imposta esternamente mediante un circolatore del fluido e pertanto si osserva che 
il coefficiente di convezione h è funzione delle seguenti variabili:  

( , , , , , )ph h w l c     [102] 

Si possono scrivere le seguenti relazioni dimensionali: 

   l L  

                                                
18 L‟Analisi Adimensionale di Buckingam fornisce una semplice procedura matematica per semplificare il numero di 

variabili indipendenti nello studio di un problema complesso. Essa viene attuata indipendentemente dalla conoscenza del 
fenomeno fisico e, pur se semplice nella trattazione, fa perdere di vista il reale significato delle grandezze in gioco. Per il 
teorema di Buckingam (o teorema pi-greco) si dimostra che se una grandezza k dipende da m altre variabili e se è possibile 
scegliere n variabili indipendenti allora la variabile k si può porre in funzione di m-n gruppi adimensionali. 
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  1w LT      

  3ML      

  1 1ML T       

  3 1MLT       

2 2 1

pc L T          

  3 1h MT       

Ipotizzando una relazione di tipo monomia19 del tipo: 

a b e d e f

ph C w l c     [103] 

si ottiene l‟equazione di congruenza: 

 3 1 3 1 1 1 2 2 1 3 1
a b c e fd

MT C ML ML T LT L L T MLT                                   [104] 

da cui è possibile ricavare il sistema di congruenza dimensionale: 

0 3 2              per   L

 1                                     per  M

3 2 3                        per  T

1                                       per  

a b c d e f

a b f

b c e f

e f 

      


  

     
   

  [105] 

Ancora procedendo come per la convezione naturale, risolto il sistema per 6-4=2 variabili 
arbitrarie scelte come indipendenti si ha che la [104] diviene: 

nm

pcwl
h

l

 

 

  
   

   
  [106] 

si perviene ad una relazione fra tre gruppi adimensionali e più precisamente fra i numeri di 
Nusselt, Prandtl e Reynolds, già introdotti in precedenza. 

Il legame funzionale è del tipo: 

Re Prm nNu C     [107] 

o più in generale della forma 

(Re,Pr)Nu f    [108] 

Nel prosieguo sono fornite alcune tabelle utili per il calcolo dei coefficienti di convezione termica 
sia in regime forzato che naturale. 

5.6 CONVEZIONE IN REGIME TURBOLENTO 

Le equazioni dello strato limite A) così come sono scritte valgono per regimi laminari nei quali si 
possono individuare con precisione i percorsi e le velocità delle particelle di fluido in movimento. La 
cosa non risulta semplice nel caso di moto turbolento a causa della imprevedibile casualità del moto.  

Ogni particella in un dato istante, infatti, può spostarsi liberamente in ogni direzione ma il valore 
medio in un periodo temporale congruo deve avere una componente media della velocità non nulla 

solo nella direzione di moto e cioè deve essere 0 , 0u v w   .  

Seguendo una metodologia di studio suggerita da Prandtl è possibile scrivere, in ogni istante: 

                                                
19 In realtà non è necessario supporre che il legame funzionale sia monomio. Si dimostra che il procedimento resta 

valido anche per relazione di tipo polinomiale. Si è preferito utilizzare la forma monomia per semplicità espositiva. 
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'u u u   

'v v v   

'w w w   

'T T T   

'p p p   

avendo indicato con gli apici i valori fluttuanti e con il sopra segno i valori medi di ciascuna 
grandezza. Le equazioni dello strato limite A) con le precedenti sostituzioni possono essere risolte 
tenendo presente che, statisticamente, si hanno le seguenti eguaglianze: 

   
2 22

' 0

0 ; 0 ; 0

' 0

' '

'

u

u u u

x

u v u v
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uv uv u v

u u u

 



     
     

     

  



 

 

 

e pertanto divengono: 

0
u v

x y

 
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1
' '

u u p u
u v u v

x y x y y




     
     
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1
' ' ' '

p

T T T u
u v a v T u v

x y y y c y y


        
       

        


 

Ponendo: 

' ' M

u
u v

y



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
 

con M la diffusività meccanica del vortice e ancora: 

' ' H

T
v T

y



 


 

con H detta diffusività termica del vortice si può ancora scrivere: 

0
u v

x y

 
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 
1

M

u u p u
u v

x y x y y
 



     
     
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  C) 

   
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H M

p

T T T u
u v a

x y y y c y y
  

        
       

        
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che sono le nuove equazioni dello strato limite per il regime turbolento. Come si può osservare 

adesso le incognite sono passate da tre (u,v,T) a cinque (u,v,T, M, H) pur avendo sempre tre equazioni a 
disposizione.  

Ne segue che la soluzione del campo dinamico e termico non è più possibile con le sole 
equazioni costitutive C) ma ad esse vanno aggiunte altre due equazioni che definiscono le diffusività del 

vortice meccanica, M, e termica, H. Queste equazioni sono di solito sperimentali, come si vedrà nel 
prosieguo con i profili universali di velocità e di temperatura. 

5.6.1 NUOVA TEORIA SULLA TURBOLENZA 

Per oltre un secolo si è associato alla parola turbolenza il significato di caotico nel senso classico di 
indeterminazione ossia di incapacità a gestire in modo rigoroso fisico – matematico il problema.  

Quando un problema si presenta in modo non direttamente risolvibile o quanto meno gestibile 
con le conoscenze del momento allora l‟Uomo cerca trovare sempre una via alternativa che consiste nel 
definire un modello pià semplice che riduce la complessità del problema e che quindi porta ad avere 
risultati utili anche se si è perso il legame diretto fra causa ed effetto. 

L‟idea di Kutadelaze di definire le variabili turbolente come somma di un valore medio e di un 
valore istantanemanete variabile (come fatto nel precedente paragrafo) è certamente stata utile ad 
affrontare e risolvere un problema che nell‟ottocento non era risolvibile con le conoscenze dell‟epoca. 

Pur tuttavia questa procedura ha di fatto posto un velo all‟intelligenza dei ricercatori di diverse 
generazioni perché ha impedito loro, per una sorta di pigrizia mentale, di ricercare una soluzione che 
avesse un legame diretto con il fenomeno complesso della turbolenza. 

In pratica la metodologia di Kutadelaze non risponde alle domande più dirette ed elementari che 
un ricercatore si deve porre: perché avviene la transizione dal moto laminare al moto turbolento? 

In effetti la Statistica ci insegna che il valore medio di una variabile nasconde tutta la statistica di 
ordine superiore che essa può presentare focalizzando l‟attenzione solo sul primo momento statistico, il 
valore medio. Le fluttuazioni non sono più prese in considerazione e con esse la storia evolutiva del 
fenomeno legato alla variabile fluttuante. 

Se osserviamo il pennacchio di fumo che si origina da una sigaretta accesa, ad esempio, possiamo 
notare che all‟inizio (nel tratto più vicino al focolare) si ha un andamento ordinato e laminare.  

Successivamente, ad una certa distanza dal focolare, si comincia ad osservare una prima 
oscillazione (vedi Figura 45) di relativamente piccola ampiezza cui seguono altre oscillazioni di 
ampiezza crescente. 

 

Figura 45: Pennacchio originato da un focolare in basso 
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Quando queste oscillazioni superano determinati valori che dipendono dalle condizioni evolutive 
(tipo di fluido, temperatura del focolare, distanza, ….) allora si ha l‟inizio della formazione di veri 
vortici caratteristici del moto turbolento. 

Se consideriamo un segmento di pennacchio e consideriamo le forze agenti ai suoi estremi allora 
lo possiamo schematizzare come un‟asta soggetta ai carichi di punta. E‟ noto che questa condizione di 
carico porta all‟instabilità e quindi alla flessione quando la rigidezza flessionale (EI) dell‟asta è inferiore 
ad un valore limite caratteristico per la geometria, i vincoli e i carichi. 

La stessa cosa possiamo pensare per il segmento di pennacchio: quando, allontanandosi dal 
focolare, viene sottoposto a forze esterne alle quali non può resistere ecco che esso si flette e da quel 
momento iniziano le oscillazioni che sfociano nella turbolenza. 

Le considerazioni appena accennate sono oggi sviluppate dai vari ricercatori ottenendo eccellenti 
risultati e un grande avanzamento della conoscenza nelle problematiche della turbolenza che comincia a 
non apparire più come un moto caotico e quindi non descrivibile in modo esatto ma come un evento 
perfettamente deterministico che è possibile studiare con le metodologie solite). 

Ancora una volta la banalizzazione della realtà e il velo mentale che da questa ne deriva ha portato 
per oltre un secolo a ritenere risolto un problema che invece è ancora tutto da studiare e risolvere. Il 
modello semplificato di Kutadelaze è da ritenere solo un semplice surrogato della realtà, un modello 
comunque distante anche se ci ha consentito di pervenire a risultati importanti nella ricerca. 

C‟è da fare un confronto metodologico con quanto si è verificato per il coefficiente di 
convezione: Newton superò la complessità del fenomeno definendo, in modo puramente apodittico, h 
come rapporto fra flusso termico specifico e differenza di temperatura e così siamo andati avanti per 
secoli. Allo stesso modo Kutadelaze semplificò il problema della turbolenza con le equazioni dei valori 
medi. Entrambe le posizioni si scostavano molto dalle equazioni costitutive del fenomeno ma, 
dobbiamo riconoscerlo, non era possibile fare altrimenti nei momenti storici in cui tali problemi sono 
stati posti ed affrontati. 

Oggi siamo in grado di risolvere le equazioni costitutive di Navier Stokes mediante l‟utilizzo di 
potenti computer e sofisticati programmi di calcolo (alias mediante algoritmi di calcolo opportuni) 
senza i quali poco potremmo fare. Lo stesso dicasi per lo studio della turbolenza. 

5.6.2 LA DIFFUSIVITÀ MECCANICA TURBOLENTA 

Con riferimento alla Figura 47 si immagini una particella di fluido alla distanza y dalla parete in 
moto turbolento all‟interno dello strato limite dinamico. La velocità media longitudinale è pari a 

( , )u x y  mentre quella trasversale è nulla. Se questa particella passa nello strato (y – l), con l lunghezza 

media statistica di scambio fra gli strati di fluido, allora la velocità media diviene ( , )u x y l . Questa 

distanza è detta lunghezza di mescolamento e definisce il percorso all‟interno del quale la particella di fluido 
mantiene ancora la sua identità. La fluttuazione u’ provocata da questa migrazione nel livello (y – l) è 
dello stesso ordine di grandezza e può essere scritta nella forma: 

' ( , ) ( , )
u

u u x y u x y l l
y


 


   

Allo stesso modo si può pensare che la fluttuazione v’ sia dello stesso ordine di grandezza e che 
ancora si possa scrivere: 

'
u

v l
y




  

Allora la diffusività meccanica del vortice, M, può essere posta proporzionale a: 

2

M

u
l

y





  

Misure sperimentali suggeriscono che la lunghezza di mescolamento è proporzionale alla distanza 
dalla parete e cioè che sia: 
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l y  

con =0.4 determinato sperimentalmente da von Karman. Pertanto sostituendo nella 
precedente relazione si ha: 

2 2

M

u
y

y
 





 

che è l‟equazione classica della rappresentazione della diffusività meccanica del vortice e che è stata 
utilizzata dai vari ricercatori per risolvere il problema della chiusura delle equazioni dello strato limite. 

5.6.3 LA DIFFUSIVITÀ TERMICA TURBOLENTA 

Quando le particelle si spostano da un piano ad un altro (quindi con variazione di v‟) trasportano 
anche la loro entalpia.  

u

u + du

v

v + dv

Parete

Curva della strato limite

Particella 1

Particella 2

T

T]dT

L

dT

Profilo di
Temperatura

x

 

Figura 46: Lunghezza di mescolamento termica 

Con riferimento alla Figura 46 si può osservare che le fluttuazioni generate dal mescolamento 
turbolento dipendono dalla lunghezza media di mescolamento, l, e che si può scrivere: 

'
2 2

l l T
T T y T y l

y

   
        

   
 

Il trasporto di entalpia corrispondente è dato da: 

   " ' ' 'pq c v T T   

Il valore medio temporale di questo flusso (turbolento) vale: 

 " ' ' 'y pq c v T  

In pratica il fluido a coordinate y inferiori cedono calore al fluido a coordinate y maggiori e 
pertanto nasce un flusso termico apparente dovuto agli effetti di mescolamento per la turbolenza. Tenendo 
conto dell‟espressione di T‟ trovata in precedenza si ha: 

 " ' ' ' 'y p p

T
q c v T c l v

y
 


  


 

Ponendo: 

'ta l v  

detta diffusività termica turbolenta, si può ancora scrivere per il flusso turbolento: 
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 " ' ' ' 'y p p p t

T T
q c v T c l v c a

y y
  

 
    

 
 

In definita il flusso termico totale (conduttivo più turbolento) è pari a: 

 "y p t

T
q c a a

y



  


 

come visto per l‟equazione dell‟energia in moto turbolento. E‟ opportuno osservare che la 
diffusività termica del vortice non è una proprietà termofisica del fluido, come è invece la diffusività 
molecolare a, ma dipende dal campo di moto, come la viscosità dinamica turbolenta.  

Per l‟analogia del meccanismo di turbolenza sopra descritto e cioè per l‟equivalenza del 
meccanismo di trasporto della quantità di moto e dell‟entalpia, si può supporre (ma non sempre è così) 
che sia: 

Pr 1t
t

ta


   

Questa ipotesi semplificativa è spesso assunta da diversi ricercatori come base di partenza per le 
loro teorie. 

5.7 PROFILO UNIVERSALE DI VELOCITÀ 

Se si considera il moto di un fluido sopra una lastra piana si osserva che la distribuzione della 
velocità, a partire dalla parete, varia secondo un profilo tipico indicato in Figura 44.  

Si può subito osservare che il fluido per aderenza molecolare ha velocità nulla in corrispondenza 
della parete e che questa velocità va sempre più crescendo fino a raggiungere la velocità che il fluido 
aveva all‟imbocco della lastra piana.  

La distribuzione della velocità all‟interno dello strato limite è di grande importanza ai fini del 
calcolo del fattore di attrito e dei coefficienti di scambio termico. 

 Nel caso di moto laminare il profilo di velocità può essere determinato integrando le equazioni di 
Navier Stokes all‟interno dello strato limite dinamico e pervenendo ad un profilo di tipo parabolico o 
assimilabile ad esso.  

Ben diverse, come si è visto nel paragrafo precedente, sono le condizioni quando il moto diviene 
turbolento. In questo caso, infatti, la velocità istantanea di una particella può andare in qualunque 
direzione, in modo del tutto casuale.  

In Figura 47 si vede come una particella ad ordinata y che si sposta nel piano ad ordinata y +dy 
scambia con la analoga che scenda nel piano y (per conservazione della massa) la quantità di moto: 

 2 1' 'p dm u u    

ed analogamente l‟energia: 

 2 1' 'pde c dm T T   

Ne deriva che la turbolenza fa nascere due effetti nuovi: un rallentamento degli strati veloci per 
effetto dell‟assorbimento di quantità di moto degli strati più lenti ed uno scambio di entalpia fra 
particelle di strati a diverse temperature.  

L‟esigenza di risolvere le variabili u , v  e T  nonché M e H con tre sole equazioni di Navier 
Stokes: ha generato il cosiddetto  problema  della chiusura nel senso che, oltre alle equazioni suddette 
occorre conoscere altre relazioni, solitamente di tipo sperimentale, per la determinazione delle diffusività 
del vortice meccanica e termica.  

Un metodo elegante e proficui per risolvere questo problema è quello dei cosiddetti profili 
universali di velocità e di temperatura che qui si richiama brevemente. 
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u

u + du

v

v + dv

Parete

Curva della strato limite

Particella 1

Particella 2

y

y + dy

 

Figura 47: Scambio di quantità di moto e di energia fra particelle in moto turbolento  

Con riferimento alla Figura 44, si definiscono le seguenti grandezze: 

*
*

*
; ;s yv u

v y v
v



 

      

ove s è lo sforzo di attrito alla parete, y la distanza dalla parete, u la velocità del fluido a quella 

distanza e  la viscosità cinematica. L‟equazione della quantità di moto del sistema C) in vicinanza della 

parete, ove 0 0u ev  , portano ad avere, trascurando gli effetti del gradiente di pressione: 

 0 M

u

y y
 

  
  
  

 

ovvero, integrando una prima volta: 

  scostante=M

u

y


 



 
  

 
 

Allora integrando nuovamente e tenendo conto delle posizioni sopra fatte si ha la relazione: 

0

1

y

M

dy
u





 
 


  

che è possibile integrare se si conosce il rapporto fra la diffusività del vortice, eM, e la viscosità 
cinematica.  

Si osservi che la variabile y+  è una sorta di numero di Reynolds calcolato per la distanza y dalla 
parete con riferimento alla velocità v* detta velocità di parete. La y+ è detta anche numero di Reynolds di parete. 
Van Driest ha trovato sperimentalmente la seguente relazione: 

2

1
2 2

21
1 4 1

2

y

M AK y e









  
    

    

 

con K=0.40 ed A=0.5 e pertanto l‟integrazione fornisce i seguenti risultati 

y+<5  u+=y+ 

y+ >40  u+= 1/K ln(y+) +C  

e nell‟intervallo 5 40 si ha un andamento complesso rappresentato in Figura 48. Il vantaggio del 
profilo universale di velocità è quello di essere rappresentato in forma adimensionale e di valere anche per 
moto all‟interno di condotti chiusi. 
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Figura 48: Profilo universale di velocità 

Tramite questo profilo, calcolata la y+ si calcola la u+  e quindi la velocità vera u del fluido alla 
distanza y dalla parete. Conoscere la distribuzione della velocità al variare della distanza dalla parete è 
particolarmente utile nel moto turbolento dove la casualità del movimento genera fenomeni di 
diffusività meccanica e termica fittizi, cioè dovuti allo scambio di quantità di moto e di energia fra 
particelle provenienti da strati diversi. 

5.8 PROFILO UNIVERSALE DI TEMPERATURA 

Se la lastra piana è riscaldata uniformemente, vedi Figura 49, allora oltre al profilo di velocità 
dinamico si forma anche un profilo di temperatura. Lo strato limite termico può avere sviluppo simile o 
anche diverso da quello dinamico in funzione delle caratteristiche del fluido. Procedendo allo stesso 
modo visto per il profilo di velocità si osserva che l‟equazione dell‟energia delle C) in prossimità della 
parete fornisce: 

 0 H

T
a

y y


  
  
  

 

che integrata una prima volta diviene: 

  s

p

-q"
costante=

c
H

T
a

y




 
  

 
 

che integrata ancora una volta, tenuto conto delle posizioni adimensionali fatte in precedenza, 
produce la relazione: 

0

" y

p

p H

q dy
T T

c a 
  

  

ove q‖ è il flusso termico specifico applicato alla parete,  e cp cono la densità e il calore specifico 

del fluido, a e H rispettivamente la diffusività termica molecolare e la diffusività termica turbolenta 
generata dalla miscelazione delle particelle di fluido provenienti dai vari strati nello strato limite 
turbolento.  
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u

 

Figura 49: Profili di velocità e di temperatura per moto su lastra piana riscaldata  

La precedente relazione viene adimensionalizzata nella forma: 

 
*

0 1 1"

Pr Pr

yp

p
M

t

c v dy
T T T

q







 
   


  

ove Tp è la temperatura di parete, Pr è il numero di Prandtl del fluido (Pr = a) e Prt =/H il 
numero di Prandtl turbolento.  

 

Figura 50: Profilo universale di temperatura 

Nota la relazione di Van Driest per il rapporto M/la precedente relazione può essere integrata 
per vari valori di Pr ottenendo le curve di Figura 50 detta profilo universale di temperatura.  

L‟utilizzo di queste curve è del tutto simile a quello del profilo universale di velocità e risulta 
estremamente utile per conoscere i profili reali di temperature negli strati limiti termici in regime 
turbolento. 

In Figura 50 si può osservare la dispersione sperimentale dei dati per il valore Pr = 5.  
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Analoghe dispersioni si hanno per altri numeri di Prandtl, in ottimo accordo con le curve teoriche 
sopra determinate. Quando si assume Prt =1 e Pr =1 allora si può dimostrare che gli stati limite di 
velocità e di temperatura coincidono. 

Negli altri casi si ha una diversificazione sensibile che porta anche ad un allontanamento delle 
ipotesi sopra descritte. Si hanno varie teorie che cercano di risolvere il problema della chiusura per i casi 
più comuni della tecnica e si rimanda ai testi specializzati per ulteriori approfondimenti. 

5.9 ALTRE SOLUZIONI DEL PROBLEMA DELLA CHIUSURA 

Come si è sopra detto, molti ricercatori hanno cercato di risolvere il problema della chiusura delle 
equazioni dello strato limite turbolento affrontando sperimentalmente la determinazione delle due 
diffusività del vortice. In Tabella 6 si ha una rassegna delle equazioni proposte, ivi compresa quella di 
Van Driest vista in precedenza. 

5.9.1 ANALISI DEGLI ORDINI DI GRANDEZZA 

Le equazioni dello strato limite A) o B) consentono di ottenere molte informazioni con semplici 
considerazioni degli ordini di grandezza. 

 

Tabella 6: Altre soluzioni del problema della chiusura 

Ad esempio possiamo facilmente vedere che lo spessore dello strato limite, ,  è proporzionale 
alla distanza x dal bordo di attacco ed inversamente proporzionale al numero di Reynolds 
corrispondente. Sostituendo ai valori indicati dalle equazioni differenziali le grandezze massime 

corrispondenti, cioè sostituendo u con u e x con  allora l‟equazione di continuità fornisce: 

u v

x 
   

e l‟equazione della quantità di moto: 
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2

u u
u v

x 
 

   

che, per la precedente relazione, porta ad avere: 

1/ 2

vx

u




 
  
 

 

ovvero: 

Rex

x
   

avendo indicato con Rex

u x


 .  

Con lo stesso procedimento si può dimostrare che il fattore di attrito dipende dall‟energia cinetica 
specifica e dal numero di Reynolds.  

Infatti possiamo scrivere, per l‟equazione di Newton: 

1/ 2
1

2 2 2

0

Re xs

y

u u u x
u u

y
    

 


 

 



   
      

   
 

Questo risultato è confermato anche dall‟analisi adimensionale e dai dati sperimentali. Il fattore di 
attrito di parete, Cfx, può essere facilmente calcolato in base ai risultati sopra trovati. Risulta, infatti: 

2

2

s
fxC

u



 

  

e pertanto, combinando i risultati precedenti: 

1/ 2
Refx xC


  

5.10 SOLUZIONE DI BLASIUS DELLE EQUAZIONI PRE STRATO LAMINARE 

Consideriamo le equazioni dello strato limite nella forma B). La soluzione analitica esatta non è 
affatto agevole da trovare. Blasius ha proposto una soluzione, all‟inizio del 1900, basata sul metodo della 
similitudine20.   

Se si osserva la Figura 51, infatti, si può dedurre che i profili di velocità a distanze variabili 
dall‟imbocco siano fra loro simili. Si pone allora, ricordando quanto sopra trovato per lo spessore dello 

strato limite , la variabile di similitudine nella forma: 

Rex

y y

x



   

La soluzione contemporanea delle equazioni di continuità e della quantità di moto non è agevole 
e pertanto si cerca di ridurre le due equazioni differenziali ad una sostituendo le variabili u e v con: 

;u v
y x

  
  
 

 

La funzione  è detta funzione della traiettoria21 e la posizione precedente verifica immediatamente 
l‟equazione di continuità essendo: 

                                                
20 Gli anglosassoni indicano questo metodo con il termine similarity. 

21 Ovvero streamfunction. 
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x

x





 

Figura 51: Similitudine dei profili di velocità 

2 2

0
u v

x y y x x y

    
   

     
 

L‟equazione di continuità fornisce: 

2

2

u u u
u v

x y y


  
 

  
 

e sostituendo le precedenti relazioni: 

2 2 3

2 3y y x x y y

    


    
 

     
 

Le condizioni al contorno sono ora le seguenti: 

0  per    y=0
y





 

0    per    y=0   

     per     y  u
y





  


 

Ponendo ora: 

     
1/ 2

,x y u x f    

con f() funzione incognita allora l‟equazione differenziale precedente diviene: 

2 ''' '' 0f ff    [109] 

ove si hanno le nuove condizioni al contorno: 

' 0 0f f per     

' 1f per    

L‟equazione [109] è ora nella sola variabile f e può essere risolta con sviluppi in serie ottenendo i 
valori della seguente Tabella 7. Si osservi che vale la relazione: 

df
u u

d
  

e quindi che il rapporto: 
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u df

u d

  

deve variare da 0 a 0.99 per la stessa definizione di strato limite. 

 

Tabella 7: Soluzione dell’equazione di Blasius 

Dalla Tabella 7 si ricava che per 
df

d
=0.99 si ha =0.419.  

Pertanto lo spessore dello strato limite vale: 

4.92
Rex

x
   

Inoltre, sempre dalla stessa Tabella 7 si ricava: 

2

2

0

0.332
d f

d





 
 

 
 

pertanto si può calcolare il coefficiente di attrito, Cfx, dato da: 

2
1/ 2 1/ 20

2 2

0

2 Re 0.664Re

2

y

fx x x

u

y d f
C

du






 

 

 
 
   

   
 

 

Il valore medio del coefficiente di attrito per la lunghezza L della lastra vale: 

1/ 2

0

1
2 1.328Re

L

fx fx fx xC C dx C
L


    

5.11 SOLUZIONE DI BLASIUS DELLO STRATO LIMITE TERMICO 

Si può procedere allo stesso modo di quanto fatto nel paragrafo precedente per determinare 
l‟andamento dello strato limite termico e calcolare il coefficiente di convezione termica. 

L‟equazione dell‟energia: 



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

86 

2

2

T T T
u v a

x y y

  
 

  
 

può essere riscritta in funzione della nuova variabile: 

p

p

T T

T T








 

ed assumendo che, per la stessa similitudine del profilo dello strato limite termico, sia: 

     

con  variabile di similitudine sopra indicata. La sostituzione porta ad avere la nuova equazione 
differenziale: 

2

2

Pr
0

2

d d
f

d d

 

 
    [110] 

ove Pr è il numero di Prandtl del fluido. Le nuove condizioni al contorno sono: 

   0 0 ; 1     

Nel caso che sia Pr=1 la precedente equazione differenziale è formalmente identica a quella 

derivata dall‟equazione della quantità di moto ove si sostituisca 
df

d



  e quindi con riferimento alla 

Tabella 7 si ha, per =0: 

1/3

0

0.332Pr
d

d







  

Infine il coefficiente di convezione termica è dato da: 

 

0

Re'' p x

x

p p

T Tq d
h

T T T T d x









  


   

 
 

e quindi: 

1/30.332 Prx

u
h

x



    

ovvero anche: 

1/ 2 1/30.332Re Prx
x x

h x
Nu


   

Il valore medio del coefficiente di scambio termico per la lunghezza L della lastra è dato da: 

1/ 2

1/3 1/ 2 1/3

1/ 20 0

1
0.332 Pr 2 0.664Re Pr

L L

L x x L

u dx
h h dx h

L L x








 
    

 
   

5.11.1 ANALOGIA DI COLBURN 

Confrontiamo i numeri locali di hx e  Cfx allora si può scrivere: 

1/ 20.332Re
2

fxC
  

1/ 2 1/30.332Re Prx xNu   
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Combinando le due relazioni e definendo: 

Re Pr

x x
x

p x

h Nu
St

c u 

   

allora si ha: 

1/ 2 2/30.332Re Prx xSt
   

ossia: 

2/3Pr
2

fx

x

C
St   

che è la correlazione di Colburn. Essa assume grande importanza nella pratica perché lega il numero 
di Nusselt (nel quale è presente h) con il coefficiente di attrito, Cfx, di più agevole determinazione 
sperimentale. Pertanto da una campagna di misure meccaniche del coefficiente di attrito si possono 
conoscere i valori del coefficiente di convezione. 

5.11.2 LA TEMPERATURA DI RIFERIMENTO 

Per l‟applicazione delle relazioni sopra trovate occorre calcolare le proprietà termofisiche alla 
temperatura di film data dalla media aritmetica fra la temperatura di parete e quella del fluido 
indisturbato: 

2

p

f

T T
T


  

5.12 SOLUZIONE PER STRATO LIMITE TURBOLENTO DI UNA LASTRA 

Per una  lastra piana si ha il passaggio dal moto laminare a quello turbolento quando il numero 

locale di Reynolds supera 5105. Nasce così lo strato subliminare e poi lo strato turbolento totalmente 

sviluppato. Al di là di 4106 si ha certamente il moto turbolento sviluppato. Lo spessore dello strato 
limite turbolento è dato dalla relazione: 

1/5
0.37

Rex

x
   

Il coefficiente di attrito vale: 

1/5
0.0592Refx xC


  

Il valore locale del numero di Nusselt vale: 

4/5 1/30.0296Re Prx xNu   

valida per 0.6 < Pr < 60. Il valore medio del coefficiente di convezione è dato dalla relazione: 

 , ,
0

1 lam

lam

x L

L lam x turb x
x

h h dx h dx
L

    

Assumendo una transizione per Re=5105 allora la precedente relazione porta ad avere: 

  1/ 2 4/5 5/5 1/3
,,0.664Re 0.037 Re Re Prx lamL x lam LNu     

che si può ulteriormente ridurre a: 

 4/5 1/30.037Re 871 PrL LNu    

valida per 5105 < Re < 108 e per 0.6 < Pr < 60. 
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5.12.1 STRATO LIMITE SU SUPERFICI CILINDRICHE 

Nel caso in cui si consideri il deflusso di un fluido sopra superfici cilindriche, vedi Figura 52, 

allora occorre considerare una forte variabilità delle condizioni locali al variare dell‟angolo . 

 

Figura 52: Deflusso sopra superfici cilindriche 

Il flusso si mantiene laminare fino a quando Re < 2105 dopo di che diviene turbolento. Inoltre 
per valori elevati di ReD si ha il distacco della vena fluida per un angolo pari a circa 140°. La forza di 
trascinamento esercitata dal fluido sulla superficie apparente del condotto cilindrico è data dalla 
relazione: 

2

2
D D

w
F C S


  

ove CD è il fattore di drag dato dalla Figura 53. Il coefficiente di convezione locale varia con 

l‟angolo  secondo quanto rappresentato in Figura 54. Il valore medio sul contorno circolare è dato 
dalla relazione: 

 
1/ 4

1/ 2 2/3 0.40.4 Re 0.06Re PrD D D

s

Nu





 
   

 
 

valida per 10 < Re < 105 e per 0.6 < Pr < 300 e 0.25 < 
s




  < 5.  

Nel caso di banchi di tubi si utilizza la relazione: 

0.36 Pr
Re Pr

Pr

n

m
D D

s

Nu C 
 

  
 

 

con C, m ed n variabili a seconda della geometria e in particolare si ha: 

 

Figura 53: Fattore di Drag 
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C=0.4  per tubi sfalsati e ReD < 2105 

M=0.6  “ “ “ “ 

C=0.022  per tubi sfalsati e ReD > 2105 

M=0.84  “ “ “ “ 

C=0.27   per tubi allineati e ReD < 2105 

M=0.63  “ “ “ “ 

C=0.021  per tubi allineati e ReD > 2105 

M=0.84  “ “ “ “ 

La caduta di pressione vale: 

2
max

2

u
p fN Z   

con f e Z dati dagli abachi  di Figura 55 e Figura 56. 

 

Figura 54: Numero locale di Nusselt 

 

Figura 55: f e Z per passo quadrato 
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Figura 56: f e Z per passo triangolare 

5.13 CORRELAZIONI UTILI PER LA CONVEZIONE FORZATA 

Nelle prossime figure sono raccolte alcune correlazioni (sia sperimentali che teoriche) derivate 
per la convezione forzata. Ciascuna di queste correlazioni ha un campo si validità che è segnalato 
nell‟ultima colonna delle tabelle.  

 

Tabella 8: Correlazioni per convezione forzata 
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Si consiglia di controllare sempre questi campi prima di applicare qualunque correlazione 
proposta. Le tipologie prese in considerazioni sono numerose e consentono di risolvere numerosi 
problemi pratici. In ogni caso occorre sempre ricordare che l‟obiettivo principale è il numero di Nusselt, 
Nu, nel quale è definito il coefficiente di convezione h cercato.  

L‟uso delle correlazioni adimensionali risulta molto comodo, anche se all‟inizio un po‟ forviante, 
perché in questo modo ci si svincola dal sistema di misura e dalle caratteristiche geometriche e 
topologiche dello scambio convettivo. 

 

Tabella 9: Correlazioni per convezione forzata 

 

Tabella 10: Correlazioni per convezione forzata 
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5.14 CONVEZIONE TERMICA LAMINARE NEI CONDOTTI 

E‟ di grande interesse lo studio della convezione termica all‟interno di condotti circolari (o 
assimilabili). Si tratta, infatti, di un vasto campo di possibili applicazioni industriali al quale è opportuno 
dedicare maggiore attenzione.  

Con riferimento alla Figura 57 si può osservare che lo strato limite dinamico cresce dall‟imbocco 
fino al congiungimento sull‟asse del condotto. La lunghezza corrispondente è denominata lunghezza di 
imbocco e si dimostra che, per il regime laminare, vale la relazione: 

0.05Ree
D

x

D
  

STRATO LIMITE DINAMICO
 r

x

y

 

Figura 57: Strato limite dinamico in un condotto circolare 

 

Tabella 11: Correlazioni per convezione forzata 
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Ove xe è la lunghezza di imbocco anzidetta e ReD è il numero di Reynolds riferito al diametro del 
condotto. La velocità media del fluido può agevolmente essere calcolata mediante la relazione: 

2 0

1 2
( , ) ( , )

r

S

m
u u x r dS u x r rdr

S S R
   


 

Nel caso di moto laminare il profilo di velocità nel regime sviluppato è di tipo parabolico e 
rimane costante lungo la direzione di moto.  

Ciò significa che deve essere v=0   e 0u x   . Per ricavare il profilo di velocità possiamo 

utilizzare l‟equazione della quantità di moto delle A) riscritta in coordinate cilindriche: 

1u u dp u
u v r

x r dx r r r





    
     

    
 

In base alle considerazioni che sono v=0   e 0u x    allora si ha: 

1 1dp u
r

dx r r r

  
  

  
 

la quale, integrata, fornisce l‟integrale generale: 

2

1 2

1
ln

4

dp
u r C r C

dx

 
   
 

 

Le costanti di integrazioni si calcolano con le condizioni al contorno: 

 
0

0 ; 0
r R

r

du
u

dr


 
  

 
 

Ne segue: 

22

1
4

R dp r
u

dx R

    
      

     

 

che è l‟equazione del profilo di velocità cercata. Per r=0 si ha la velocità massima: 

2

max
4

R dp
u

dx

 
   

 
 

Si osservi che il rapporto fra la velocità media e quella massima vale, per quanto trovato in 
precedenza: 

2

max 2 1
u r

u R

  
   

   

 

Per la relazione di Darcy – Weissbach la caduta di pressione specifica vale: 

2

2

dx u
dp

D
    

pertanto, anche in base all‟espressione della velocità media dianzi calcolata,  possiamo calcolare il 
fattore di attrito: 

2

2

dp
D

dx

u




 
 
   
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e quindi: 
64

ReD

   

 

Tabella 12: Correlazioni per convezione forzata 

Anche lo strato limite termico si sviluppa all‟interno del condotto con andamento simile a quello 
delle velocità. La lunghezza di imbocco termica, xt, può essere calcolata, nel caso di parete riscaldata (T 
imposta) fin dall‟inizio, con la relazione: 

0.033Re Prt
D

x

D
  
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Nel caso di flusso imposto fin dall‟inizio vale la relazione: 

0.043Re Prt
D

x

D
  

I coefficienti di convezione possono essere calcolati, nei due casi di q”= cost e di T=cost, 
mediante le relazioni: 

4,36                     per " costDNu q   

e: 

3.66                      per   T=costDNu   

Nella regione di ingresso, con strato limite termico ancora non stabilizzato, si hanno le relazioni: 

12
Re PrD

x
Gz

R

  

con  
Re PrD D

Gz
x

 . 

Una correlazione valida nel caso di contemporaneo sviluppo degli strati limiti dinamico e termico 
è la seguente (Sieder – Tate): 

 

0.14

1/3
1.86 m

p

Nu Gz




 
   

 

 

valida per T0=cost, per 0.5 < Pr < 16700, 0.0044 < m

p




 < 0.75  e per  

0.14

1/3 m

p

Gz




 
  
 

>2. 

5.14.1 CONDOTTI A SEZIONE NON CIRCOLARE 

In questo caso si opera con le stesse relazioni viste per i condotti circolari ma con un diametro 
equivalente (ai fini della portata22) dato dalla relazione: 

4 passaggio

eq

bagnato

S
D

C


  

ove con Spassaggio si intende l‟area di passaggio del fluido e con Cbagnato il contorno bagnato.  

E‟ sempre bene applicare alla lettera questa definizione, specialmente in quei casi nei quali l‟area 
di passaggio è virtuale (cioè formata da più contorni) come, ad esempio, per il flusso all‟esterno dei 
condotti negli scambiatori di calore, come illustrato in Figura 58. 

In questo caso l‟area di passaggio è virtuale ed è pari al prodotto dei passi longitudinale e 
trasversale diminuita di 4 quarti di area dei condotti circolari e il contorno bagnato è pari a 4 quarti di 
circonferenza dei condotti: 

2 / 4
eq

L T D
D

D





 
  

Allo stesso modo si calcola il diametro equivalente per una sezione rettangolare. 

                                                
22 In alcuni casi (vedi reti tecnologiche per le quali si rimanda la volume 3°) si definisce un diametro equivalente a 

parità di perdite di pressione. L‟espressione ottenuta è notevolmente diversa ed è data da: 
 

 

0,625

. 0,25
1,3eq PP

a b
d

a b





. 
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L

T

D

AREA DI
PASSAGGIO

 

Figura 58: Calcolo del diametro equivalente per uno scambiatore di calore  

In Figura 59 si hanno due casi: un condotto rettangolare con lati dello stesso ardine di grandezza 
ed un condotto con una dimensione prevalente sull‟altra. 

B

A

B

A

 

Figura 59: Diametro equivalente per condotti rettangolari  

Applicando la definizione di diametro equivalente si ha: 

 

 

4

2
eq

B A
D

B A





 

Nel caso di sezione ristretta (a destra della Figura 59) allora essendo A << B si ottiene: 

 

 

 4 4
2

2 2
eq

B A BA
D A

B A B


  


 

Quindi una sezione rettangolare ristretta ha un diametro equivalente pari alla somma delle 
dimensioni minori e ciò risulta penalizzante per le perdite di pressione secondo la relazione di Darcy 
Weissbach: 

2

2eq

L w
p

D
    

Ai fini degli scambi termici, però, la presenza di spigoli acuti cambia le modalità operative e in 
particolare si osserva che il coefficiente di convezione si annulla in corrispondenza degli spigoli.  

In Tabella 13 si hanno i numeri di Nusselt per varie configurazioni geometriche sia per 
temperatura imposta che per flusso imposto. 

5.15 CONVEZIONE TERMICA NEI CONDOTTI IN REGIME TURBOLENTO  

La transizione fra regime laminare e turbolento avviene, com‟è noto dallo studio dei fluidi reali, 
quando il numero di Reynolds supera 2900 (meglio considerare 4000 nelle applicazioni pratiche).  
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La lunghezza di imbocco per lo sviluppo completo dello strato limite dinamico è data dalla relazione: 

,
10 60

e tx

D
   

In genere si assume che la lunghezza di imbocco sia pari ad almeno 60 diametri del condotto. 

Il coefficiente di attrito, Cf, è dato da: 

 

2

2
2

* 2
2

1

2

s
f

m mm

v
C

u uu






 
   

 
 

ove, si ricorsi dallo studio dei profili universali di velocità, si è posto: 

0.5

* sv




 
  
 

 

*

m
m

u
u

v

   

ed infine: 

mu y
y




   

con um velocità media del fluido all‟interno del condotto. 

 

Tabella 13: Numeri di Nusselt per varie tipologie di condotti 

Per il moto turbolento si assume valida la relazione: 
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 2.5ln 5u y    

Al variare di y (distanza dalla parete) si può calcolare y+ e quindi il valore medio di um
+ vale: 

2.5ln 1.75s
m

R
u



 


 

   
 

 

Tenendo conto della definizione del coefficiente di attrito, Cf, si ha, dopo alcuni passaggi: 

 2.5ln Re 0.85m D fu C    

Essendo = 4Cf allora dalla precedente relazione si ricava: 

 
1

2.035log Re 0.6

   

che è la relazione di Prandtl. Weissbach ha trovato una relazione comoda nelle applicazioni: 

0.20.184 Re    

valida per tubi lisci con 10000 < Re < 300000. Per condotti rugosi si hanno altre relazioni che 
tengono conto della scabrezza relativa.  

Si ricordano quella di Colebrook (vedi volume sui fluidi reali): 

1 2.51
2.0log

3.7 Re

D



 

 
 

   
 
 

 

con  scabrezza assoluta.  

Questa relazione è scomoda da utilizzare perché fornisce  in forma implicita e quindi occorre 
ricorre ad calcoli ricorsivi. Meglio usare la nuova correlazione di Haaland che, oltre ad essere esplicita, 
fornisce valori con errori entro l‟1.5% rispetto alla correlazione di Colebrook: 

1.11
1 6.9

1.8log
3.7 ReDD





  
    

   

 

5.15.1 CORRELAZIONE DI COLBURN PER MOTO TURBOLENTO 

Dalle equazioni dello strato limite per regime turbolento, C), in vicinanza della parete si ha (come 
già visto per la derivazione dei profili universali di velocità) dall‟equazione della quantità di moto: 

  s
M

u

y


 



 
  

 
 

e dall‟equazione dell‟energia: 

  s

p

-q"

c
H

T
a

y




 
  

 
 

Quest‟ultima può essere scritta nella forma: 

s

p

-q"

Pr Pr c

M

t

T

y

 



   
   

  
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con Pr M
t

H




 . Nel caso in cui Pr =Prt=1 allora le due relazioni sono formalmente eguali e 

quindi si può ritenere ancora valida la correlazione di Colburn ricavata per moto laminare: 

2/3Pr
2

fx

x

C
St   

Con riferimento al fattore di attrito di Darcy, essendo f = 4 Cf, si ha: 

2/3Pr
8

x

f
St   

che, per la relazione di Weissbach, diviene: 

2/3 0.2Pr 0.023RexSt   

dalla quale si ricava il numero di Nusselt: 

0.8 1/30.023Re PrNu   

valida per tubi lisci con 0.7 < Pr < 150,  Re > 10000 , L/D >60. Per il moto turbolento nei 
condotti si hanno altre correlazioni sperimentali molto buone e in particolare quella di Dittus – Boelter: 

0.80.023Re PrnNu   

con n pari a 0.4 nel caso di riscaldamento (Tp > Tm) ed n=0.3 per raffreddamento e con gli stessi 
limiti per Re e Pr della relazione precedente. Una correlazione molto usata è quella di Sieder Tate: 

0.14

0.8 1/30.027 Re Pr m

p

Nu




 
   

 

 

che tiene conto della variabilità della viscosità alla temperatura di parete e alla temperatura media 
del fluido. Valida è anche la relazione di Petukhov: 

 2/3

Re Pr
8

1.07 12.7 Pr 1
8

n

m

p

f

Nu
f





 
       

  

 

con n pari a 0.11 per riscaldamento uniforme a temperatura costante, 0.25 per raffreddamento 
uniforme a T costante ed pari a 0 per flusso termico imposto. 

Nella zona di profilo di velocità non sviluppato si può usare la relazione di Nusselt: 

0.055

0.8 1/30.036Re Pr
D

Nu
L

 
  

 
 

valida per 10 < D/L < 400.  

Per condotti a sezione non circolare si può applicare quanto detto per i diametri equivalenti ai fini 
del calcolo delle perdite di pressione ma occorre apportare correzioni per il calcolo del coefficiente di 
convezione che dipende fortemente dalle condizioni locali e della presenza degli spigoli. 

5.16 SCAMBIO TERMICO CON I METALLI LIQUIDI 

I metalli liquidi sono caratterizzati da una elevata conducibilità termica e quindi da numeri di 

Prandtl (Pr =cp/) molto piccoli (<<1). Pertanto le correlazioni viste in precedenza non risultano più 
valide, come indicato anche dalle condizioni di interpolazione sempre riportate. I metalli liquidi, inoltre, 
sono in grado di trasmettere calore anche se non in movimento proprio per l‟elevata conducibilità 
termica. 
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Ai fini del calcolo del coefficiente di convezione termica occorre modificare la forma matematica 
delle correlazioni utilizzate. In particolare si dimostra che le correlazioni di scambio sono della forma: 

 1 2 RePr
n

Nu C C   

e ponendo Pe = Re Pr (numero di Peclet) si ha anche la forma: 

1 2

nNu C C Pe   

Sabbotin suggerisce la correlazione: 

0.85 0.25Nu Pe   

Per le leghe sodio – potassio (dette leghe NaK) si può usare la correlazione di Skupinski: 

0.8274.82 0.0185Nu Pe   

valida per Re < 900000,  100 < Pe < 10000 e L/D>60. 

5.16.1 ALGORITMO DI CALCOLO PER LA CONVEZIONE FORZATA 

Quanto detto in precedenza sulla convezione forzata prospetta una metodologia di risoluzione 
che qui possiamo riassumere nei seguenti punti fondamentali. 

Determinazione delle proprietà termofisiche 

Le proprietà termofisiche del fluido dipendono dalla temperatura e pertanto sorge subito la 
difficoltà di doverle determinare per un campo di temperature che spesso ha gradienti elevati.  

Di solito si determinano alla temperatura media fra quella di parete e quella del fluido fuori dallo 
strato limite termico, detta anche temperatura di film: 

2

p

f

T T
T


  

Determinazione dei numeri di Reynolds e di Prandtl 

Il numero di Reynolds è determinato nota la velocità, u (in genere quella del fluido non 
disturbato) e il parametro geometrico (x o D) e la viscosità cinematica del fluido alla temperatura di 
film. Il numero di Prandtl lo si calcola allo stesso modo o lo si ricava dai dati termofisici in forma 
tabellare o funzionale del fluido alla temperatura di film. 

Utilizzo delle correlazioni di calcolo per la determinazione di Nu 

In precedenza si sono dimostrate numerose correlazioni fra Nu e Re e Pr. Nelle tabelle del §5.13 
se ne elencano alcune decine. La scelta della correlazione da utilizzare per calcolare Nu (e quindi il 
coefficiente di convezione termica) va fatta tenendo conto delle condizioni di validità indicate per 
ciascuna correlazione (cioè intervalli possibili per Re e per Pr) e al tipo di regime di moto (laminare o 
turbolento) che è possibile conoscere noto Re. 

Calcolo del flusso termico 

Tramite la correlazione di scambio si trova Nu e quindi, noto il parametro geometrico di 

similitudine, L, e il coefficiente di conducibilità del fluido alla temperatura di film, , si determina h: 

Nu
h

L


  

Pertanto, note le temperature di parete e di fluido indisturbato, si calcola il flusso termico: 

 " pq h T T   
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Calcolo degli sforzi di attrito 

Si è visto nei paragrafi precedenti come calcolare Cfx  o anche il valore medio globale per varie 
condizioni geometriche e di moto.  

Noto questo coefficiente si può calcolare lo sforzo tangenziale, s, o le perdite per attrito. 
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6 CONVEZIONE NATURALE 

La convezione naturale presenta difficoltà aggiuntive nella risoluzione delle equazioni della strato 
limite rispetto alla convezione forzata. In questo caso, infatti, le equazioni della quantità di moto (che 
ora riscriveremo) e dell‟energia risultano accoppiate poiché la temperatura compare anche nella prima 
equazione.  

La convezione naturale si può definire la vera convezione nel senso che il moto del fluido (e 
quindi il trasporto di materia ed energia) è conseguente al campo di temperature che si stabilisce nel 
fluido stesso.  

Senza differenze di temperature il fluido non si muove e quindi si annulla la convezione termica 
naturale. La forza di spostamento (driving force) è determinata dallo squilibrio causato dalla forza di 
gravità fra le masse riscaldate (più leggere) e quelle fredde (solitamente più pesanti). Pertanto la 
differenza di densità, generata dalla differenza di temperature, genera il moto convettivo. 

Oltre al campo gravitazionale terrestre nelle applicazioni si utilizzano anche campi artificiali, 
come avviene, ad esempio, per il raffreddamento delle palette delle turbine per il quale si sfrutta il 
campo di forze centrifughe generato dalla rotazione dei rotori. 

La convezione naturale genera campi di velocità solitamente meno intensi di quelli in convezione 
forzata dove tali campi sono imposti dall‟esterno in modo del tutto indipendente dal campo di 
temperatura.  

Anche se la convezione forzata produce scambi termici più intensi per i più elevati coefficienti di 
convezione, la convezione naturale è fondamentale nei processi naturali (climatologia terrestre, 
riscaldamento naturale dei corpi, impiantistica, ….) e deve sempre essere presa in considerazione quale 
unico metodo di scambio in condizioni di emergenza quando il fluido non viene mosso da organi 
esterni.  

Così, ad esempio, il radiatore di una autovettura funziona meglio quando la vettura è in 
movimento e ad alte velocità deve sì scambiare con l‟aria ambiente più calore ma ha anche migliori 
condizioni di scambio termico.  

Pertanto le condizioni più critiche si hanno a vettura ferma quando il flusso dell‟aria di 
raffreddamento è generato dalla sola convezione naturale. E‟ a quel punto che parte la ventola 
supplementare di raffreddamento!  

Un impianto termico (nucleare o convenzionale) ha le condizioni di criticità quando si fermano le 
pompe di circolazione. Un circuito elettronico ha le condizioni peggiori quando si ferma (o manca, 
come avviene nei portatili) la ventola di raffreddamento. 

Equazione di continuità 

L‟equazione di continuità per la convezione naturale rimane invariata rispetto a quanto visto per 
la convezione forzata: 

0
u v

x y

 
 

 
 

Equazione della quantità di moto 

Le equazioni della quantità di moto deve ora contenere la forza unitaria X corrispondente alla 
forza di gravità. Proiettando sull‟asse x l‟equazione: 

2DV
p V F

D
 


   


 

 

otteniamo, all‟interno degli strati limiti: 

p
g

x



 


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Pertanto il gradiente di pressione dipende solo dall‟asse y. 

Proiettando nell‟asse y si ha: 

2

2

u u p u
u v

x y x y
  

   
   

   
 

valida nel moto laminare. Introduciamo ora l‟ipotesi di Bussinesque in base alla quale assumiamo 
che le proprietà termofisiche del fluido siano costanti ad esclusione della densità funzione della 
temperatura. 

Tp u(y)

t(y)






 

Figura 60: Convezione naturale con lastra piana verticale  

Pertanto riteniamo costante  ma non . La distribuzione delle pressioni nel fluido è di tipo 
idrostatico e quindi si può porre: 

p dp
g

x dx



  


 

ove si indica con  la densità del fluido non interessato dallo strato limite termico (quindi 
lontano dalla parete). Pertanto sostituendo nella precedente equazione della quantità di moto si ha: 

2

2

1u u p u
u v g

x y x y




   
    

   
 

che diviene: 

 
2

2

u u u g
u v

x y y
  




  
   

  
 

L‟ultimo termine a secondo membro può ancora essere scritto, ricordando il coefficiente di 

dilatazione isobaro , nella forma: 

   
g

g T T  


      

Ne segue che l‟equazione della quantità di moto diviene: 

 
2

2

u u u
u v g T T

x y y
  

  
   

  
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che, come si osserva dall‟ultimo termine a secondo membro, contiene un termine, g(T - T), che 
dipende dalla temperatura ed è detto alleggerimento termico (o anche, thermal buoyancy). 

Equazione dell’energia 

Anche questa equazione resta invariata rispetto a quella trovata per lo strato limite laminare per la 
convezione forzata: 

22

2

T T T u
u v a

x y y y

    

    
    

 

Il termine dissipativo può trascurarsi a maggior ragione poiché il campo di velocità è meno 
intenso e pertanto l‟equazione diviene: 

2

2

T T T
u v a

x y y

  
 

  
 

6.1 ADIMENSIONALIZZAZIONE DELLE EQUAZIONI DELLO STRATO 
LIMITE PER LA CONVEZIONE NATURALE 

Seguendo un procedimento già visto per la convezione forzata nel §5.5.2 cerchiamo di conoscere 
i parametri fondamentali per la convezione naturale adimensionalizzando le tre equazioni sopra scritte 
per lo strato limite laminare. Si pongano le seguenti variabili, indicando con u0 una velocità di 
riferimento di comodo: 

* ; *
x y

x y
L L

   

0 0

* ; *
u v

u v
u u

   

*
p

T T
T

T T









 

2

0

*
p

p
u

  

allora le equazioni dello strato limite sopra scritte divengono: 

* *
0

* *

u v

x y

 
 

 
 

  2

2 2

0

** 1 *
* * *

* * Re *

pg T T LTu u u
u v

x y u y

   
  

  
 

2

2

* * 1 *
* *

* * Re Pr *

T T T
u v

x x y

  
 

   
 

ove si ha Re=u0L/Il gruppo adimensionale a secondo membro dell‟equazione della quantità di 
moto può essere scritto nella forma: 

 
2 2

0

*
*

Re

pg T T LT Gr
T

u

 
   

ove si è posto il nuovo gruppo adimensionale, detto di Grashoff: 
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  3

2

pg T T L
Gr






  

definiamo ora una velocità caratteristica del moto data dalla relazione: 

 C pu g L T T    

allora il numero di Grashoff può essere scritto nella forma: 

2

2ReCu L
Gr



 
  
 

 

che conferisce a Gr il significato di un quadrato di un numero di Reynolds riferito alla velocità 
caratteristica uC..  

Se ora poniamo u0 = uC allora le equazioni adimensionalizzata dello strato limite divengono: 

* *
0

* *

u v

x y

 
 

 
 

2

2

* 1 *
* * * *

* * *

u u u
u v T

x y yGr

  
  

  
 

2

2

* * 1 *
* *

* * *Pr

T T T
u v

x x yGr

  
 

  
 

Ricordando che deve sempre essere per il coefficiente di convezione termica: 

 
0y

p f

T

y
h

T T




 
  

 



 

ne segue che il numero di Nusselt, Nu, dipende nella convezione naturale solamente da Gr e Pr e 
non più da Re.  

Pertanto le relazioni funzionali saranno del tipo: 

( ,Pr)Nu f Gr  

In molti casi, specialmente per i gas e l‟aria, la dipendenza si semplifica nella forma: 

 ( Pr)Nu f Gr f Ra    

ove si è indicato il numero di Rayleigh: 

 3

Pr
pg L T T

Ra Gr
a






    

Si osservi che avendo trovato l‟equivalenza Gr=Re2, con riferimento alla velocità caratteristica, 
allora si può dire che il peso della convezione naturale (per altro sempre presente) è sensibile quando il 

rapporto 
2Re

Gr
 è >>1.   

Nel caso in cui è <<1 prevale la convezione forzata mentre se è circa 1 i due modi sono 
equivalenti. 

Si osservi che quanto sopra ricavato per la lastra piana verticale vale in tutti i casi nei quali si 
considera la convezione naturale. 
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6.1.1 ANALISI ADIMENSIONALE PER LA CONVEZIONE NATURALE 

Si vuole qui riportare il procedimento seguito con l‟analisi adimensionale (applicazione del 
teorema di Buckingam) per la determinazione delle tipologie delle correlazioni per la convezione 
naturale.  

I parametri che intervengono nel fenomeno della convezione sono visibili nelle equazioni dello 
strato limite prima scritte e pertanto si può affermare che il coefficiente di convezione h è funzione 
delle seguenti variabili: 

( , , , , , )ph h g T l c       [111] 

ove il prodotto g T  esprime l‟alleggerimento termico prodotto dalla differenza di temperatura fra 

parete e fluido e gli altri simboli hanno il significato già noto. 

 Per il teorema di Buckingam (o teorema pi-greco) si dimostra che se una grandezza k dipende da m 
altre variabili e se è possibile scegliere n variabili indipendenti allora la variabile k si può porre in 
funzione di m-n gruppi adimensionali.  

Nel caso in esame h è variabile dimensionale e il numero complessive di variabili in gioco è pari a 
7, pertanto se si scelgono come grandezze indipendenti quelle relative al Sistema Internazionale, metro 
(m), chilogrammo (kg), secondo (s), grado Kelvin (K) allora si può scrivere una relazione 
funzionale fra 7-4=3 gruppi adimensionali la cui determinazione segue un procedimento analitico 
relativamente semplice che qui si desidera accennare.  

Se la [111] è valida si supponga di avere un legame funzionale di tipo monomio in modo che si 
possa scrivere una relazione del tipo: 

 
ca b d e f

ph C g T l c       [112] 

Per il principio di omogeneità le dimensioni di ambo i membri di questa eguaglianza debbono 
essere uguali.  

Pertanto se esprimiamo nel S.I. (che ha le seguenti unità di misura fondamentali: M,L,T,) le 
dimensioni di tutti i parametri sopra indicati abbiamo i seguenti sviluppi: 

   l L  

  1 2 2g T LT LT              

  3ML      

  1 1ML T       

  3 1MLT       

2 2 1

pc L T          

  3 1h MT       

Pertanto la [112] diviene: 

 3 1 3 1 1 2 2 2 1 3 1
a b c e fd

MT C ML ML T LT L L T MLT                                   [113] 

Possiamo ora imporre che quanto presente per ciascuna unità di misura a primo membro deve 
essere uguale al secondo membro e cioè che si possa scrivere il seguente sistema dimensionale: 

0 3 2              per   L

 1                                     per  M

3 2 2 3                       per  T

1                                        per  

a b c d e f

a b f

b c e f

e f 

      


  

     
   

  [114] 
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Ne consegue che, essendo la caratteristica del sistema pari a 6-4=2 (7 variabili pari al numero 
degli esponenti e quindi pari ai parametri da cui dipende h, 4 unità indipendenti del S.I.) ne segue, per il 

teorema di Rouchè e Capelli, che le soluzioni possibili sono 2 .  

Basta scegliere due delle variabili come indipendenti e risolvere il sistema per esse.  Trovate le 
soluzioni si trova che la [112] assume la forma: 

2 3

2

nm

pc g Tl
h

l

  

 

   
   

   
  [115] 

Si possono riconoscere i seguenti gruppi adimensionali: 

 Numero di Nusselt definito da: 
Resistenza termica per conduzione

= 
1 Resistenza termica per convezione

l

hl
Nu

h




   

 Numero di Prandtl definito da: 
Diffusività meccanica

Pr
Diffusività termica

p

p

c

c



 





    

Numero di Grashoff definito da: 
2 3

2

2
  equivalente a Reynolds

g T l
Gr

 




  

La relazione funzionale [115] diviene, quindi: 

Prm nNu C Gr   [116] 

con C, m, n  determinate sperimentalmente mediante best fit.  

Si tratta del tipo di relazione visto in precedenza mediante l‟adimensionalizzazione delle equazioni 
dello strato limite. In genere per fluidi aeriformi gli esponenti m ed n coincidono e pertanto si hanno 
correlazioni del tipo: 

( Pr)n nNu C Gr C Ra      [117] 

ove si è indicato con Ra il numero di Rayleigh dato da: 

3 23 2

2
Pr

p pc g Tl cg Tl
Ra Gr

   

   


      [118] 

6.1.2 PROFILO DI TEMPERATURA NELLO STRATO LIMITE TERMICO 

Possiamo ancora una volta supporre che il profilo di velocità e di temperatura adimensionale 
siano polinomiali e cioè che si possa porre: 

3

1 2 3

0

u y y
a a a

u  

 
    

 
 

con le condizioni al contorno: 

0

0          per 0
u y

u 
   

0

0          per 1
u y

u 
   
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0
0          per 1

u

u y

y 



 
  
   
 

  
 

 

ed ancora che sia: 

 2

2

y
        per   0

pg T Tu

y



 


  


 

Con queste condizioni si trova: 

  2 2

0 0

1
4

pg T Tu y y

u u

 

  

  
  

 
 

Per il profilo di temperatura si può porre: 

3

1 2 3*
t t

y y
T b b b

 

 
    

 
 

con le condizioni: 

* 1                    per   y= 0T   

t

*
* 0 0      per    y=

T
T e

y



 


 

2

2

*
0        per       y=0

T

y





 

Si trova, pertanto: 

3

3 1
* 1

2 2t t

y y
T

 

 
    

 
 

Le esperienze di laboratorio mostrano che i due profili sopra determinati, pur se approssimati per 
via dell‟ipotesi polinomiale, approssimano abbastanza bene gli andamenti reali. 

6.1.3 STRATO LIMITE TERMICO IN MOTO LAMINARE 

Lo strato limite termico con moto convettivo in regime laminare, cioè per Ra < 108, può essere 
calcolato mediante la relazione: 

1/ 4
3.49t

x

Ra
   

valida per Pr  1. I parametri termofisici sono calcolati alla distanza x dal bordo di attacco alla 

temperatura di film già indicata in precedenza. Per Pr  1 si può usare l‟espressione: 

1/ 2

1/ 4

Pr
3.49t

x

Ra
   

Si osservi che se nell‟equazione del momento si trascura il termine di attrito rispetto a quello di 

alleggerimento termico gT allora lo strato limite termico risulta proporzionale al prodotto (RaxPr)-1/4.  

Si osservi che il nuovo gruppo adimensionale RaPr non contiene la viscosità cinematica: 
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 
2

Pr
p

x

g T T
Ra

a

 
  

Questo nuovo gruppo adimensionale è detto Numero di Boussinesque, Box,. Anche il numero locale 
di Nusselt è funzione dello stesso gruppo adimensionale, cioè: 

 
1/ 4

PrxNu f Ra  

6.1.4 STRATO LIMITE TERMICO IN MOTO TURBOLENTO 

Per valori di Ra > 108 il moto convettivo assume le caratteristiche di un moto turbolento ed 
hanno inizio i fenomeni di transizione dal moto laminare con formazione di vortici. Per Ra >109 il 
moto è definitivamente turbolento, almeno per la lastra piana verticale.  

Lo strato limite termico può ancora essere calcolato utilizzando le stesse espressioni dello strato 
limite dinamico per Pr = 1 mentre per valore diversi si applica ancora il fattore correttivo Pr1/2. 

6.1.5 CONVEZIONE NATURALE CON PARETE PIANA VERTICALE ISOTERMA 

La soluzione esatta può essere ottenuta applicando ancora la teoria della similitudine (similarity) e 
cioè ponendo una variabile di similitudine data dal rapporto: 

1/ 4

x

x

yRa



  

Introducendo le funzioni di corrente di flusso (streamfunction): 

;u v
y x

  
  
 

 

la funzione di similitudine è definita come: 

  1/ 4
,Pr

x

F
aRa


   

Per la temperatura la forma adimensionale si ha: 

 ,Pr
p

T T

T T
  







 

Per applicare il metodo di Blasius occorre procedere in due fasi: prima si eliminano u e v mediante 

le derivate della funzione di corrente, poi eliminando x, y, e T  mediante  F e .  

Si possono scrivere le equazioni differenziali: 

3
' ''

4
F   

21 1 3
' '' '''

Pr 2 4
F FF F 

 
    

 
 

Le condizioni al contorno sono: 

0                   per     =0F   

' 0                per     =0F   

1                  per     =0   

' 0                  per     F    

0                   per         

La soluzione delle precedenti equazioni risulta piuttosto complessa e viene qui omessa per 
semplicità. Il numero locale di Nusselt è cos‟ determinato: 
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1/ 4

1/ 4

1/ 2

Pr
0.503

Pr 0.986Pr 0.492
x xNu Ra

 
  

  
 

valida per tutti i numeri di Prandtl. I valori asintotici sono: 

1/ 4
0.503x xNu Ra     per Pr >>1 

e ancora: 

 
1/ 4

0.600 Prx xNu Ra  per Pr <<1 

Entrambe queste correlazioni confermano le aspettative indicate nel §6.1.3. Il valore medio vale: 

1/ 4

1/ 4

1/ 2

Pr
0.671

Pr 0.986Pr 0.492
x xNu Ra

 
  

  
 

Per l‟aria, avente Pr = 0.72, si ottiene la relazione semplificata: 

1/ 4
0.571x xNu Ra  

Una relazione valida per qualunque numero di Prandtl  e con Ra < 1012 è, per Nusselt medio 
(correlazione di Churchill e Chu): 

1/ 6

8
9 27

16

0.387
0.825

0.492
1

Pr

x
x

Ra
Nu  

 
    

  
 

: 

che per l‟aria, P r= 0.72, diviene: 

 
2

1/60.825 0.325x xNu Ra   

In regime laminare (Ra < 109) si ha la correlazione: 

1/ 4

4
9 9

16

0.67
0.68

0.492
1

Pr

x
x

Ra
Nu  

 
    

  
 

 

che per l‟aria, Pr=0.72, diviene: 

1/ 40.68 0.515xNu Ra   

6.1.6 FLUSSO UNIFORME DALLA PARETE 

Supponiamo ora che lungo la parete verticale si abbia un flusso uniforme, q‖ = cost, e che 
pertanto la temperatura della stessa parete cresca uniformemente e monotonicamente nella direzione x. 

Per fluidi con elevati numeri di Prandtl si ha relazione: 

 

 
1/ 4

3
" ps

p

g T T xq x

aT x T



 





 
  

      

 

Sperimentalmente si è trovata la relazione: 

1/5

1/5Pr
0.616

Pr 0.8
x xNu Ra

 
  

 
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La turbolenza si ha per Rax > 1013. 

Vlet e Liu propongono le seguenti relazioni: 

1/50.6x xNu Ra  

1/50.75x xNu Ra  

per regime laminare: 105 < Rax < 1013, mentre per regime turbolento, Rax > 1013, si ha: 

0.220.568x xNu Ra  

0.220.645x xNu Ra  

Per l‟aria Vlet e Liu propongono le relazioni: 

0.20.55x xNu Ra  laminare 

0.250.17x xNu Ra  turbolento 

Chu e Churcill propongono una relazione valida per ogni Ra e Pr: 

2

1/ 6

8/ 27
9/16

0.38
0.825

0.437
1

Pr

x

Ra
Nu

 
 
  

  
   
   
     

 

Questa relazione richiede che la temperatura di riferimento sia calcolata mediante la differenza 
con il valore medio della temperatura di parete, cioè: 

pfT T T   

Per l‟aria, Pr = 0.72, la precedente correlazione diviene: 

 
2

1/60.825 0.328x xNu Ra   

In Letteratura si hanno numerose altre correlazioni sperimentali per il calcolo del coefficiente di 
convezione per diverse situazioni geometriche rispetto alla parete piana verticale sopra vista.  

6.1.7 CONVEZIONE NATURALE SU UNA LASTRA PIANA ORIZZONTALE 

Si tratta di un caso molto importante per le applicazioni impiantistiche. La lunghezza 
caratteristica L è data dal rapporto: 

A
L

P
  

ove A è l‟area della piastra e P è il perimetro. Le situazioni di scambio termico possibili sono 
diverse a seconda della posizione della lastra piana e questa è a temperatura maggiore (riscaldamento) o 
minore (raffreddamento) rispetto al fluido.  

Con lastra piana calda rivolta verso l‟alto o anche con lastra piana fredda rivolta verso il basso si 
possono usare le correlazioni: 

1/ 40.54L LNu Ra  

valida per regime laminare (104 <Ra < 1011) mentre per regime turbolento (Ra > 1011) si ha: 

1/30.15L LNu Ra  
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negli altri due casi, cioè lastra piana calda rivolta verso il basso o lastra piana fredda rivolta verso 
l‟alto, non si dovrebbe verificare alcuna convezione termica.  

In realtà si hanno deboli flussi termici difficilmente stimabili e dovuti a disturbi casuali del moto 
del fluido. 

6.2 CONVEZIONE NATURALE PER CILINDRI ORIZZONTALI LUNGHI 

Il parametro geometrico di riferimento è il diametro D e il numero di Nusselt locale varia, come 
già visto per la convezione forzata, con la posizione lungo la circonferenza. Il valore medio 
circonferenziale è dato dalla relazione: 

1/ 40.53D DNu Ra  

valida per regime laminare (103 <Ra < 109). Per il regime turbolento (109 <Ra < 1012) si ha: 

1/3
DNu 0.13 DRa  

Recentemente è stata proposta una correlazione più complessa ma più precisa: 

 

2

1/ 6

8/ 27
9/16

0.387
0.60

1 0.559Pr

D
H

Ra
Nu

 
 

  
  
  

 

valida sia in regime laminare che turbolento. 

6.3 CONVEZIONE NATURALE IN CAVITÀ CHIUSE 

Questo argomento è oggi di grandissimo interesse non solo per gli aspetti relativi alla 
trasmissione del calore ma anche per gli aspetti epistemologici relativi ai sistemi dissipativi secondo le 
teorie di Y. Prigogine.  

La convezione termica avviene all‟interno di domini chiusi (di forma parallelepipeda o fra 
superfici piane affacciate con diversa temperatura. In Figura 61 si ha una cavità a sezione rettangolare 
con due lati adiabatici con lato caldo a sinistra e lato freddo a destra. Nella figura a destra si ha la 
distribuzione di temperatura che indica la formazione di uno strato limite ascendente sul lato caldo e di 
uno strato limite discendente sul lato freddo. Il flusso termico è calcolato sempre con la relazione di 
Newton con coefficiente di convezione da valutare alla temperatura media: 

2

c f

f m

T T
T


  

con Tc e Tf temperature del lato caldo e freddo.  

Il numero di Grashoff è calcolato con la relazione: 

  3

2

c fg T T H
Gr






  

con H altezza delle superfici attive. Per Ra bassi (< 103) si hanno ridottissimi movimenti del 
fluido e la trasmissione del calore avviene quasi esclusivamente per conduzione termica attraverso lo 
stesso fluido e quindi si ha: 

 c fQ S T T
b


   

ove b è lo spessore della cavità ed S l‟area della sezione verticale (non adiabatica) e  il 
coefficiente di conducibilità termica del fluido. La precedente relazione implica che il numero di 
Nusselt riferito alla larghezza della cavità è: 
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1b

hb
Nu


   

 

Figura 61: Convezione naturale in una cavità chiusa 

Quanto detto vale per rapporti H/b compresi fra 2 e 10 per Ra < 103 e per H/b fra 10 e 40 per 
103<Ra<104.  Per valori più elevati di Ra si instaura una circolazione di fluido che diviene sempre più 
consistente e il numero di Nusselt è dato dalla relazione: 

0.28 1.09
Pr

0.22
0.2 Pr

b

b
Nu Ra

H

   
    

   
 

valida per 10 < H/b < 40, Pr < 105 e 104 < Ra < 1013. Si ha la correlazione: 

1.05

0.250.42b

b
Nu Ra

H

 
  

 
 

valida per 10 < H/b < 40, 1 < Pr < 104 e 107 < Ra < 1011. Per valori di H/bI > 40 si pone 
sempre H/b=40 nella precedente correlazione.  

Nel caso di cavità sottili, con H/b <1 allora il comportamento termico dipende dal tipo di 
trasmissione alle pareti.  

Per flusso costante alle pareti si ha la correlazione: 

1/9

2/9
0.34

H
Nu Ra

b

 
  

 
 

con RaH dato dalla relazione: 

4 "
H

g H q
Ra

a



 
  

Nel caso in cui si calcoli Ra con la relazione: 

3

HRa g TH
Ra

aNu






   

allora la correlazione da utilizzare è la seguente: 
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1/ 7

2/ 7
0.25 H

H
Nu Ra

b

 
  

 
 

Si è osservato sperimentalmente che nel caso in cui si abbia temperatura di parete costante si 
possono usare la stessa correlazione sopra indicata purché il numero di Rayleight sia calcolato con 
riferimento alla temperatura media fra la parete calda e quella fredda. 

6.3.1 CAVITÀ RISCALDATE DAL BASSO 

La differenza fra le cavità riscaldate lateralmente e quelle riscaldate dal basso è che ora le cavità 
sono riscaldate dal lato vuoto e non da una parete, come illustrato in Figura 62).  

Queste cavità, dette anche Celle di Bènard, attivano una circolazione di fluido anche con pochi 
gradi di differenza di temperatura fra la superficie inferiore e quella superiore.  

Il valore critico perché questa circolazione avvenga è che si abbia: 

1708HRa   

con RaH dato da: 

  3

c fH
g T T HRa

Ra
aNu






   

La circolazione che si instaura è caratteristica di queste celle, vedi figura, che può anche diventare 
turbolenta incrementando sensibilmente il flusso termico dal basso verso l‟alto. Sperimentalmente si è 
trovata valida la correlazione: 

1/3 0.0740.069 PrH HNu Ra  

con proprietà termofisiche calcolate alla temperatura media. Per RaH > 109 si ha una 
proporzionalità diretta di Nusselt con RaH

0.33 con flusso indipendente dallo spessore H della cella. 

 

Figura 62: Cavità riscaldate dal basso (Celle di Bènard) 

Al di sotto del valore di 1708 il moto del fluido è del tutto trascurabile e il flusso è praticamente 
solo conduttivo. Le celle di Bènard sono utilizzate per raffreddare mediante convezione naturale 
superfici molto calde, come ad esempio le lampade allo iodio usate nei proiettori luminosi. 
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6.4 CORRELAZIONI UTILI PER LA CONVEZIONE NATURALE 

 

Tabella 14: Correlazioni per la convezione naturale 

 

Tabella 15: Correlazioni per la convezione naturale 



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

116 

 

Tabella 16: Correlazioni per la convezione naturale 

 

Tabella 17: Correlazioni per la convezione naturale 

 

Tabella 18: Correlazioni per la convezione naturale 

6.5 GETTI E PENNACCHI 

Lo studio dei getti e dei pennacchi riveste notevole interesse sia industriale che ambientale. Si 
tratta di due esempi di convezione termica non confinata, cioè non limitata da superfici solide: una 
corrente fluida (getti o fumi) induce un moto convettivo della massa esterna (ad esempio aria per il caso 
dei pennacchi).  

Con riferimento alla Figura 63, una corrente di fluido immesso attraverso un orifizio, dopo una 
zona iniziale (circa 6 volte la dimensione del foro nel quale la velocità media coincide con quella a 
monte dell‟orifizio) passa dalla zona laminare a quella turbolenta. 
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Uo, To

Formazione
del getto

Zona della crescita lineare

Distribuzione della velocita'

Formazione dei vortici

 

Figura 63: Formazione del getto (zona turbolenta) 

Il getto si allarga man mano che si procede in avanti e si parla di una zona di accrescimento 
lineare dello spessore del getto.  

La distribuzione della velocità nel getto si dimostra, partendo dalle equazioni allo strato limite 
turbolento, che è di tipo esponenziale secondo la relazione: 

 
2

r
b

cu u e


  

ove è b = 0.107 x ed uc è la velocità sull‟asse. Analogamente la distribuzione di temperatura è: 

 
 

2

T

r
t

cT T T T e


     

con  bT = 0.127 x. Le precedenti equazioni necessitano dei valori della velocità e della temperatura 
sull‟asse del getto. Si dimostra che vale la seguente relazione: 

22

0 0
0

2
4

u rdr U D


  


  

Combinando con l‟equazione della distribuzione di velocità si ottiene il valore della velocità 
sull‟asse: 

0 06.61c

U D
u

x
  

Si osservi come questa velocità decresce al crescere di x e che per x = 6.61 D0 si ha 0cu U . 

Si dimostra ancora valida la relazione: 

   
22

0 0 0
0

2
4

p pc u T T rdr c U T T D


  


     

Combinando con l‟equazione della distribuzione della temperatura si ottiene: 

 0

05.65c

T T
T T D

x






   

Quindi l‟eccesso di temperatura decresce ancora con la distanza x dall‟orifizio. 

Se un getto viene orientato su una parete verticale allora nell‟area della sezione del getto si hanno 
coefficienti di convezione elevati.  

Pertanto si usano i getti per il raffreddamento rapido ed intensivo di superfici particolarmente 
calde (ad esempio le palette delle turbine, …). 

Per i pennacchi si ha una situazione del tipo descritto in Figura 64.  
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La sorgente di calore innesca un movimento ascensionale di fluido caldo che, a partire da una 
certa distanza da questa, innesca moti turbolenti con formazione di vortici che trascinano (entrainment) il 
fluido circostante. 

Le distribuzioni di velocità e di temperature hanno ancora l‟andamento esponenziale già visto in 
precedenza per i getti con valori delle costanti da determinare sperimentalmente. 
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Figura 64: Formazione di un pennacchio 

In Figura 65 si ha un esempio di pennacchio reale formatosi al di sopra di una torcia di blow down 
di uno stabilimento industriale.  

Maggiori informazioni sono reperibili nei manuali specializzati. 

 

Figura 65: Formazione di un pennacchio in una torcia di raffineria  



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

119 

7 METODI NUMERICI PER LA FLUIDODINAMICA (CFD) 

7.1 LE PROBLEMATICHE DELLA SIMULAZIONE NUMERICA 

La soluzione dei problemi di fluidodinamica è molto più complessa di quella vista per la 
conduzione termica. Le equazioni differenziali (Navier Stokes più equazione dell‟energia) sono di tipo 
alle derivate parziali, non lineari, paraboliche, ellittiche e iperboliche al tempo stesso. 

L‟applicazione del metodo alle differenze finite porta a notevoli diversità rispetto a quanto già 
visto per la conduzione. A causa della non linearità del problema. Una evoluzione del metodo alle 
differenze finite è il metodo ai volumi finiti. 

In questo caso si suddivide il dominio di applicazione delle equazioni differenziali in una serie di 
volumi di controllo, opportunamenti selezionati,  su cui integrare le equazioni stesse usando profili noti 
della variabile incognita. 

Nei volumi di controllo debbono valere le leggi di conservazione già descritte (massa, energia, 
quantità di moto, …) in modo del tutto simile a quanto visto per il metodo alle differenze finite.. 
Proprio questa conservazione delle grandezze fondamentali è il principale vantaggio del metodo a 
volume di controllo. 

In genere per evitare divergenze matematiche si usano varie metodologie risolutive (vedi, ad 
esempio, metodo upwind) 

Un secondo importante metodo utilizzato è il metodo agli elementi finiti (FEM) che qui 
brevemente si sintetizza. In questo caso, in analogia con il metodo delle differenze finite, si cerca la 
soluzione delle equazioni differenziali per approssimazioni successive su elementi per i quali la 
soluzione è nota o ipotizzabile in modo quasi esatto. 

Il metodo agli elementi finiti assume una funzione approssimata che soddisfi i vincoli della PDE 
di partenza e che dipenda da parametri da ottimizzare (ad esempio minimizzando l‟energia totale). Esso 
definisce a priori l‟andamento della soluzione su singole porzioni (elemento finito, EF)  del continuo 
connesse alle altre in dati punti. 

Pertanto si  suddivide il continuo con una griglia (mesh) che delimita gli Elementi Finiti (EF). La 
griglia definisce: volume, posizione dei nodi ed appartenenza dei nodi ad uno o più EF. 

Gli EF si scambiano azioni solo tramite i nodi. Si assumono andamenti “semplici” delle variabili 
all‟interno degli EF. 

Si impongono condizioni di continuità e congruenza nei nodi e, in parte, sui contorni degli EF 
confinanti. 

Le equazioni di vincolo dei nodi formano un sistema globale che viene risolto con i classici 
metodi matriciale. 

In definitiva si ha la seguente procedura: 

Discretizzazione , soluzione definita ―a pezzi‖, continuità e congruenza sui bordi 

7.2 LA FLUIDODINAMICA COMPUTAZIONALE (CFD) 

Lo scopo della Fluidodinamica Computazonale (CFD) è quello di formulare modelli adatti a descrivere i 
fenomeni fluidodinamici. Considerazioni sulla natura dei fluidi e analisi del livello di scala spaziale, 
temporale e dinamico della realtà sono gli strumenti indispensabili per formulare modelli fisici per la 
fluidodinamica che possiedano il requisito di riprodurre la realtà con il livello di approssimazione desiderato.  

L'effettiva validità di ogni modello, in quanto necessariamente approssimato, dovrà poi essere 
verificata confrontando le previsioni che esso è in grado di fornire con dati sperimentali, oppure con le 
previsioni di altri modelli fisici ottenuti con un livello minore di approssimazione. Conoscere un 
fenomeno fluidodinamico significa conoscere compiutamente (sebbene con un certo livello di 
approssimazione) la distribuzione spaziale e l'evoluzione temporale di un certo numero di variabili 
fluidodinamiche (velocità, temperatura, pressione, ecc.) che lo caratterizzano.  
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Il numero minimo di tali variabili dipende, di volta in volta, non solo dal tipo di fenomeno, ma 
anche dal livello di approssimazione con cui desideriamo conoscerlo. 

  

 Figura 66: Schema della modellizzazione fluidodinamica 

Come indicato nel diagramma di Figura 66, a tale conoscenza si può pervenire, dopo averne 
formulato un modello fisico, sia attraverso misure sperimentali dirette di tali variabili, sia risolvendo 
sistemi di equazioni le cui variabili sono appunto tali proprietà fluidodinamiche. 

Si tratta di quelle che, con un termine poco felice, ma ormai universalmente diffuso, prendono 
rispettivamente il nome di simulazione fisica, o sperimentale, e di simulazione numerica. Nel secondo caso, il 
passo che è necessario compiere dopo aver formulato un modello fisico consiste nel tradurlo in un 
modello fisico-matematico.  

Il passaggio dal modello fisico a quello fisico-matematico si basa su alcune leggi fondamentali 
della fisica, che impongono che in un sistema di fluido, come in ogni altro sistema dinamico della 
meccanica classica, determinate grandezze quali la massa, la quantità di moto generalizzata e l'energia 
soddisfino precise equazioni di bilancio che esprimono quelli che, più o meno propriamente, prendono 
il nome di principi di conservazione. 

Nell'ambito della fluidodinamica classica, ovvero nell'ambito del livello di approssimazione della 
realtà del continuo deformabile di tipo newtoniano , il più completo tra i modelli fisico-matematici è costituito 
dal sistema di equazioni di Navier-Stokes che esprime, appunto, il principio di conservazione della massa, il 
teorema della quantità di moto e il principio di conservazione dell'energia totale. 
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Una volta che siano note l'equazione di stato e le proprietà fisiche del fluido in esame, questo 
sistema di equazioni differenziali, integrato numericamente, secondo la tecnica che prende il nome di 
DNS, (da Direct Numerical Simulation), è perfettamente in grado di descrivere a livello microscopico 
anche la più complicata delle correnti.  

Ad esempio, è in grado di riprodurre compiutamente tutti i dettagli di una corrente turbolenta (e 
pertanto caratterizzata da una marcata tridimensionalità e non stazionarietà), anche in presenza di 
fenomeni termici, di reazioni chimiche, etc23. 

Tuttavia è estremamente utile analizzare come l'introduzione di successive ipotesi di 
approssimazione spaziale, temporale e dinamica consenta di ottenere modelli fisici di validità e complessità 
decrescenti, a partire da quello che presenta il massimo di complessità e di generalità ( diagramma 2 di 
Figura 67).  

Un primo passo nella semplificazione del modello fisico-matematico lo si può compiere se invece 
di voler approssimare la realtà fisica a livello delle scale microscopiche, si accetta di descriverla con 
livelli di accuratezza spaziale e temporale meno raffinati.  

Il modello fisico-matematico che si ottiene è quello che prende il nome di LES (da Large Eddy 
Simulation).   

Non è il caso di entrare ora nei dettagli di questa tecnica, ma si può facilmente intuire che l'aver 
ridotto così drasticamente i requisiti di risoluzione spaziale e temporale del problema porterà ad una 
altrettanto drastica riduzione del costo e del tempo necessari per effettuare un'eventuale simulazione 
numerica del fenomeno, a fronte di una perdita di informazioni che può ritenersi, nel caso in esame, del 
tutto accettabile, se non addirittura benefica. 

Tuttavia, se ci limitassimo a risolvere le equazioni di Navier-Stokes semplicemente adottando una 
scarsa risoluzione spaziale e temporale, commetteremmo un gravissimo errore. Non si può negare che 
le considerazioni appena fatte siano sensate, ma nel nostro ragionamento abbiamo assunto 
implicitamente (e in modo del tutto ingiustificato) che, dal momento che certi dettagli del fenomeno non 
ci interessano, questi sono automaticamente ininfluenti per la sua evoluzione reale: quanto avviene a livello 
microscopico (il livello che abbiamo deciso di trascurare) può anche non interessare affatto a chi 
desidera effettuare un‟analisi a livello macroscopico. 

La perdita dei dettagli del moto turbolento a livello microscopico deve essere pertanto 
compensata, almeno statisticamente, da altre informazioni che devono essere reintrodotte nel modello 
fisico attraverso modelli aggiuntivi: i cosiddetti modelli di turbolenza sottogriglia, il cui nome indica appunto 
che è loro affidato il compito di riprodurre tutti gli effetti dinamici di quanto avviene alle scale del moto 
inferiori a quella della griglia di discretizzazione. 

Il problema è concettualmente identico a quello che ha portato dal modello molecolare del gas a 
quello del continuo deformabile. Un modello che riproduca ogni dettaglio del moto molecolare di un 
gas è, non solo estremamente oneroso, ma anche spesso del tutto inutile dal punto di vista pratico, 
tuttavia quanto avviene a livello molecolare può essere trascurato soltanto a condizione che l'inevitabile 
perdita di informazione venga compensata dall'equazione di stato e da informazioni sulle proprietà 
fisiche statistiche del fluido. 

In molti casi, si può rinunciare a conoscerne i dettagli, non solo a livello delle scale spaziali e 
temporali delle singole particelle fluide, ma addirittura anche a quello delle grandi strutture turbolente: 
in altre parole, può essere sufficiente descrivere quello che prende il nome di moto medio e apprezzarne 
l'evoluzione temporale mediando su intervalli di tempo di durata variabile tra qualche minuto e, al 
limite, l'intera durata del fenomeno.  

Questo secondo livello di approssimazione porta al modello fisico-matematico delle equazioni 
mediate di Reynolds. Anche in questo caso, e in misura ancor maggiore che nel caso della LES, si ottiene 
un'enorme riduzione del costo e del tempo necessari per ottenere una simulazione numerica dell'intero 
fenomeno.  

                                                
23 Problemi complessi ottenuti dalla somma di diversi problemi di simulazione (diffusione, reazioni chimiche, 

campi dinamici, ….) sono detti multifisici e sono caratterizzati da un numero elevato di equazioni differenziali alle derivate 
parziali spesso anche fra loro correlate. 



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

122 

 

Figura 67: Applicazione delle ipotesi spaziali e temporali al modello CFD 

Ci sono addirittura delle situazioni in cui il moto è in media stazionario il che rende del tutto 
superflua la sua discretizzazione temporale, oppure casi in cui la corrente media è bidimensionale, ovvero 
indipendente da una delle coordinate spaziali, nel qual caso la discretizzazione spaziale del problema 
potrebbe essere limitata al solo piano del moto medio. 

Ovviamente il sistema delle equazioni mediate di Reynolds deve essere integrato con 
informazioni fornite da modelli di turbolenza. A differenza dei modelli sottogriglia della LES, ai modelli di 
turbolenza per le equazioni mediate di Reynolds è affidato il compito di riprodurre gli effetti dinamici dell'intero 
spettro dei moti tridimensionali e non stazionari che caratterizzano la corrente turbolenta. Compito che li 
rende piuttosto complicati e scarsamente generali. 
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Ulteriori modelli semplificati sono derivabili a partire dal modello delle equazioni mediate di 
Reynolds, sulla base di successive approssimazioni dinamiche,la prima delle quali è quella di numero di 
Reynolds elevato. Il numero di Reynolds è uno dei parametri dinamici fondamentali ed esprime 
essenzialmente il peso relativo delle forze d'inerzia del fluido rispetto a quelle viscose, nella particolare 
corrente in esame. 

Un numero di Reynolds elevato significa quindi che, in un determinato fenomeno, gli effetti delle 
forze d'inerzia sono mediamente preponderanti (anche di vari ordini di grandezza) rispetto a quelli delle 
forze viscose  Se è verificata la condizione che il numero di Reynolds della corrente è elevato, può 
talvolta verificarsi anche una seconda condizione.  

Può succedere che all'interno di un moto che rimane pur sempre tridimensionale e non 
stazionario, la velocità media con cui viene trasportato il fluido abbia una componente decisamente 
prevalente rispetto alle altre e si può quindi identificare una direzione dello spazio, che prende il nome 
di direzione del moto medio, lungo la quale i fenomeni convettivi sono decisamente preponderanti rispetto a 
quelli diffusivi. In tali condizioni, si possono quindi ritenere trascurabili gli effetti della diffusione 
viscosa e turbolenta nella sola direzione del moto medio e si ottiene il modello fisico-matematico che prende 
il nome di equazioni di N-S parabolizzate. 

Qualora, poi, verificate le ipotesi appena descritte, si verifichi anche che il verso della velocità nella 
direzione del moto medio è ovunque il medesimo, si può adottare una geniale approssimazione 
dinamica, dovuta a Prandtl. Egli intuì che, sotto opportune condizioni (la prima delle quali è un elevato 
numero di Reynolds, la seconda è l'assenza di controcorrenti), gli effetti dinamici diffusivi, associati alla 
presenza di vorticità, viscosità e turbolenza, possono essere confinati in regioni del dominio di moto di 
spessore estremamente limitato, che si sviluppano in corrispondenza delle pareti solide lambite dalla 
corrente e che prendono appunto il nome di strati limite o, meglio, di strati vorticosi sottili. 

Da una lucida analisi del peso relativo delle forze in gioco, Prandtl dedusse che, non solo il moto 
medio all'interno di questi strati poteva essere descritto da forme semplificate delle equazioni di Navier-
Stokes, che prendono appunto, come già visto in precedenza, il nome di equazioni dello strato limite (o degli 
strati vorticosi sottili), ma anche che, all'esterno di tali strati di corrente, gli effetti della viscosità del fluido 
potevano essere completamente trascurati. 

Deduzione, quest'ultima, non meno importante della prima, dal momento che consente di 
ritenere che il campo di moto all'esterno degli strati limite sia determinabile prescindendo 
completamente dagli effetti della viscosità. Ne deriva che in una (gran) parte del dominio, il 
comportamento della corrente può essere descritto dalle equazioni di Eulero, un modello fisico-
matematico che si ottiene a partire dalle equazioni di Navier-Stokes nell'ipotesi, appunto, di poter 
eliminare completamente gli effetti della viscosità nelle equazioni di bilancio per la quantità di moto e 
per l'energia. L'accoppiamento tra quelli che prendono, molto impropriamente, il nome di modello 
viscoso (le equazioni di Prandtl che governano il moto nelle regioni vorticose sottili) e modello non viscoso 
(valido all'esterno di esse) avviene essenzialmente attraverso la variabile scalare pressione. 

Altri modelli semplificati si possono ottenere a patto che sia verificata un'ulteriore approssimazione 
dinamica sul peso relativo tra le forze elastiche con cui il fluido, comprimendosi o espandendosi, reagisce 
alle variazioni della pressione e, ancora, le forze d'inerzia.  

Se tale rapporto è piccolo, ovvero se il numero di Mach della corrente è tale da garantire l'assenza di 
onde d'urto, l'atto di moto nelle regioni esterne agli strati limite è irrotazionale e quindi descrivibile con 
un modello più semplice di quello di Eulero, ovvero con il modello del potenziale completo. 

 E se, al limite, si può ragionevolmente assumere che le pressioni in gioco siano tali da non 
alterare la densità del fluido,si può formulare l'ipotesi di completa incomprimibilità,che porta a descriverne 
il moto con una semplice equazione di Laplace per il potenziale cinetico.  

Nei casi in cui l'atto di moto all'esterno degli strati limite sia irrotazionale, il campo della 
pressione, che descrive compiutamente lo stato di sforzo nella corrente (essendo ivi nulli gli effetti della 
viscosità) può ottenersi semplicemente con l'equazione di Bernoulli, a partire dal campo di velocità 
fornito dalle equazioni del potenziale. 

Si è già accennato al fatto che, anche in una corrente turbolenta, le variabili fluidodinamiche 
medie possono presentare talvolta gradienti nulli lungo una direzione dello spazio.  
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E' evidente che, in questi casi, è sufficiente fornirne una descrizione nel solo piano normale alla 
direzione di uniformità (il cosiddetto piano del moto medio).  

Qualora le direzioni di uniformità fossero due, anziché una, la corrente media potrebbe essere 
ovviamente descritta con un modello monodimensionale.Una situazione del genere non si presenta mai nel 
mondo reale, ma esistono effettivamente correnti, stazionarie e non, nelle quali i gradienti di alcune 
grandezze fluidodinamiche sono relativamente piccoli in una gran parte del campo di moto.  

 

Figura 68: Gerarchia dei modelli di simulazione 

E' questo il caso di alcune correnti interne a condotti che presentano un'estensione longitudinale 
assai maggiore di quella trasversale: se si escludono le regioni (magari sottili) adiacenti alle pareti solide e 
quelle in cui si verificano variazioni brusche della direzione o del modulo della velocità media, velocità e 
pressione si mantengono praticamente uniformi in ciascuna sezione del condotto e presentano gradienti 
significativi soltanto nella direzione del moto medio, il quale può pertanto essere descritto con una 
forma monodimensionale delle equazioni di Eulero, se il fluido è comprimibile, oppure da forme 
monodimensionali dell'equazione di continuità e della quantità di moto, nel caso di fluidi a proprietà 
costanti.  

Nel caso di correnti stazionarie di fluidi a proprietà costanti, il modello che si deriva dall'ipotesi di 
monodimensionalità prende il nome di teoria delle reti. 

E' chiaro però che un modello di questo genere è utilizzabile solo se accoppiato a modelli aggiuntivi 
che siano in grado di tenere conto di tutti quegli effetti tridimensionali che, sebbene abbiano luogo in 
regioni effettivamente limitate del campo di moto, non per questo devono avere conseguenze 
trascurabili.  
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Queste informazioni aggiuntive sono generalmente costituite da coefficienti e correlazioni di 
origine sperimentale, che prendono il nome di coefficienti di perdita di carico. 

Si conclude osservando che la gerarchia di modelli fisico-matematici fin qui esaminata è 
rappresentativa della quasi totalità dei problemi della fluidodinamica classica. La parte iniziale di questa 
trattazione verrà dedicate, con particolare attenzione, alla formulazione del modello generale delle 
equazioni di Navier-Stokes. Successivamente si esamineranno i problemi relativi alla loro integrazione 
numerica diretta (DNS), si accennerà alle equazioni per la LES ed infine a quelle mediate di Reynolds.  

Per queste ultime si affronterà il “problema della chiusura”, già introdotto nei capitoli precedenti, 

prestando in  particolar modo attenzione al modello a due equazioni differenziali (K-),il quale è stato 
più volte applicato nelle simulazioni fluidodinamiche. La gerarchia dei metodi di modellazione in 
funzione dell‟applicazione considerarta è riportata nel diagramma 3 di Figura 68: 

7.3 MODELLO AD UN’EQUAZIONE DIFFERENZIALE PER LA VISCOSITÀ 
TURBOLENTA 

Per superare alcuni dei limiti dei modelli algebrici di viscosità turbolenta, sono stati sviluppati i 
modelli differenziali che, in generale, prevedono la scrittura e l'integrazione di una o più equazioni 
differenziali che descrivono, o direttamente la dinamica del tensore degli sforzi di Reynolds, oppure la 
dinamica di una o più grandezze scalari correlate con la viscosità cinematica turbolenta introdotta da 
Boussinesq.  

Il vantaggio è che le equazioni differenziali di trasporto per queste grandezze consentono, in ogni 
caso, di valutare la viscosità turbolenta tenendo conto della effettiva storia della corrente. Quando il 
modello prevede la soluzione di un'unica equazione differenziale (si parla di modelli di ordine uno), la 
viscosità turbolenta è generalmente correlata ad un'equazione di bilancio per l'energia cinetica turbolenta. Fu 
lo stesso Prandtl che,vent'anni dopo i suoi lavori sulla mixing length, e sfruttando un'intuizione di 
Kolmogorov, aprì la via ai modelli differenziali di turbolenza, formulandone uno basato su di un'equazione 

di bilancio per la grandezza scalare energia cinetica turbolenta media specifica K , che si indicherà nel seguito 
semplicemente con il termine di energia cinetica turbolenta, e che è definita come: 

 ''''''
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wwvvuuK       [119]   

Nel nuovo modello differenziale, Prandtl conserva il principio che la viscosità cinematica 

turbolenta sia esprimibile attraverso il prodotto di una velocità turbolenta  t e di una lunghezza di 

mescolamento ma lascia cadere la relazione  
y

u
lmt




 . 

Invece di esprimere la velocità turbolenta attraverso il prodotto del gradiente della velocità media 
per la lunghezza di mescolamento, assume che tale velocità di agitazione sia direttamente proporzionale 
alla radice quadrata dell'energia cinetica turbolenta K : 

  Kt 2    [120] 

Sotto tali ipotesi, quindi, la relazione: 

    mtt l        [121]    

diventa: 

   Klt     [122]   

dove, in luogo di 2ml si è indicata la lunghezza l  che, anche nei modelli ad una equazione 

differenziale, continua ad essere calcolata con formule opportune, esattamente come avveniva nel 

modello algebrico di Prandtl per la lunghezza di mescolamento ml . In questo tipo di modello, dunque, si 

mantiene il concetto di viscosità turbolenta, ma nella sua espressione non compaiono più termini legati 
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al gradiente della velocità media, bensì termini contenenti l'energia cinetica turbolenta K, la quale può 
essere calcolata, in modo del tutto generale, in ogni istante ed in ogni punto del campo di moto, sulla 
base di un'equazione differenziale di trasporto che si deriva con un procedimento concettualmente 
semplice, ma piuttosto laborioso. 

Di fatto, si tratta di: 

 a) moltiplicare l'i-esima componente dell'equazione di bilancio per la quantità di moto, relativa 

alla velocità istantanea ' iii uuu ' , per la componente i-esima ' iu ' della velocità fluttuante; 

 b) sommare le tre equazioni così ottenute e 

 c) mediare nel tempo l'equazione risultante. 

Ciò che si ottiene è la seguente equazione di bilancio per l'energia cinetica turbolenta media K , 
per unità di massa: 
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    Variaz tot di K              Produzione          diff.molecolare       trasporto         diff. press           dissipazione 

                                                                              turb 

Il primo membro dell'equazione di bilancio [123] rappresenta, come di consueto,la variazioni totale 
di K , e cioè la somma delle derivate temporale e convettiva. Tutti i termini hanno le dimensioni di 

[m2⋅s-3], ovvero di un'energia per unità di tempo e per unità di massa, e cioè di una potenza per unità di 

massa. Il primo termine al secondo membro indica la produzione per unità di massa e di tempo (si 
tratta quindi di una velocità di produzione) di energia cinetica turbolenta operata dal tensore degli sforzi 
di Reynolds e viene generalmente denotato con PK , il secondo, la velocità di diffusione molecolare di 
energia cinetica turbolenta, il terzo, la velocità di trasporto di K da parte delle fluttuazioni della velocità, 
il quarto, la velocità di diffusione di K per opera delle fluttuazioni della pressione, il quinto, infine, la 

velocità di dissipazione, che si indica con K . 

Poi si può osservare che una parte del termine di produzione di K è esattamente lo sforzo di 
Reynolds. Pertanto, in base alla sua definizione 
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questo termine può essere riscritto come: 

 

2

''

























j

i

t

j

i
ji

x

u

x

u
uu    [124] 

Se si esclude il termine di diffusione molecolare, che coinvolge la variabile K e la viscosità 
molecolare,che è nota, tutti gli altri termini dell'equazione [124] contengono prodotti,o correlazioni,tra 
fluttuazioni della velocità e della pressione e devono essere,pertanto, modellati.  

Il termine più critico,da questo punto di vista,è quello di diffusione di K per fluttuazione della 
pressione che,fortunatamente,è sufficientemente  piccolo da poter essere o trascurato oppure modellato 
insieme al termine di trasporto turbolento di K, assumendo che: 
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dove K  è un coefficiente empirico, che prende il nome di numero di Prandtl per la diffusione 

turbolenta. 
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Per quanto concerne invece il termine di dissipazione di energia cinetica turbolenta, l'analisi 
dimensionale, nelle ipotesi di Kolmogorov, suggerisce di esprimerlo in funzione di K e di una 

lunghezza, che è quella di mescolamento l , secondo la relazione: 
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dove DC è un parametro che deve essere assegnato, di volta in volta, in funzione del tipo di 

corrente. 

In conformità a queste ipotesi, l'equazione [126] diventa dunque: 
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                Variaz tot di K              Produzione          diffusione e  trasporto          dissipazione 
La [127] contiene ora solo grandezze medie e può essere finalmente integrata e fornire, istante 

per istante, la distribuzione spaziale di K, purché si sia in grado di assegnare condizioni iniziali ed al 
contorno anche per questa nuova variabile media. Per quanto concerne la superficie di contorno 
all'ingresso del dominio di calcolo (quella che, in generale, prende il nome di sezione di inflow) è 
necessario assegnare la distribuzione di K , mentre, sulle eventuali pareti solide, si impone, ovviamente, 
la condizione di K = 0 . 

A titolo di esempio, vediamo di riscrivere e di discutere l'equazione per K nel caso particolare di 
strato limite turbolento sottile non separato, con moto medio bidimensionale. Negli strati limite sottili, come 
vedremo più avanti, la componente della velocità normale alla parete, che indichiamo con v, è 
generalmente piccola rispetto alla componente parallela, u. Inoltre, il gradiente della velocità in 
direzione parallela alla parete, che indichiamo con x, è piccolo rispetto a quello in direzione normale, y. 
Nelle ipotesi di strato limite sottile, quindi, la [127] può essere riscritta nella forma: 
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dove DC è una costante che ha valori dell'ordine di 0.07÷0.09, mentre il numero di Prandtl 

assume valore pari all'unità. Nel caso degli strati limite sottili, il modello che consente di determinare la 

viscosità cinematica turbolenta isotropa ν( t ) in base all'equazione di bilancio per l'energia cinetica 

turbolenta media K per unità di massa può quindi essere riassunto nella forma seguente: 
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;09.007.0 DC        0.1K  

In base alle [128] è quindi ancora necessario prescrivere un'opportuna distribuzione della 
lunghezza l in funzione della coordinata y, che può essere anche di tipo algebrico. La legge di variazione 
di l naturalmente dipende dal tipo di corrente considerata.  

Nel caso di correnti turbolente di parete è usuale assumere nxcl 1 , dove nx è la distanza dalla 

parete, ed il coefficiente 1c ha un valore intorno a 0.41. Nel caso di correnti turbolente libere, invece, si 

può assumere che cl  , dove   è lo spessore locale dello strato vorticoso ed il coefficiente c è 
compreso tra 0.4 ed 1.0. 
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A differenza di quelli algebrici,questo modello,grazie all'equazione di trasporto per l'energia 
cinetica turbolenta media, è in grado di tenere conto della storia della corrente. Il risultato è che, pur 
con un costo computazionale piuttosto modesto, si possono ottenere indicazioni relativamente 
affidabili anche, ad esempio, in strati limite che si sviluppano o si rilassano.  

D'altro lato, esiste ancora almeno una limitazione piuttosto pesante: non solo non esiste 
(esattamente come nei modelli tipo mixing length) un'espressione di validità generale per la scala di 
lunghezze l, ma non possono essere rappresentati nemmeno gli effetti di trasporto di tale scala, che 
sono invece assai importanti in tutte le correnti separate. 

7.4 MODELLO A DUE EQUAZIONI DIFFERENZIALI (K-) 

Anche i modelli ad un‟equazione (tutti ricavati secondo lo schema di calcolo esposto nei 
precedenti capitoli per la convezione termica), pur presentando indubbi vantaggi rispetto ai modelli 
algebrici del tipo mixing length soffrono di alcune limitazioni, la più gravosa delle quali consiste nel fatto 

che i risultati dipendono ancora da una imposizione a priori della scala di lunghezza l .  

Invece di prescrivere l  a priori, così come K  è ottenuta da un'equazione di trasporto, si può 

quindi utilizzare una seconda equazione di trasporto per la lunghezza l ,oppure per una qualsiasi 

variabile che sia correlata contemporaneamente, sia all'equazione per K  , che è relativamente semplice 

da trattare e che sembra dunque sensato continuare a risolvere, sia alla lunghezza l  . In altri termini, si 

tratta di definire finire una qualunque variabile del tipo ba

lK , e di scriverne l'equazione esatta di 
trasporto, mediante manipolazione delle equazioni di Navier e Stokes. E' evidente che l'equazione 
risultante conterrà in ogni caso numerosi prodotti di grandezze turbolente che richiederanno, come nel 

caso dell'equazione per K  il ricorso alla modellazione. Tra le possibili variabili del tipo ba

lK , sono 

comunemente usate: lK  (frequenza turbolenta), 2lK  (vorticità turbolenta) e lK 23  (velocità di 
dissipazione dell'energia cinetica turbolenta).  

A titolo di esempio, vediamo come si può scrivere un'equazione di bilancio per la variabile velocità 

di dissipazione dell'energia cinetica turbolenta specifica lK 23  una grandezza scalare che già compare 
nell'equazione per K , e che consente di calcolare molto semplicemente l , una volta nota K , attraverso 
il rapporto: 



23

K
l    [129] 

La scelta di   presenta, rispetto alle altre possibili, il vantaggio di non richiedere termini correttivi 
in vicinanza di pareti,dal momento che K si annulla automaticamente all'annullarsi della velocità a 

parete,mentre ε si mantiene finita. L'equazione per   si può scrivere evidenziando, al solito, i termini di 

produzione, diffusione e distruzione, che hanno le dimensioni di [m2⋅s-4], ovvero di una potenza per 

unità di tempo e per unità di massa: 




distrdP

Dt

D
   [130]  

Il trasporto di  ,e cioè il trasporto di velocità di dissipazione, viene ovviamente calcolato in 

modo esatto, mentre restano da modellare i termini di produzione di  , P , di diffusione dε e di 

distruzione distrε , esattamente come avveniva per l'equazione di bilancio per K . Vediamo, in estrema 

sintesi, come si possono modellare questi termini, e cioè esprimerli in funzione di grandezze medie. 

In generale,la produzione di ε deve bilanciare la produzione di K e, al fine di evitare la crescita 

illimitata di quest'ultima, si può assumere che: 
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KP
K

P


    [131] 

dove il fattore di proporzionalità 
K


 è l'inverso di una scala di tempo, coerentemente con il fatto 

che la produzione di ε è, di fatto, la velocità di distruzione di K . 

Pertanto,introducendo il fattore di proporzionalità cε1 e riprendendo il termine PK dalla  [131] si 

scrive l'uguaglianza: 
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Per la diffusione di ε , ancora in analogia con quanto si è fatto per la diffusione di K , si assume 

che essa sia funzione delle viscosità molecolare e turbolenta e del gradiente di ε , secondo una relazione 

del tipo: 
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dove  è un coefficiente del tutto analogo al numero di Prandtl K . Infine, il termine di 

distruzione di ε deve tendere all'infinito quando K tende a zero per evitare che K possa assumere valori 

negativi. Questo porta a scrivere: 
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cioè, introducendo un ulteriore fattore di proporzionalità: 
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L'equazione può quindi scriversi come: 
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A questo punto, anche l'equazione di trasporto per ε può essere integrata insieme alle equazioni 

mediate di Reynolds e all'equazione di bilancio per K, ma richiede anch'essa condizioni iniziali e al 

contorno per ε , nonché di determinare i valori di alcuni parametri che compaiono nell'espressione dei 

termini a secondo membro.  

Questi valori vengono definiti attraverso un processo di "calibrazione" del modello, a partire da 

quelli, relativi a quella che prende il nome di formulazione standard del modello K-ε , riportati nel 

seguito. 

Assunzioni base:   Klt   

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Viscosità cinematica turbolenta:  
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Equazione per K:              
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Equazione per e:              
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Parametri:                   c  1c           2c          K       

0.09     1.1256        1.92                    1.0       1.3 

I modelli del tipo K-ε rappresentano, almeno dal punto di vista concettuale, un indubbio 

miglioramento rispetto a quelli ad una sola equazione differenziale: la viscosità turbolenta viene 
finalmente calcolata sulla base di una velocità turbolenta e di una scala di lunghezze le cui distribuzioni 
spaziali non sono più assegnate a priori, bensì entrambe calcolate con equazioni di trasporto che 
tengono conto della storia dellacorrente. Anche questi modelli, tuttavia, presentano ancora dei punti 
deboli: come tutti i modelli per le equazioni mediate di Reynolds, mancano di universalità, il che si 
traduce nella necessità di adattare caso per caso, le varie "costanti" del modello.  

Inoltre, richiedono inevitabilmente distribuzioni iniziali e valori al contorno per K e per ε,che 

non è sempre facile assegnare in modo rigoroso. Per cercare di superare questi limiti si sono sviluppati 
anche modelli che prevedono l'integrazione di un'equazione di trasporto per ciascuna delle componenti 
del tensore degli sforzi di Reynolds (ovviamente sempre in termini di variabili medie). Anche questi 
ultimi, peraltro, continuano a rimanere poco generali. Bisogna inoltre considerare che, all'aumentare del 
numero delle equazioni differenziali che va ad aggiungersi alle equazioni mediate di Reynolds, il lavoro 
di calibrazione dei vari parametri diventa sempre più complicato e l'impegno di calcolo rischia di 
diventare quasi confrontabile con quello richiesto da altri metodi, quali la Large Eddy Simulation. 

7.5 FONDAMENTI DELLA “LARGE EDDY SIMULATION (LES)” 

L'approccio della Large Eddy Simulation (LES), ovvero della discretizzazione spaziale e temporale 
del moto medio e delle sole strutture turbolente di scala relativamente grande, si situa, sia per dettaglio 
dei risultati forniti, sia per impegno di risorse di calcolo, in una posizione intermedia fra la soluzione 
delle equazioni mediate di Reynolds e la soluzione diretta delle equazioni di Navier e Stokes.  

L'esposizione rigorosa di questa tecnica richiede il ricorso ad integrali e a trasformate di Fourier 
delle variabili fluidodinamiche.  

Tuttavia, se ci si limita ai soli aspetti fondamentali, è sufficiente richiamare alcuni concetti generali 
sulla turbolenza quali, ad esempio, la cascata energetica, le scale spazio-temporali ecc. In particolare, si 
deve ricordare che, all'interno dello spettro d'energia delle varie scale turbolente è possibile riconoscere 
la funzione energetica di strutture vorticose che possono essere approssimativamente raggruppate nelle 
tre bande dimensionali, o scale denominate, rispettivamente: 

 - banda energetica (o energy-containing range), contenente le strutture vorticose turbolente di 
grande scala, 

 - banda inerziale (inertial range o subrange), che comprende i vortici di dimensione media, 

  -banda dissipativa (dissipation range), relativa alle strutture vorticose di piccola scala. 

significato più chiaro ai termini "grande" e "piccolo", riferiti alle dimensioni dei vortici. 

Su tali basi, possiamo infatti affermare che le strutture vorticose di scala maggiore(i grandi 
vortici): 
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 - hanno natura convettiva e numeri di Reynolds caratteristici relativamente elevati (tanto che, per 
instabilità, sono in grado di produrre vortici di dimensioni più ridotte), 

 - hanno una scala temporale paragonabile a quella del moto medio, 

 - hanno origine e tipologia fortemente dipendenti dal moto medio, ovvero dal tipo e dalla 
geometria del dominio di moto (o, in altre parole, dal tipo di corrente), 

 - estraggono energia cinetica dal moto medio per produrre energia cinetica turbolenta, 

 - hanno forma e dimensione poco dipendenti dal numero di Re della corrente media, 

 - sono generalmente anisotrope. 

    

Figura 69: Le tre bande caratteristiche dello spettro d'energia della turbolenza: scale energetiche, 
inerziali e dissipative 

Le strutture turbolente di dimensioni intermedie: 

 - sono generate dall'instabilità non lineare delle grandi strutture, 

 - sono anch'esse instabili, in quanto caratterizzate da numeri di Reynolds ancora relativamente 
elevati, 

 - hanno essenzialmente la funzione di trasferire ai vortici piccoli l'energia cinetica turbolenta 
prodotta, e ricevuta, da quelli grandi; 

I vortici più piccoli: 

 - nascono da interazioni non lineari fra quelli grandi e quelli intermedi, 

 - sono stabili, in quanto caratterizzati da numeri di Re bassi (dell'ordine dell'unità), 

 - hanno natura dissipativa e convertono in calore, attraverso la viscosità,l'energia cinetica 
turbolenta loro trasmessa dai vortici intermedi, 

 - hanno vita media molto più breve degli altri vortici e decadono con legge esponenziale, 

 - hanno tempi caratteristici molto brevi e di conseguenza, come si è già detto, una dinamica 
praticamente indipendente da quella dei grandi vortici e del moto medio, 

 - hanno dimensioni relative rispetto a quelle dei grandi vortici che dipendono quasi 
esclusivamente dal numero di Re della corrente, 

 - hanno una struttura più universale (ovvero indipendente dal tipo di corrente) e relativamente 
isotropa. 

E' da queste considerazioni che nascono le idee fondamentali della Large Eddy Simulation, che 
possono essere riassunte in: 
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 1) i vortici grandi e medi devono essere necessariamente (e quindi vengono) risolti esplicitamente, 
come in una DNS, 

 2) soltanto i vortici piccoli si prestano ad essere (e quindi vengono) modellati. 

Mentre con l'approccio delle equazioni mediate di Reynolds non si distingue fra strutture grandi e 
piccole, e si è costretti ad usare modelli che devono quindi simulare gli effetti della totalità dello spettro 
delle dimensioni spaziali delle strutture turbolente, e che pertanto non avranno mai il requisito 
dell'universalità, con la LES si può sperare che, ricorrendo alla modellazione dei soli vortici piccoli 
(quelli grandi sono, infatti, risolti direttamente), questo possa essere al contempo non eccessivamente 
complicato e sufficientemente universale, dal momento che più universali sono le proprietà dei vortici 
che richiedono la modellazione. 

  

Figura 70: Strato limite turbolento in Large Eddy Simulation 

E anche l'isotropia, implicita nel concetto dello scalare viscosità turbolenta, è più ragionevolmente 
ipotizzabile nel caso dei vortici di piccola scala. La LES quindi, seppure meno accurata, è però molto 
meno costosa della DNS, soprattutto se i numeri di Reynolds in gioco sono elevati e, per quanto 
concerne le informazioni più significative, ovvero quelle relative al moto medio e alle strutture 
convettive di grande scala, è praticamente altrettanto affidabile, in quanto questi sono calcolati 
esplicitamente. 

Il processo di derivazione delle equazioni della LES, a partire da quelle di Navier- Stokes, è 
analogo a quello utilizzato nell'approccio delle equazioni mediate di Reynolds, salvo che, in questo caso, 
sono completamente diversi il concetto e la definizione dell'operatore di media. Per le equazioni 
mediate di Reynolds si è eseguita un'operazione di media, o di filtraggio temporale delle variabili istantanee, 
al fine di separare la parte discretizzata e risolta direttamente con le equazioni del moto medio, da quella 
fluttuante, che veniva modellata.  

Qui, al contrario, alle medesime variabili si applica un filtraggio spaziale, per separare la parte 
spaziale discretizzata e risolta direttamente, dalla parte spaziale, che viene ancora modellata.  

L'operazione di filtraggio più intuitiva (sebbene non definibile in modo molto rigoroso dal punto 
di vista matematico) è quella implicitamente operata dal "volumetto di controllo", ovvero dal volume 
racchiuso da ciascun elemento o cella della discretizzazione spaziale.  
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Nel caso della LES, si adottano dimensioni delle celle che non sono sufficientemente piccole da 
permettere di descrivere in dettaglio la dinamica di tutte le strutture turbolente (altrimenti si ricadrebbe, 
evidentemente, nei medesimi problemi della DNS) e, pertanto, le strutture di scala minore vengono 
parzialmente o completamente filtrate dalla soluzione.  

E, così come avveniva per le fluttuazioni temporali nelle equazioni mediate di Reynolds, gli effetti 
delle strutture spaziali non risolte vengono reintrodotti nel modello fisico-matematico attraverso relazioni 
(o modelli) aggiuntivi. Nella LES, le equazioni per la quantità di moto (da integrarsi ovviamente a 
sistema con l'equazione di continuità, anch'essa filtrata) sono del tipo: 
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Equazione in cui, nel caso qui esaminato di fluidi a proprietà uniformi e costanti, il termine 
"viscoso" può anche essere riscritto nella forma, del tutto equivalente, seguente: 
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Le [137], pertanto, sono formalmente identiche alle equazioni mediate di Reynolds, salvo che la 
barretta orizzontale qui indica la componente direttamente risolta, e cioè residua dopo l'operazione di 
filtraggio spaziale, mentre l'apice indica la componente filtrata, non risolta, o "sottogriglia". 

Nel caso della LES, tuttavia, il tensore di componenti ji uu ''

, che ha il significato di "sforzo 

sottogriglia specifico", richiede evidentemente modelli diversi da quelli impiegati per modellare il 
tensore degli sforzi di Reynolds.  

Inoltre si deve ricordare che, mentre nelle equazioni mediate nel tempo, i termini contenenti le 
derivate temporali delle grandezze medie erano presenti soltanto nel caso di moto medio non 
stazionario, qui sono sempre presenti: infatti, anche se il moto medio è stazionario, le strutture 
turbolente grandi e quelle intermedie, che devono essere risolte direttamente, sono, in ogni caso, non 
stazionarie.  

E allo stesso modo, anche nel caso di correnti medie bidimensionali, le equazioni della LES (al 
contrario di quelle mediate di Reynolds) vanno sempre risolte in tre dimensioni,dal momento che non 
esiste struttura turbolenta che non possieda la caratteristica della tridimensionalità. 

7.6 ESEMPIO: SIMULAZIONE DI UNO SWIRLER  

La simulazione del bruciatore in questione è stata effettuata tramite il programma di calcolo ad 
elementi finiti “FEMLAB®24”, prodotto e distribuito dalla software house svedese COMSOL®. Il 
programma di calcolo possiede un “model navigator” dotato al suo interno di una serie di moduli 
applicabili per analisi di vario tipo,dalla fluidodinamica alla meccanica strutturale. 

All‟interno di ognuno di questi sono a loro volta presenti dei sottomoduli contenenti gli algoritmi 
di risoluzione delle equazioni differenziali tipiche del problema che s‟intende analizzare.  

Seguendo la logica di soluzione del programma di calcolo utilizzato, l‟analisi e la modellazione del 
problema affrontato sono state realizzate seguendo una successione di procedure, partendo dalla 
realizzazione della geometria fino ad arrivare al plottaggio e al post-processamento dei risultati.  

Le diverse fasi sono analizzate in dettaglio nei successivi paragrafi e costituiscono i passi necessari 
per sviluppo di un generico modello di calcolo numerico, a prescindere dal software utilizzato. 

                                                
24 Il CAD FEMLAB® ora prende il nome di COMSOL MULTIPHYSICS® 
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Figura 71: Finestra iniziale FEMLAB 

7.6.1 COSTRUZIONE DELLA GEOMETRIA 

Il primo passo inevitabile per la realizzazione del modello risiede nella costruzione della 
geometria del sistema. In particolare ai fini del calcolo non è stato necessario considerare il sistema per 
la sua lunghezza effettiva, ma, ai fini di un più scrupoloso utilizzo delle risorse di memoria, si è 
analizzata la sezione finale del bruciatore più o meno a ridosso della zona in cui è presente lo swirler. Il 
programma di calcolo è dotato di un‟interfaccia CAD per la costruzione delle geometrie.  

Tuttavia questa si è dimostrata inadeguata ai fini della realizzazione dello swirler il quale presenta 
una geometria troppo complessa per essere eseguita con le primitive messe a disposizione dal software.  

Per la costruzione della geometria completa si è allora proceduto separatamente. Come prima 
cosa è stato modellato lo swirler, utilizzando un CAD adeguato (Solid Works®), la cui immagine è 
riportata in  Figura 72. 

   

Figura 72: Modellazione geometrica dello swirler 
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Successivamente il file IGES25 relativo allo swirler è stato importato all‟interno dell‟interfaccia 
grafica del software e su di esso è stata completata la geometria complessiva.  

Questa è suddivisa in due zone: il primo tratto, sul quale è stato inserito lo swirler, è caratterizzato 
da due cilindri concentrici che rappresentano il condotto del bruciatore entro cui fluisce il comburente.  

Il secondo tratto, caratterizzato da un cilindro pieno, rappresenta un volume di controllo entro il 
quale si può analizzare il campo di moto del fluido in uscita dal bruciatore, e che simula una porzione 
del reattore.  

La geometria completa è riportata in  Figura 73. 

  
Figura 73: Geometria completa del sistema studiato 

7.6.2  EQUAZIONI DEL MODELLO, SOTTODOMINI E CONDIZIONI AL 
CONTORNO 

Il passo successivo alla costruzione del modello geometrico,è stato scegliere il sistema di 
equazioni differenziali che meglio approssima il comportamento del sistema nelle sue condizioni di 
funzionamento,imponendo i giusti parametri sia per quanto riguarda il sottodominio sia per quanto 
riguarda le condizioni al contorno. 

In base alle rilevazioni sperimentali portate a termine sul bruciatore, le condizioni operative sono 
risultate le seguenti: 

 Il fluido,ovvero il comburente,entra dalla sezione iniziale con una velocità di circa 20 m/s,in 
accordo con la portata di progetto; 

 La densità del fluido è stata approssimata ad un valore di circa 1 Kg/m3, in funzione della 
temperatura e di una media pesata effettuata sulle densità dei componenti facenti parte della 
miscela gas-ossigeno(che caratterizza il comburente in esame); 

 La viscosità cinematica è stata fissata sul valore di 1*10-5 m2/s in accordo con i valori tipici 
riportati in letteratura;  

 La pressione all‟interno del volume di controllo, assimilabile ad una porzione del reattore,è stata 
fissata ad un valore di 3 bar. 

                                                
25 Il formato IGES è riconosciuto da molti programmi come un formato standard per la modellizzazione solida.  
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Note le condizioni operative del sistema, sono stati calcolati due parametri adimensionali di 
fondamentale importanza,allo scopo di determinare il regime di moto nel quale si trova il fluido, ovvero 
il numero di Mach e il numero di Reynolds. Per il primo si è ottenuto che: 
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c
   

dove si ha che: 

w =20 m/s è la velocità del fluido; 

480 /sc kRT m s    è la velocità del suono; 

e, considerando il comburente come un gas perfetto,ad una temperatura T=300°C si ha che: 
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Per il secondo invece il valore ottenuto è il seguente: 
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Dall‟analisi di questi due parametri si è arrivati alle seguenti conclusioni: 

 -Per prima cosa, si è potuto, con buona approssimazione, considerare il fluido “incomprimibile” 
(ovvero si sono trascurate le variazioni di densità) essendo il numero di Mach molto minore 
dell‟unità26. Questo è giustificabile osservando che le velocità in gioco nell‟efflusso non sono 
particolarmente elevate. 

 -In secondo luogo, dato il valore assunto dal numero di Reynolds, si capisce come il regime di 
moto sia sicuramente turbolento. 

 -Infine il fluido in questione è considerato newtoniano, essendo una miscela gassosa; ciò 
comporta l‟indipendenza della viscosità dal gradiente di velocità. 

 

Figura 74: Finestra di selezione dei sottomoduli di risoluzione  

                                                
26 In realtà si parla di incomprimibilità quando Ma<0.3,condizione il che è ampiamente soddisfatta nel caso in 

esame.  
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Sotto queste condizioni, il modulo adottato per la risoluzione numerica del problema è il “modello 

a due equazioni differenziali k-”, inserito all‟interno del “Chemical Engeenering module”. 

Come già osservato nel capitolo quinto, il modello k-e è uno dei migliori per lo studio dei 
fenomeni che concernono la turbolenza. Le equazioni caratteristiche di questo approccio sono 
l‟equazione di continuità e le equazioni di bilancio di quantità di moto,inglobando in queste anche le 
due equazioni ausiliarie sull‟energia cinetica turbolenta “k” e sull‟energia di dissipazione turbolenta 
“e”,necessarie per la chiusura del problema: 
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Individuato il modulo per lo studio si è effettuato il settaggio del sottodominio,in accordo con i 
valori derivanti dalle specifiche precedentemente elencate: 

 

Figura 75: Finestra per il settaggio dei sottodomini 

A seguire sono state impostate le condizioni al contorno(“boundary conditions”)per le quali il 
software offre diverse tipologie (Figura 76).Per la fisica del problema affrontato le condizioni al 
contorno imposte si possono riassumere come segue: 

 Condizione di velocità assiale nella sezione d‟ingresso,pari a 20 m/s; 

 Condizione di aderenza(no slip) su tutte le superfici solide che costituiscono le pareti dei condotti 
e le palette dello swirler; 

 Condizione di pressione pari a 3 bar nella sezione finale del sistema. 
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7.6.3 LA MESH DEL MODELLO 

Una volta stabilite tutte condizioni fisiche del modello, si è potuto passare alla realizzazione della 
mesh. Quest‟ultima è stata realizzata con elementi tetraedrici che meglio si adattano a casi di geometrie 
3D,differentemente dalle mesh mappate con elementi quadrangolari.  

Il problema esaminato,per via della sua geometria piuttosto complessa in prossimità dello swirler, 
presenta un elevato numero di gradi di libertà che hanno creato non pochi problemi per la gestione 
della memoria del calcolatore utilizzato.I valori impostati per la definizione degli elementi della mesh 
sono riportati nella Figura 77. 

 

Figura 76:  Finestra per il settaggio delle condizioni al contorno 

 

Figura 77:  Finestra di settaggio per i parametri della mesh 

Imponendo tali valori la mesh del modello è risultata  come riportato in Figura 78.  

Da questa si può osservare che la zona in cui è presente lo swirler risulta molto più densa di 
elementi,essendo questa suddivisa in tanti piccoli sottodomini caratterizzati dai vani compresi tra le 
palette. Ciò si osserva meglio nell‟ingrandimento riportato in Figura 79.  
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Tuttavia nonostante l‟apparente bontà della mesh, il numero delle maglie non è quello ottimale 
per ottenere risultati di precisione elevata,per i quali necessiterebbero mesh con milioni di gradi di 
libertà.  

In ogni caso l‟analisi è risultata pienamente soddisfacente con il livello di approssimazione 
considerato e ha restituito indicazioni importanti sulle distribuzioni del campo di velocità e di pressione 
del sistema studiato. 

   
Figura 78: Mesh del modello 

 

Figura 79: Ingrandimento della mesh nella zona dello swirler 
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7.6.4 SOLUZIONE NUMERICA DEL PROBLEMA 

Questa fase rappresenta sicuramente il punto cruciale nella risoluzione del problema.Il software 
utilizzato possiede di default una serie di solutori i quali possono essere opportunamente gestiti in 
funzione dell‟entità del calcolo e della tipologia di problema da risolvere. In breve i solutori possono 
essere suddivisi come segue: 

 Solutori lineari: per problemi semplici di carattere lineare; 

 Solutori non lineari: per problemi complessi non lineari; 

 Solutori diretti: ricavano la soluzione con metodo diretto ma con eccessivo utilizzo di memoria; 

 Solutori iterativi: ricavano la soluzione in modo iterativo,sfruttando meno memoria,ma 
impiegando più tempo. 

Normalmente per problemi come quello affrontato, in cui analizzano problemi di turbolenza con 
geometrie 3D, il solutore che meglio si presta per la risoluzione è sicuramente di tipo non lineare e 
iterativo, da un lato perché le equazioni caratteristiche del moto sono non lineari, dall‟altro perché il 
solutore iterativo non presenta gli oneri di calcolo che presenterebbe un solutore diretto (soprattutto 
nel caso di geometrie 3D).  

Tuttavia a causa delle numerose iterazioni che questo tipo di solutore si trova ad eseguire per 
risolvere il sistema di equazioni in questione, si è optato, in definitiva, per un solutore non-lineare 
diretto, che pur richiedendo notevole risorse di memoria ha consentito una maggiore rapidità di calcolo.  

Com‟è riportato in  Figura 80,  l‟analisi effettuata risulta essere “stazionaria non lineare” ed il 
solutore prescelto risulta essere l‟UMFPACK il quale è stato settato limitando il fattore di smorzamento 
per far convergere più rapidamente la soluzione del problema: 

  

Figura 80: Finestra di gestione del solutore 

Infine, il “metodo di soluzione” delle equazioni differenziali alle derivate parziali(PDE) è fissato sulla 
modalità “generale”, necessaria quando vengono affrontati problemi di natura non lineare, o semi-lineare. 

7.6.5 PLOTTAGGIO DEI RISULTATI E POST-PROCESSAMENTO 

Questa è la fase finale del processo di modellazione la quale consiste nel plottare i risultati 
ottenuti dalla simulazione e di effettuare il loro post-processamento. 
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Il software utilizzato ha, nel post-processamento dei risultati, uno dei suoi punti forti in quanto 
presenta un‟interfaccia di gestione semplice da utilizzare, ma allo stesso tempo completa.Il primo 
risultato che è stato plottato, riporta la distribuzione del modulo del campo di velocità,analizzato in una 
serie di sezione trasversali del sistema ed è rappresentato in Figura 81. Si evince chiaramente dalla figura 
che il fluido entrando con una velocità di circa 20 m/s subisce un‟accelerazione all‟interno dello swirler 
a causa della stazionarietà del problema. Infatti, la conservazione della portata di massa comporta il 
conseguente aumento della velocità al ridursi della sezione. 

 

Figura 81: Piani di sezione: campo di velocità 

All‟interno del reattore il fluido incontra un ambiente di grosse dimensioni espandendosi e 
rallentando bruscamente fino a valori della velocità di 1 m/s circa. Il tutto appare più chiaro nella 
seguente sezione longitudinale: 

 

Figura 82: Sezione longitudinale del modello 
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Dalla Figura 82 risulta evidente l‟espansione del getto fluido(con andamento tipicamente 
conico)al momento dell‟ingresso nel reattore, con conseguente diminuzione di velocità.  

Per quanto invece riguarda la direzione del campo di moto, si sono andati ad analizzare le linnee 
di flusso27 e i vettori velocità, come mostrato nelle seguenti immagini. 

 

Figura 83: Linee di flusso 

 

Figura 84: Vettori velocità 

Risulta in questo caso ben visibile il moto a spirale tipico di un flusso swirlato.In particolare il 
moto impresso dalla palettatura crea,come accennato nel capitolo precedente,una zona di depressione 
interna con conseguente sviluppo di una zona di ricircolo centrale (“Central Toroidal Ricirculation Zone”) 
che riporta il fluido verso la sezione d‟uscita del bruciatore. 

                                                
27 Si ricorda che per linea di flusso (streamline) s‟intende la linea che si mantiene tangente in ogni punto al vettore 

velocità. 
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Figura 85a: Ingrandimento della zona di formazione del vortice(posteriore) 

 

Figura 85b: Ingrandimento della zona di formazione del vortice(anteriore) 

Eseguendo in prossimità di quest‟ultima (ad una distanza di circa 1 cm) un‟analisi della 
distribuzione radiale della componente assiale della velocità, è possibile osservare su un generico piano 
longitudinale della geometria, un andamento del tipo riportato in Figura 86. 

E‟ facile osservare come nella zona centrale,ovvero all‟interno del nucleo del vortice,il modulo 
della velocità assiale assuma valori negativi. Ciò, ovviamente, è collegato all‟inversione del flusso causata 
dai gradienti pressori che si originano in suddetta zona.  

I valori trovati sono aderenti ai risultati ottenuti per via sperimentale, tramite LDV e concordano 
con i numerosi casi analoghi ritrovabili in letteratura. I valori inerenti all‟effetto di ricircolo ottenuti con 
la simulazione inoltre risultano concordanti con il grado di swirl posseduto dal bruciatore. 
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Figura 86: Distribuzione radiale della componente assiale della velocità all’uscita del bruciatore 

Si è, calcolato il numero di swirl per il sistema in esamem basata sulla geometria del sistema, 
ottenendo che: 
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Secondo la suddivisione effettuata nel sesto capitolo in merito ai diversi gradi di effetto swirl, si 
osserva che il sistema esaminato rientra nel caso di un “medium swirl”, essendo il numero di swirl 
compreso tra 0 ed 1.  

                    

Figura 87: Distribuzione radiale della componente assiale della velocità a 20 cm dalla sezione d’uscita del 

bruciatore 

In questa categoria, infatti, rientrano tutti i sistemi in cui l‟effetto è tale da generare un gradiente 
di pressione assiale e radiale sufficientemente intenso da formare vortici di rientro in cui viene 
ricircolata una certa percentuale di massa fluida.  
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Ciò, quindi, corrisponde perfettamente a quanto ottenuto dalla simulazione. La stessa analisi è 
stata successivamente effettuata a distanze crescenti rispetto alla sezione d‟uscita del bruciatore per 
analizzare la permanenza è la lunghezza della zona di ricircolo.  

Come riportato in Figura 87 ad una distanza di circa 20 cm dalla bocca del bruciatore si ha ancora 
un notevole effetto di ricircolo evidenziato dai valori assunti dalla componente assiali della velocità,i 
quali permangono negativi.  

Questo denota un elevato grado di miscelazione tra comburente e combustibile, il quale viene, in 
una buona percentuale, ricircolato dai vortici toroidali del comburente verso la zona d‟iniezione,dando 
origine a tutti gli effetti benefici che sono già stati più volte sottolineati riguardo le emissioni e la 
stabilità di fiamma. 

In maniera analoga è stato possibile analizzare la distribuzione radiale di pressione sempre in 
prossimità della sezione d‟uscita, il cui andamento è riportato in Figura 88. 

 
Figura 88: Distribuzione della pressione all’uscita del bruciatore 

La figura è esplicativa del fatto che, pur essendo fondamentalmente tutto l‟ambiente alla 
pressione di progetto di 3 bar, all‟uscita del bruciatore si viene a creare quella leggera depressione tipica 
dei flussi swirlati.  

La leggera discontinuità che si può notare nell‟immagine, nella zona centrale, deriva 
dall‟imprecisione di calcolo implicita nella mesh prescelta che,come già osservato,comporta degli errori 
durante l‟analisi numerica. 
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8 EBOLLIZIONE E CONDENSAZIONE DEI FLUIDI 

I fluidi (liquidi e vapori) possono cambiare di stato, come si è visto in Termodinamica Applicata con 
le curve di Andrews. Questi cambiamenti di stato, ebollizione e condensazione, rivestono una 
grandissima importanza industriale per le numerosissime ed importantissime applicazioni in campo 
energetico. Si pensi, ad esempio, al raffreddamento dei reattori nucleari, ai tubi di calori e alle 
applicazioni in campo elettronico (raffreddamento di componenti fortemente energetici). 

Oggi con queste tecniche si riesce a raggiungere una intensità di flusso estratto dell‟ordine del 
MW/m² e quindi valori elevatissimi e adatti a far fronte alle esigenze di raffreddamento di dispositivi ad 
elevata densità di potenza28. Si vuole in questo capitolo presentare brevemente queste problematiche 
affrontandole più in modo qualitativo che quantitativo, anche in considerazione della natura del 
presente Corso. Si rimanda ai testi specializzati ogni ulteriore approfondimento. 

Un altro motivo di interesse specifico di questi fenomeni di scambio termico con passaggio di 
stato è dovuto alla semplice considerazione che per essi non si possono applicare le relazioni 
adimensionali della convezione termica viste in precedenza. Si osservi, infatti, che per la convezione 
forzata si hanno relazioni adimensionali del tipo: 

Re Prm nNu C    

mentre per la convezione naturale si hanno correlazioni adimensionali del tipo: 

Gr Prm nNu C    

che spesso, nel caso di gas per i quali gli esponenti m ed n sono eguali, si possono ricondurre nella 
forma semplificata: 

RamNu C   

Si ricorda che il numero di Prandtl è definito dal rapporto: 

Pr
pc 


  

e quindi dipende dal calore specifico a pressione costante del fluido interessato. Durante i 
passaggi di stato la pressione si mantiene costante ma anche la temperatura e quindi cp è infinito. Ne 
segue che durante i passaggi di stato non possiamo usare correlazioni adimensionali ove compare cp. 

Occorre, quindi, affrontare diversamente il problema dello scambio termico in cambiamento di 
fase con osservazioni e metodologie di studio specifiche per questi fenomeni. 

8.1 EBOLLIZIONE STATICA 

Prima di affrontare lo studio dell‟ebollizione è bene ricordare che questa differisce dalla 
evaporazione. Questa, infatti, è un fenomeno di transizione dalla fase liquida a quella di vapore nella 
regione superficiale di contatto dei due fluidi ed è determinata dalla differenza fra la pressione di 
saturazione e la pressione parziale del vapore. L‟ebollizione interessa, invece, la massa del fluido ed è 
determinata dal raggiungimento della temperatura di saturazione nel punto specifico e alle condizioni di 
pressione presenti. L‟ebollizione è stata studiata negli anni quaranta da Nukijama che propose il 

diagramma di Figura 89 per ebollizione statica: in ascisse è rappresentato Tsat cioè la differenza di 
temperatura della parete, Tp, e quella di saturazione del liquido, Ts, in ordinate si ha il flusso specifico 
[W/m²] in unità arbitrarie. 

                                                
28 I reattori nucleari raggiungono densità di potenza dell‟ordine di qualche centinaio di Watt per centimetro cubo. 

Dello stesso ordine di grandezza sono le densità di potenza dei tubi claystron utilizzati negli impianti radar. Si pensi, ancora, 
che un semplice Pentium III disperde circa 40 W  con una superficie di circa 2 cm² e quindi con una densità superficiale di 
0.2 MW/m². E‟ opportuno osservare che oltre al valore assoluto della potenza termica da estrarre (ad esempio negli impianti 
di potenza) è importante considerare anche le densità (volumiche o superficiali). Se non si riesce a smaltire queste potenze 
specifiche i dispositivi interessati possono subire danni irreversibili o non funzionare affatto. 
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Figura 89: Curva di Nukijama 

L‟ebollizione statica si ha, ad esempio, ponendo la classica pentola sul fuoco: il fluido è in 
condizioni statiche e non in movimento, come avviene nei tubi all‟interno di una caldaia.  

Se si aumenta la potenza ceduta alla parete di fondo si hanno, inizialmente, valori di Tsat bassi, 
dell‟ordine di qualche grado, come indicato in figura.  

Per effetto di questa differenza di temperatura si instaurano fenomeni convettivi per i quali il 
fluido caldo, a contatto con la parete di fondo riscaldata, si sposta verso l‟alto, ove la temperatura è 
inferiore a quella di saturazione dando luogo alla convezione termica, così come vista in precedenza. In 
questa zona si possono utilizzare le correlazioni adimensionali solite per la convezione naturale e il 
flusso specifico è dato da29: 

satq h T   

Molto usata è la correlazione di Mc Adams:  
0.25

0.56 PrNu Gr  per moto laminare e 

 
0.33

0.13 PrNu Gr  per moto turbolento.  

Ad un certo punto, a seconda della combinazione di fluido e materiale delle pareti e della 
pressione sul fluido, si cominciano ad osservare sulla parete di fondo riscaldata alcune bollicine che 
appena nate subito spariscono.  

Per comprendere questo fenomeno occorre ricordare che l‟ebollizione del liquido avviene solo 
quando si supera la temperatura di saturazione e per effetto di una causa scatenante, una sorta di 
innesco spesso dato dalla presenza di impurezze, di gas diverso dal vapore o da asperità tipiche delle 
lavorazioni delle pareti metalliche. 

In Figura 90 si ha un ingrandimento della parete di fondo con l‟evidenziazione delle asperità 
dovute alle lavorazioni. Si osservi che queste asperità sono volute, come si dirà fra poco, perché aiutano 
il processo di formazione delle bolle. 

                                                
29 Si utilizza il salto di temperatura Tsat come valore di riferimento certo. Il salto reale di temperatura dipende dalle 

condizioni locali non sempre facilmente calcolabili. 
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

 

Figura 90: Nascita di una bolla di vapore  

Se consideriamo una cavità si intuisce che nella cuspide di fondo si ha una concentrazione 
anomala di potenza termica (a parità di superficie frontale le pareti inclinate trasmettono più calore) e 
quindi è possibile avere l‟innesco per l‟inizio della ebollizione.  

Il vapore che si viene formando occupa un grande volume e forma una bollicina che va sempre 
più crescendo di diametro fino ad uscire fuori dai limiti della stessa cavità e affiorare nel liquido 
sovrastante. Il liquido può essere ancora in condizioni di sottoraffreddamento, cioè ancora non 
sufficientemente riscaldato e quindi in condizioni tali da mantenere le condizioni termodinamiche di 
esistenza in vita della bolla. 



 

Figura 91: Implosione della bolla 

Pertanto la bolla si raffredda rapidamente perché cede calore al fluido sovrastante e, quando la 
pressione interna diviene inferiore a quella esercitata dal liquido esterno si ha l‟implosione con 
conseguente scoppio, vedi Figura 91 e Figura 92. 

Questo semplice meccanismo si rivela efficacissimo ai fini dello scambio termico poiché il vapore 
all‟interno della bolla cede al liquido il suo calore latente di vaporizzazione (che è elevato!). Inoltre lo 
scoppio produce l‟effetto benefico di movimentare il liquido ossia di migliorare la convezione termica. 
E‟ come se si avessero tanti piccoli meccanismi di movimentazione del liquido e quindi la convezione si 
comporta come se fosse forzata.  

Quanto sopra detto si chiama ebollizione enucleata e tale il nome proprio dalla formazione dei 
nuclei di ebollizione che poi implodono. La temperatura corrispondente all‟insorgere di questo 
fenomeno è detta  onset on nucleate boiling (ONB) e rappresenta un punto significativo della curva 
di Nukijama. 
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

 

Figura 92: Scoppio della bolla 

Per effetto dei meccanismi efficacissimi di scambio termico ora il flusso termico si esprime con la 
relazione: 

3 5
satq h T    

Si osservi che ora il flusso termico dipende dalla 35 potenza del Tsat e quindi si ha una capacità 
di estrazione termica notevolissima. E‟ proprio questa la zona di maggiore interesse per le applicazioni.: 
l‟ebollizione nucleata. 



 

Figura 93: Distacco delle bolle 

Man mano che il liquido si riscalda le bolle possono crescere ulteriormente e finalmente possono 
staccarsi dalla parete di fondo, come indicato in Figura 93. Le bolle ora perfettamente formate sono in 
grado di iniziare la loro ascesa verso la superficie superiore del liquido ma, allontanandosi dalla parete, 
incontrano strati di liquido più freddi e quindi si raffreddano cedendo calore attraverso la superficie di 
separazione.  

pv

pl



Vapore

Liquido

Tv Tl

 

Figura 94: Equilibrio termodinamico della bolla 
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Quando la pressione interna della bolla non riesce più a bilanciare la pressione del liquido si ha, 
ancora, l‟implosione della bolla e quindi nuovamente il meccanismo di scambio termico visto in 
precedenza con la cessione del calore latente e la movimentazione del liquido.  

Con riferimento alla Figura 94 si può scrivere, per l‟equilibrio: 

2 2

4 4
v l

d d
p p d      

ove si sono indicate con: 

 pv la pressione del vapore interna alla bolla alla temperatura Tv; 

 pl la pressione esercitata dal liquido alla pressione Tl; 

 d  il diametro della bolla; 

  la tensione superficiale della bolla,

Da questa relazione si ha: 

4
v lp p

d


   

Si può subito osservare che più piccolo è il diametro della bolla tanto maggiore deve essere la 
differenza di pressione fra l‟interno (vapore) e l‟esterno (liquido).  

Inoltre se si vuole che il liquido e il vapore della bolla sia in equilibrio termodinamico deve essere 
Tv = Tl e poiché il vapore è in condizioni di saturazione alla pressione pv > pl deve anche aversi che il 
liquido, essendo ad una temperatura superiore a quella di equilibrio alla pressione pl < pv , è 
surriscaldato.  

Allora il surriscaldamento Tv – Ts in condizioni di equilibrio termico e meccanico può essere 
determinato facendo ricorso all‟equazione di Clapeyron – Clausius (che possiamo ricavare dalle equazioni 
di Maxwell viste in Termodinamica): 

v T

p s

T v

 


 
 

che, nel caso in esame diviene: 

2

v

s v s

rpdp r

dT vT R T
   

ove si è tenuto conto che deve essere v v sp v R T . Possiamo ancora scrivere, in prima 

approssimazione: 

v l

v s

p pdp

dT T T





 

e quindi, anche in considerazione di quanto sopra visto per pv – pl si ha: 

2
4 v s

v s v s

v

R T
T T t t

rp d


     

Ora l‟ebollizione nucleata non è più sul nascere ma in pieno sviluppo e siamo nel tratto di curva 
AB della Figura 89.  

Gli scambi termici sono efficaci e il liquido subisce un vigoroso riscaldamento.  

Quando il Tsat raggiunge il punto B allora si cominciano ad avere le prime bolle che raggiungono 
la superficie del liquido e quindi tutta la massa del liquido è interessata dal fenomeno della enucleazione.  
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Dal punto B in poi, al crescere di Tsat si formano sempre più bolle di vapore che raggiungono la 
superficie del liquido, fino a formare vere e proprie colonne di vapore che occupano uno spazio non 
trascurabile30.  

Il liquido in moto convettivo dall‟alto verso il basso, per continuità di massa, trova sempre meno 
spazio per passare e quindi aumenta la sua velocità di spostamento e ciò favorisce lo scambio termico.  

Se non si fosse in equilibrio termico allora per Tv < Tl si avrebbe: 

2
4 v s

l s

l

R T
T T

rp d


   

Il calore si scambia per conduzione all‟interfaccio liquido – vapore e parte del liquido evapora e la 
bolla cresce. Se invece Tv > Tl ovvero per : 

2
4 v s

l s

l

R T
T T

rp d


   

lo scambio termico si inverte e la bolla diminuisce di volume. 

Ritorniamo alla curva di Nukijama osservando che quando Tsat raggiunge il punto C di Figura 
89 allora tutta la massa del liquido si è portata nelle condizioni di saturazione e può partecipare 
massivamente all‟ebollizione.  

Il punto C è particolarmente importante nello studio che si sta facendo: esso prende il nome di  
punto critico e il flusso termico corrispondente è detto  flusso di burn out (cioè di  bruciatura). A 
destra del punto critico non è facile andare se si controlla il flusso termico, come sin qui si è fatto. La 

curva di Nukijama è monocroma se si controlla il Tsat mentre è policroma se si controlla il flusso 
termico q. 



 

Figura 95: Implosione della bolla distaccata 

Dal punto critico C con un leggero incremento della temperatura di parete si passa al punto D a 
cui corrisponde (si veda in ascisse) un valore elevatissimo e tale da portare a fusione la maggior parte 
dei materiali oggi utilizzati.  

Pertanto le condizioni operative debbono essere lontane il più possibile da C per evitare la 
bruciatura della parete di fondo a cui seguono scoppi ed incidenti vari.  

Se anziché controllare il flusso termico si potesse controllare Tsat ad esempio mediante scambi 
termici con corpi in cambiamento di fase (la cui temperatura, quindi, è costante durante il cambio di 
fase e nota per data pressione) allora si può andare a destra di C, con grande cautela. 

                                                
30 Si ricordi che il vapore ha un volume specifico molto grande rispetto al liquido, almeno per pressioni lontane da 

quella critica. 
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

 

Figura 96: Formazione di colonne di bolle 

Adesso la produzione di vapore è massiva e le colonne di vapore sono talmente numerose da 
toccarsi fra loro, specialmente in corrispondenza della parete di fondo. Si ha, pertanto, la situazione di 
Figura 97 ove si ha la formazione di uno strato di vapore continuo nel fondo.  

Il liquido, per effetto delle velocità raggiunte a causa del restringimento delle sezioni di passaggio, 
riesce a squarciare questo velo di vapore e quindi a bagnare ancora, seppure parzialmente la parete di 
fondo. 



 

Figura 97: Formazione di uno strato di vapore sulla parete di fondo 

L‟alternarsi dello strato di vapore e dello strato di liquido giustifica la necessità di abbassare il 
flusso termico, come mostrato in Figura 89.  

Si osservi, infatti, che la trasmissione attraverso il liquido è sempre più efficiente rispetto a quella 
con vapore e quindi la trasmittanza termica con liquido è maggiore di quella con vapore. Pertanto si ha: 

liquido sat vapore satK S T K S T    

e quindi a parità di S e di flusso termico imposta si ha un Tsat maggiore nel caso di presenza del 
vapore.  

Dal punto C ci si sposta, diminuendo il flusso termico, fino al punto L detto punto di 
Leidenfrost o di calefazione in corrispondenza del quale lo strato di vapore prende definitivamente il 
sopravvento rispetto al liquido che, pertanto, non riesce più a squarciare il velo di vapore.  

In pratica il liquido galleggia su uno strato di vapore stabile sulla parete di fondo.  
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Questa situazione è facilmente riproducibile: se si gettano goccioline di acqua su una piastra di 
ferro infuocata si può osservare una sorta di galleggiamento delle goccioline sulla stessa piastra, fino a 
quando tutto il liquido diventa vapore. 

Si ha in L una situazione di scambio termico con Kvapore e quindi con Tsat elevati, come si vede 
dalla curva di Nukijama.  

Ora però la situazione è stabile e quindi il flusso può nuovamente crescere al crescere di Tsat. In 
Figura 98 si ha una sequenza fotografica della nascita di una bolla e del suo collasso in fase iniziale 
(ebollizione nucleata).  

Si può osservare come l‟implosione della bolla provochi un micro moto convettivo locale che 
incrementa fortemente lo scambio liquido – vapore.   

E‟ questa una delle motivazioni forti della grande efficacia di scambio termico in questa tipologia 
di ebollizione.  

In Figura 99 si ha una analoga sequenza di immagini dell‟implosione di una bolla non più in fase 
nucleata ma del tutto sviluppata. 

8.2 CORRELAZIONI DI SCAMBIO TERMICO PER L’EBOLLIZIONE 

Le correlazioni di scambio termico si basano su esperienze di laboratorio in varie situazioni 
pratiche (cioè accoppiamento di liquidi e metalli vari). Si definisce un numero di Reynolds di bolla dato 
dalla relazione: 

Re v b
b

l

m D





 

ove con vm  si è indicata la portata di vapore per unità di superficie, Db il diametro della bolla al 

momento del distacco, l la viscosità del liquido. 

La correlazione di scambio sperimentale (Zuber) è la seguente: 

 
3

Pr

p satl v

l s
l sf

c Tg
q r

r C

 




 
   

 

 

ove r è il calore latente di vaporizzazione, l e v sono le densità del liquido e del vapore, Prl è il 
numero di Prandtl del solo liquido saturo, s e Csf opportuni coefficienti dati dalle varie combinazioni di 

liquidi e materiali e  è la tensione superficiale dell‟interfaccia liquido - vapore. 

Il flusso termico massimo, cioè il flusso critico, può essere calcolato con la relazione: 

 
1/ 4

2
0.18

l v l
critico v

l vv

g
q r

   


 

   
    

  
. 

8.3 EBOLLIZIONE CON LIQUIDI IN MOVIMENTO 

Consideriamo adesso il caso che l‟ebollizione avvenga con liquido in movimento all‟interno di un 
condotto, come raffigurato in Figura 101.  

Il flusso termico è ceduto lungo la superficie laterale del condotto (si immagini un tubo bollitore 
all‟interno di una caldaia).  

Il liquido entra nel condotto in condizioni di sottosaturazione. 

Man mano che procede verso l‟alto il liquido si riscalda fino a quando, con le stesse modalità viste 
in precedenza per l‟ebollizione statica, si formano le prime bolle di vapore (ONB) sottoraffreddate e 
poi, ancora procedendo verso l‟alto, si formano delle vere e proprie bollicine che si liberano nella 
matrice liquida.  



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

154 

 

Figura 98: Sequenza di ebollizione nucleata statica attorno ad un filo caldo  
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Figura 99: Sequenza delle fasi di implosione di una bolla completa 
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Figura 100: Curva di Nukijama per ebollizione dinamica ( è il coefficiente di convezione) 

 

Figura 101: Ebollizione dinamica 

Si ha, quindi, il  moto a bolle di Figura 101. All‟aumentare del flusso termico ricevuto si hanno 
sempre più bollicine che finiscono con il toccarsi formando bolle di dimensioni maggiori, dei veri e 
propri tappi di vapore e si ha il  moto a tappi.  

Procedendo ancora verso l‟alto il vapore che si forma diviene massivo e tale da formare uno 
strato anulare interno al condotto, con pareti ancora bagnate dal liquido, moto anulare. Ad un certo 
punto il liquido alle pareti viene sostituito dal vapore e si ha un punto di crisi termica analogo al punto 
di burn out visto in precedenza.  

Adesso si dice punto di dry out e cioè punto di asciugatura. Anche in questo caso se il vapore 

bagna le pareti il Tsat  cresce molto ed improvvisamente. In questo caso si hanno valori del salto di 

Tsat inferiori a quelli in ebollizione statica e i tubi normalmente usati possono resistere benissimo.  
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Figura 102: Distribuzione di temperatura lungo un tubo bollitore  

Oltre il punto di dry out si ha un moto nel quale goccioline residue di liquido galleggiano in una 
matrice di vapore. Si ha il  moto a nebbia utilizzato in alcune applicazioni impiantistiche. 

L‟andamento del tipo di moto unitamente alla distribuzione della temperatura lungo il tubo 
bollitore sono riportati in Figura 102. E‟ opportuno osservare che il tipo di moto sopra indicato non 
avviene sempre allo stesso moto in qualunque situazione sperimentale.  

Ad esempio, per tubi orizzontali si hanno configurazioni di moto diverse con moto stratificato 
anziché anulare. Inoltre si possono avere anche unioni di masse liquide per formare una specie di tappi 
(moto a slug) che non ha corrispondenza nel moto verticale.  

Per conoscere il tipo di flusso che si viene ad instaurare in un condotto non si hanno metodi certi 
per cui si utilizzano mappe sperimentali non sempre affidabili data la grande variabilità dei parametri. 
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Figura 103: Tipo di moto in un tubo bollitore orizzontale 

In Figura 104 si ha un tipico diagramma detto a zone per individuare, con approssimazione non 
sempre accettabile, il tipo di moto che si può instaurare in un tubo bollitore orizzontale. 

 

Figura 104: Diagramma a zone per il tipo di moto 

Nel caso di ebollizione dinamica si hanno vari metodi per calcolare il coefficiente di convezione 
termica che portano a forme analitiche del tipo: 
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  b
satq af p T   

con a e b costanti sperimentali opportune.  

Chen consiglia di usare un coefficiente di convezione termica dato dalla somma di una 
componente dovuta alla convezione microscopica ed una convezione macroscopica.  

Quest‟ultima si può determinare mediante la relazione di Dittus – Boelter modificata: 

0.8 0.4

. 0.023Re Pr l
eb mac b l

H

h
D


  

ove Reb è il numero di Reynolds corrispondente al deflusso bifase dato dalla relazione: 

Re Reb l F   

con F fattore correttivo empirico funzione del parametro di Martinelli, Xtt, definito come radice 
quadrata del rapporto fra la caduta di pressione nella fase liquida e la caduta di pressione nella fase 
aeriforme ed è dato a sua volta dalla relazione: 

0.5 0.10.9
1l v l
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a l v

p x
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p x

 

 

     
      

      
 

con x titolo del vapore. 

 

Figura 105: fattore di correzione F 

Il coefficiente di convezione microscopica è fornito dalla relazione: 

0.79 0.45 0.49
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con S fattore correttivo funzione di Reb. Il flusso termico critico è dato da: 
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valida per acqua e con pressioni fino a 7 bar. 
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Figura 106: Fattore di correzione S 

8.4 LA CONDENSAZIONE 

Il processo inverso dell‟ebollizione è la condensazione che può avvenire sia a gocce che per film. Il 
primo tipo (a gocce) è molto efficiente e rappresenta l‟analogo dell‟ebollizione nucleata.  

Sfortunatamente perché questa avvenga occorre avere superfici di condensazione non bagnabili in 
modo che le goccioline di condensato restino isolate. Ciò si raggiunge spalmando le superfici con 
speciali additivi chimici o ricoprendole di lamine d‟oro e di materiale plastico. 

L‟uso continuo porta comunque ad un decadimento delle proprietà superficiali e quindi alla 
necessità di rinnovamento delle superfici stesse. Con la condensazione a gocce si può arrivare a 
coefficienti di convezione fino ad 1 MW/m²K. Più facile da avere e controllare è la condensazione a film 
nella quale si ha un processo di condensazione massivo (analogo dell‟ebollizione di massa) con 
formazione di un film di condensato che scorre lungo la parete fredda, come indicato in Figura 107. 

Il problema della condensazione è stato studiato da Nusselt ad inizio del novecento e la sua 
teoria, pur se semplificata, rimane ancora oggi valida. Nusselt suppone che il condensato si muova in 
regime stazionario con moto laminare lungo la parete e che il profilo del film di condensato sia liscio, 
cioè non si formino onde o corrugazioni. 

Le equazioni della quantità di moto si riducono alla sola equazione in y e cioè: 

2

2l l l

v v dP v
u v g

x y dy x
  
   

     
   

 

FILM DI
CONDENSATO

PARETE
FREDDA

GRAVITA'

y

x

 

Figura 107: Formazione del film di condensato 
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L‟ultimo termine rappresenta l‟azione della gravità sull‟elemento di volume di condensato. Il film 
di liquido si suppone sottile e in tale ipotesi il gradiente di pressione nel liquido risulta eguale (per la 
seconda equazione della conservazione della quantità di moto) a quello nel vapore, cioè si ha: 

v

dP
g

dy
  

La prima equazione della quantità di moto può essere riscritta, per effetto della precedente 
osservazione, in altro modo: 

 
2

2l l l v

Alleggerimento
Attrito

Inerzia

v v v
u v g

x y x
   
   

    
    

 

In questa relazione sono evidenziate le forze in gioco e il loro bilanciamento. Assumiamo, ancora, 
che le forze di inerzia siano trascurabili (per lo strato sottile) rispetto alle forze di attrito e quindi si può 
scrivere ancora: 

 
2

2
0l l v

Alleggerimento
Attrito

v
g

x
  


  

 
 

Questa equazione del secondo ordine va integrata due volte in x con le condizioni al contorno: 

 v=0 per x=0 , cioè scorrimento nullo alla parete; 

 0v
x

 


 per x= , cioè taglio nullo all‟interfaccia liquido-vapore, avendo indicato con  lo 

spessore corrente del film liquido ad ordinata y; 

Si ottiene allora la seguente distribuzione di velocità: 

   
2

2 1
,

2
l v

l

g x x
v x y   

  

  
    

   

 

In questa relazione non è ancora noto lo spessore  del film di condensato. Nota la velocità del 
condensato si può calcolare la sua portata che vale: 

  3

0 3

l
l l l v

l

g
m udx

 
   


    

La portata di liquido condensato è qui misurata in [kg/(ms)] ed è espressa per unità di lunghezza 
nella direzione normale al piano di Figura 107. Il vapore che va condensando cede il suo calore latente 
di condensazione e il calore sensibile di desurriscaldamento, supponendo che la temperatura di parete 
sia inferiore alla temperatura di saturazione del vapore alla pressione in cui esso si trova. 

 ,
0

l f p l sath v h c T T dx


       

ove si è considerata l‟entalpia del fluido saturo hf e non quella del liquido sottoraffreddato (perché 
a contatto con la parete fredda, Tp < Tsat). Nusselt suppose (e quest‟ipotesi è ancora oggi valida) che la 
temperatura locale T sia distribuita linearmente lungo lo spessore del film di condensato e cioè si abbia: 

1sat

sat p

T T x

T T 


 


 

per cui integrando la precedente relazione dell‟entalpia totale di condensazione si ottiene: 
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La quantità in parentesi quadra è l‟entalpia totale del liquido condensato. L‟entalpia ricevuta dal 
liquido viene, a regime, trasmessa verso la parete per conduzione termica e quindi deve essere: 

"
sat p

p l

T T
q 




  

ove l è il coefficiente di conducibilità termica del liquido condensato. A regime si deve avere che 
il flusso di condensazione per una lunghezza dx deve eguagliare quello di conduzione e quindi: 

 ,

3

8
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f p l sat p l l

T T
h c T T dm dx
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Combinando questa relazione con quella della portata di condensato si ottiene: 
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Integrando e ricordando che per y=0 è =0 si ha: 
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Pertanto lo spessore del condensato cresce con x.  

Il coefficiente di convezione termica può adesso essere calcolato dalla relazione: 
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Integrando su tutta la lunghezza della parete si ottiene il coefficiente di convezione media: 
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Per calcolare il coefficiente di scambio termico convettivo si utilizza la teoria di Nusselt che porta 
alla seguente correlazione per il calcolo del valore medio sulla lunghezza L 
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In forma adimensionale la precedente si può scrivere: 
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Oggi si hanno correlazioni più precise e sofisticate di quella di Nusselt e in particolare l‟entalpia di 
condensazione viene data dalla relazione: 

 ,' 0.68lv lv p l sat ph h c T T    
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che tiene conto anche di eventuali moto ondosi del liquido e di condizioni di turbolenza che 
possono manifestarsi a partire da una certa sezione. 

Per banchi di tubi si utilizza la correlazione di Chen: 
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ove n è il numero di tubi di diametro d. 

8.5 I TUBI DI CALORE (HEAT PIPE) 

Una interessante applicazione di quanto sopra visto per l‟ebollizione e la condensazione si ha nei 
tubi di calore (Heat Pipe) schematizzati in Figura 108. Si tratta di un tubo le cui dimensioni possono essere 
di pochi millimetri e di metri, a seconda dei casi, all‟interno del quale è posto un vapore saturo nelle 
condizioni di temperatura e pressione di esercizio.  

Nella zona inferiore si ha la testata calca nella quale viene ceduto calore al fluido che, per 
conseguenza, vaporizza.  

Per effetto di microcavità create all‟interno del tubo si hanno movimenti di vapore verso l‟alto 
(ma il fenomeno è indipendente dalla gravità per effetto della micro capillarità creata nel tubo). In alto si 
ha una testa fredda nella quale si asporta calore provocando il raffreddamento e quindi la 
condensazione del vapore.  Questo cede il suo calore latente di condensazione e pertanto il trasporto di 
calore dal basso verso l‟alto è molto efficace. 

Il liquido condensato scende verso il basso sempre per capillarità, aderendo alle pareti laterali del 
tubo. In questo modo si riprende il ciclo di ebollizione (endotermica) in basso e condensazione 
(esotermica) in alto. Il tubo di calore, quindi, è un sistema efficace di trasporto di calore dalla zona a 
contatto con la testata calda verso la zona a contatto con la testata fredda.  

La capillarità interna al tubo di calore consente il funzionamento in qualsiasi condizioni, anche in 
assenza di gravità. Pertanto questa tecnica viene utilizzata, ad esempio, in applicazioni spaziali, in 
geotermia, in energia solare, in elettronica per il raffreddamento di microprocessori. 

TESTATA
FREDDA

TESTATA
CALDA

LIQUIDO
ALLE PARETI

VAPORE AL CENTRO

 

Figura 108: Schematizzazione del tubo di calore 
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Una applicazione recente in elettronica è costituita da una testata calda che viene posta sulla 
superficie di un microprocessore interno ad un computer portatile31 ed una testa fredda collegata alla 
parte esterna del coperchio (dietro lo schermo) che funge, così, da radiatore.  

Il calore generato dal microprocessore viene portato dai micro tubi di calore sulla superficie 
esterna del coperchio e da questo disperso per convezione ed irraggiamento nell‟ambiente.  

Questo sistema è stato ben ingegnerizzato ed ha un costo stimato, su scala industriale, di 25 $ e 
quindi tale da non aggravare il costo complessivo del computer. Con l‟aumentare della potenza termica 
prodotta dai microprocessori questo sistema sarà sempre più conveniente. 

In energia solare si utilizzano i tubi di calore con freon come fluido di lavoro. Lo schema 
funzionale è illustrato nella Figura 109. 

ALETTE DI RAME

TUBO DI QUARZO

TUBO DI CALORE
CON FREON

 

Figura 109: Sezione di un collettore solare a tubo di calore 

Si tratta di tubi al quarzo, quindi trasparenti, all‟interno dei quali si pone un tubo di calore con 
due alette laterali in rame. Le alette, investite dalla radiazione solare e per l‟effetto serra che si genera 
all‟interno del tubo di quarzo, convertono la radiazione solare in calore che viene trasmesso verso la 
zona centrale ove è presente il tubo di calore.  

Rispetto alla configurazione di Figura 108 manca la testata calda sostituita dalle superfici alettate 
lungo tutto la lunghezza del tubo di calore. E‟ però presente la testata fredda che viene inserita 
all‟interno di un grosso tubo all‟interno del quale passa l‟acqua di refrigerazione che, pertanto, viene 
riscaldatata e quindi trasporta l‟energia utile all‟esterno. 

Il tubo di calore ha dei limiti di funzionamento dovuti al fatto che la sezione di passaggio del 
liquido può essere interrotta nel caso in cui la generazione di vapore (di elevato volume specifico) sia 
superiore al limite consentito dalla sezione stessa.  

Si definisce, quindi, un flusso critico di flusso come il flusso massimo consentito nella testata calda 
senza interruzione della circolazione del flusso interno. 

                                                
31 Il computer portatili presentano condizioni operative più critiche rispetto a desktop perché la componentistica è 

racchiusa in spazi limitati e miniaturizzati e perché l‟utilizzo di sistemi di raffreddamento attivi consumano energia che 
riduce la durata delle batterie di alimentazione. Le ultime generazioni di computer usano un contenitore in lega di magnesio 
che è leggera ma è anche buona conduttrice di calore. Pertanto il calore prodotto dal microprocessore viene disperso da 
tutta la superficie di appoggio del computer e in parte dal coperchio per convezione termica naturale. 
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9 L’IRRAGGIAMENTO 

E' l'ultima forma di trasmissione del calore che prendiamo in esame. Come già accennato in 
precedenza in questo caso l'energia viaggia sotto forme di onde elettromagnetiche e può propagarsi 
anche nel vuoto. Pertanto l'irraggiamento non richiede presenza di materia come invece richiedono la 
conduzione e la convezione termica.  

Le onde elettromagnetiche, emesse da tutti i corpi a temperatura superiore allo zero assoluto, 
divengono energia interna (e quindi calore) quando sono assorbite da un altro corpo. Nello spazio la 
materia non é presente e si ha il freddo siderale così come in alta montagna la rarefazione della materia 
provoca l'abbassamento di temperatura rispetto al fondo valle.  

L'energia elettromagnetica assorbita da un corpo viene trasformata in energia interna e quindi in 
agitazione molecolare. 

Si ricorderà che l'energia interna é proporzionale, tramite il calore specifico a volume costante, 
alla temperatura assoluto del corpo stesso e quindi si intuisce come mai l'incremento dell'energia interna 
porti ad incremento della temperatura del corpo.  

Si sottolinea l'importanza dell'irraggiamento: é tramite questa forma di trasmissione dell'energia che 
il sole ci riscalda. Lo studio dell'irraggiamento presenta aspetti matematici complessi. Qui si cercherà di 
semplificare al massimo tale trattazione ricordando solamente le leggi fondamentali.  

Una radiazione elettromagnetica é caratterizzata da tre parametri fondamentali: la lunghezza 
d'onda, la frequenza, la velocità di propagazione nel mezzo. Vale la legge generale delle onde: 

0c

n
   

ove: 

   é la lunghezza d'onda di solito espressa in m; 

   é la frequenza di oscillazione (cicli al secondo) espressa in Hz  (Hertz); 

 n  é l'indice di rifrazione del mezzo, per l'aria e per il vuoto é pari ad 1; 

 co  é la velocità della luce nel vuoto, 2,993 .108 m/s. 

Ogni radiazione é caratterizzata da una lunghezza d'onda e quindi da una frequenza, come 
indicato in Figura 110.  

0,001 m 10/4 0.78 



1 A=10-8 cm 1 F=10-13 cm

Onde radio   Onde Radar Raggi Infrarossi

Luce

Raggi ultravioletti Raggi X Raggi gamma

 

Figura 110: Tipologia delle onde elettromagnetiche al variare della lunghezza d’onda 

Poiché il meccanismo fondamentale di trasformazione da energia elettromagnetica a termica 
passa per l‟assorbimento dei corpi occorre subito osservare che, in generale, una radiazione incidente 

con uno strato di materia, vedi Figura 111, viene in parte riflessa (con fattore ), in parte trasmessa 

8con fattore ) e in parte assorbita (con fattore ).  

Ciascuno di questi fattori () dipendono dalla lunghezza d‟onda, cioè dalla tipologia di 
radiazione elettromagnetica. Ad esempio i corpi assorbono bene le radiazioni infrarosse ed ultraviolette 

ma assorbono poco i raggi X e  ed è per questo motivo che queste ultime si utilizzano per le x-grafie e 

-grafie dei materiali.  
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Quindi si può riscaldare in poco tempo un pollo in un forno a microonde (cioè con raggi 

infrarossi) piuttosto che con raggi  che lo attraversano senza interagire, praticamente, con la materia. 
Fra i fattori suddetti vali la relazione: 

1t       

Onda Incidente

Riflessa

Trasmessa

Assorbita
 

Figura 111: Interazione delle onde elettromagnetiche con la materia  

Le onde elettromagnetiche che interessano il campo termico sono le cosiddette onde infrarosse e le onde 

ultraviolette aventi un intervallo di lunghezza d'onda comprese fra 10-4 m a 10-2 m.  Si ricorda che le onde 

elettromagnetiche comprese fra 0,38 e 0,78 m sono di fondamentale interesse per l'uomo in quanto 
per l‟effetto32 che provocano sull‟uomo sono chiamate luce visibile.  

La radiazione solare ha una variabilità della lunghezza d'onda che va dalle radiazioni ultraviolette a 
quelle infrarosse lontane e comprende la luce visibile per circa il 48% della radiazione totale emessa. La 
composizione dello spettro solare (cioè della distribuzione delle radiazioni in funzione della lunghezza 
d'onda) varia con l'altitudine e con la massa atmosferica (nubi, aria pulita,...), come si dirà nel prosieguo.  

9.1 UNITÀ DI MISURA PER L’IRRAGGIAMENTO 

Considerato il diverso meccanismo della trasmissione del calore per irraggiamento rispetto a 
quelle per conduzione e per convezione termica, occorre introdurre alcune opportune unità di misura 
relative alle grandezze di scambio usuali nell‟irraggiamento.  

Le radiazioni elettromagnetiche hanno proprietà direzionali (si pensi al comportamento di uno 
specchio rispetto ad una superficie opaca uniformemente riflettente) e pertanto le grandezze radiative 

debbono prendere in considerazione sia la natura (cioè la lunghezza d‟onda ) che la direzionalità (cioè 
l‟angolo solido di emissione). 

9.1.1 EMISSIONE MONOCROMATICA 

Definiamo Emissione monocromatica la potenza radiativa emessa da una superficie nell‟intervallo fra 

 e d, cioè: 

dq

dSd



  

Essa è espressa in [W/m²m]. Si vedrà nel seguito che un corpo non emette uniformemente al 
variare della frequenza e pertanto mediante questa grandezza possiamo sapere quanta potenza radiativa 
viene emessa ad ogni lunghezza d‟onda. Si suole definire questa grandezza anche come emissione 

monocromatica poiché ad ogni corrisponde un colore (cioè una tipologia di radiazione). 

                                                
32 Si chiarisce qui il concetto che non sono le onde elettromagnetiche ad essere chiamate luce ma la sensazione da 

esse prodotte nel nostro cervello. La visione avviene, infatti, tramite l‟interpretazione dei segnali sensoriali che pervengono, 
tramite il nervo ottico, al cervello. 
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9.1.2 EMISSIONE GLOBALE 

Se integriamo la emissione monocromatica in tutto l‟intervallo di lunghezze d‟onda (cioè da 0 ad 

) si ha l‟emissione globale di una superficie: 

0
E e d 



   

Le unità di misura sono, quindi, [W/m²]. 

9.1.3 INTENSITÀ DI EMISSIONE MONOCROMATICA 

Se consideriamo una superficie dS e con riferimento alla sua normale n si vuole individuare la 

potenza emessa nella direzione  entro un angolo solido33 d, vedi Figura 112. Si definisce allora 
intensità di emissione monocromatica il rapporto: 



d

dS

n

 

Figura 112: Intensità di emissione monocromatica 

,
cos

dq
di

dS d d


 
 

  
 

Le unità di misura sono [W/m² m sr] 

9.1.4 INTENSITÀ DI EMISSIONE GLOBALE 

Se integriamo l‟intensità di emissione monocromatica per tutte le lunghezze d‟onda allora si ha: 

0
I i d 



    

che è l‟intensità totale nella direzione . E si misura in [W/m² sr]. 

9.2 EMSISSIONE EMISFERICA 

Si consideri una superficie emittente nel semispazio34, come indicato in Figura 113. Allora si ha 
che l‟angolo solido vale: 

2

2 r sen rdr
d

r

 


 
  

e l‟emissione nel semispazio vale: 

/ 2

0
2 cosE I sen d



      

                                                
33 Si definisce angolo solido il rapporto fra la calotta sferica e il quadrato del raggio. Nel caso generale si può definire 

angolo solido il rapporto fra la superficie proiettata nella direzione di emissione e il quadrato della distanza. L‟angolo solido 

varia da 0 a 4 . Il semispazio è pari a 2 . L‟unità dell‟angolo solido è lo steradiante indicato con sr. 

34 Le radiazioni elettromagnetiche emesse da un corpo provengono da uno strato superficiale di pochi Angstrom 
poiché le emissioni degli strati più profondi sono assorbite dalla stessa materia del corpo. Pertanto data una superficie si 
deve conservare solo l‟emissione in un semispazio, come nel caso qui considerato. 
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Cioè si ha: 

aE I  

Se si considerano grandezze monocromatiche si ha una relazione del tutto analoga: 

,e i    

Queste relazioni risultano molto importanti per il prosieguo e per l’Illuminotecnica. 



dS

n

 

Figura 113: Emissione emisferica 

9.3 IL CORPO NERO 

L‟interazione delle onde elettromagnetiche con la materia è caratterizzata dai tre fattori , ,   
ciascuno funzione della lunghezza d‟onda. Risulta allora estremamente complesso caratterizzare il 
comportamento di un corpo (sia che sia emettitore che assorbitore) e pertanto occorre fare una 
idealizzazione che consenta di scrivere relazioni cercate: supporremo l'esistenza di un corpo ideale 
capace di assorbire tutte le radiazioni e quindi le sue interazioni con le radiazioni sono estremamente 
semplici. Tale corpo é detto corpo nero ed é bene sottolineare che la parola nero si riferisce non 
solamente al colore visivo nero ma anche a tutte le lunghezze d'onda esistenti.  

Possiamo dire, con un gioco di parole, che il corpo nero é più nero del nero visibile. Ad esempio 
la neve appare di colore bianco ma é un ottimo corpo nero per le radiazioni ultraviolette. Il corpo nero 
emette una radiazione che é data dalla relazione di Planck seguente: 

2

1
,

5 1

T C

T

C

e










 

 
 

 

ove il simbolismo é il seguente: 

  é la lunghezza d'onda, m; 

 T  é la temperatura assoluta del corpo nero, K; 

 (,T) é la radianza monocromatica cioè l'energia emessa per unità di tempo, nell'intervallo di 

lunghezza d'onda d attorno alla frequenza  e per unità di superficie; [W/(mK)]. 

 C1 e C2 sono due costanti pari a  

8

1 3.742 10C    

4

2 1.439 10C    

Una rappresentazione grafica della legge di Planck per temperature variabili da 1000 a 6000 K (dal 
basso verso l'alto) é data nella Figura 114 seguente ove si sono segnati anche gli intervalli di visibilità 

dell'occhio umano medio (0,38 e 0,78 m).  La curva più alta é relativa a 6000 K che é la temperatura 
apparente del disco solare: tale curva é in buona approssimazione la curva di emissione del sole così 
come si può rilevare immediatamente fuori dell'atmosfera.  
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Al disotto dell'atmosfera si hanno assorbimenti dei gas (CO2, O2, NO2, O3, H2O,..) che 
modificano sensibilmente tale spettro. L'esame di queste curve (con temperature crescenti verso l'alto) 
ci mostra che  i massimi di ciascuna curva si sposta verso lunghezze d'onda decrescenti secondo la 
relazione: 

max 2897.6T   

che esprime una legge di variazione iperbolica di  max (cioè della lunghezza d'onda per la quale si 
ha la massima emissione) con la temperatura assoluta T di emissione del corpo nero.  

Tale curva é riportata in fig. 6 come linea tratteggiata che tocca i punti massimi delle curve di 

emissione del corpo nero. Per la temperatura di 6000 K si ha, ad esempio, una max=0,498 m. Si é 

detto che l'occhio umano vede la luce nell'intervallo fra 0,38 e 0,78  m e pertanto il valore di max sopra 
indicato corrisponde alla zona di massima visibilità dell'occhio umano medio.  

Un corpo alla temperatura di 300 K ha max=9,56 m e cioè emette nel campo delle radiazioni 
infrarosse. Così avviene per il corpo umano il cui campo di emissione radiativo ricade proprio 
nell'infrarosso (si parla di infratermia per la riprese fotografiche ai raggi infrarossi per uso medico).  Un 

metallo al punto di fusione, ad esempio il ferro, alla temperatura di 2000 K ha max=1,49 m e quindi 
nel campo dell'infrarosso vicino: il ferro incandescente, infatti ha un colore rossiccio tipico del metallo 
caldo e al crescere della temperatura di riscaldamento tende al giallo-rosso fino a divenire bianco alla 
fusione.  

La lava appare rossiccia alla temperatura di uscita dal cratere ma quando si raffredda non é più 

visibile: una fotografia all'infrarosso renderebbe visibile il magma. Le curve E(T) forniscono 

l'indicazione dell'energia emessa al variare della lunghezza  delle radiazioni. Se si desidera conoscere 

l'energia totale emesse in tutto lo spettro (cioè per l variabile da 0 ad  si ha la relazione di Stefan - 
Boltzmann: 

4

oE T   [138] 

con: 

 0 =5,64 .10-8 W/(m2K4) detta costante di Stefan - Boltzmann; 

 T  la temperatura assoluta del corpo nero, K; 

 E  energia globale radiante specifica, W/m2. 

La [138] é di grande importanza
35

 perché consente di calcolare la quantità di energia irradiata da 
un corpo nero una volta nota la sua temperatura assoluta. Si badi bene che un corpo nero irradia sempre 
purché a temperatura superiore allo zero assoluto (cioè sempre, visto lo zero assoluto non é 
raggiungibile mai, secondo il terzo principio della Termodinamica).  

Pertanto se due corpi neri si scambiano (nel senso che si dirà nel successivo paragrafo) energia 
radiativa allora si ha che il corpo caldo irradia il corpo freddo e quello caldo irradia quello caldo. 
L'interscambio (cioè la differenza di energia fra quella irradiata e quella ricevuta) é positiva per il corpo 
caldo e ciò a conferma del secondo principio della termodinamica che vuole il flusso termico positivo 
se scambiato da un corpo caldo verso un corpo freddo. 

9.4 EMISSIVITÀ SPECIFICA 

Il corpo nero é una idealizzazione necessaria per potere effettuare gli studi teorici sui meccanismi 
della radiazione termica. I corpi reali sono ben più complessi in quanto hanno un comportamento non 
facilmente ottenibile in forma analitica. Figura 115 si hanno alcuni spettri caratteristici di emissione 
radiativa.  

                                                
35 Può essere interessante osservare che la  E To 4

é stata derivata da Boltzmann verso la metà del secolo scorso 

e cioè molto prima che Planck pubblicasse la sua legge di emissione del corpo nero. In effetti Boltzmann ricavò la sua 
relazione solo con considerazioni termodinamiche senza ancora conoscere nulla sulla teoria quantistica di Planck. 
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Si osservi come l‟emissione monocromatica può variare con continuità (anche se in modo non 
analiticamente definibile) o in modo discreto (come avviene, ad esempio, nelle lampade a scarica nei 
gas) e come, ultimo diagramma in basso, l‟emissione del corpo nero abbia le caratteristiche sopra 
descritte.  

Procedendo per passi successivi si può definire corpo grigio un corpo che emetta, per data 
temperatura, come un corpo nero ma con intensità che sta a quello dello stesso corpo nero in rapporto 
costante. Si può definire emissività il rapporto fra l'emissione del corpo grigio e quella del corpo nero 
secondo la seguente relazione: 

4

n o

E E

E T



     [139] 
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Figura 114: Curve di emissione di Planck per corpo nero a varie temperature.  

ove con E si indica l'emissione del corpo grigio e con En quella del corpo nero. Dalla [139] si deduce 
che per avere l'emissione globale di un corpo grigio basta conoscere la sua emissività e moltiplicarla per 
l'emissione totale del corpo nero (relazione di Stefan - Boltzmann [138].  

Pertanto si ha, in generale, la seguente relazione:  

4

oE T   [140] 

Poiché l'emissività é sempre minore di uno il corpo grigio emette sempre meno del corpo nero 
alla stesso temperatura. Ad esempio nella Figura 116 si ha un esempio di emissione di corpi neri, grigi e 
reali (detti anche selettivi) nella quale si può osservare la grande variabilità dell‟emissione monocromatica 
nei corpi reali e la difficoltà di descrivere questa grandezza con relazioni matematiche esplicite.   

Dall‟osservazione della Figura 116 si deduce che un corpo grigio emette sempre in proporzione 

costante (pari alla sua emissività) rispetto al corpo nero a pari temperatura e quindi per esso  non 
dipende dalla lunghezza d‟onda ma solo dalla temperatura, inoltre un corpo reale emette sempre meno 
del corpo nero a pari temperatura anche se in certi intervalli di frequenza possono emettere più di un 
corpo grigio equivalente. 
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Figura 115: Tipologie di Emissioni radiative  

 

Figura 116: Andamento di  per corpi neri, grigi e reali. 

 

Figura 117: Andamento dell’emissione monocromatica per corpi neri, grigi e  reali.  



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

172 

Questo fenomeno, detto selettività dell‟emissione dei corpi reali, risulta molto utile in numerose 
applicazioni quali, ad esempio, la costruzione dei filamenti di tungsteno delle lampade ad 

incandescenza36 o nella scelta di sostanze che mettano selettivamente in intervalli di frequenza diversi ( 

bassa per lunghezze d‟onda grandi, > 7 m, e grandi per lunghezze d‟onda piccole, <3 m) utilizzate 
per la costruzione di collettori solari selettivi ad elevata efficienza di raccolta.  

La relazione [140] può ulteriormente essere generalizzata per lo scambio di due superfici grigie, 
ciascuna a temperatura T1 e T2 , tenendo conto anche del fattore di forma e ottenendo la reazione generale 
dello scambio termico radiativo fra due corpi grigi: 

4 4

12 1 2( )E S F T T     [141] 

Il calcolo di F12, detto fattore di forma o di vista, sarà approfondito nel prossimi paragrafi. 

9.4.1 LEGGE DI KIRCHHOFF 

Per corpi in equilibrio termodinamico si ha: 

1n

n

e

a a

 

 


   

e pertanto risulta: 

e a   

Analoga relazione vale per le emissività e i fattori di assorbimento totali, e cioè si ha: 

 =  

Questa relazione può facilmente dimostrarsi supponendo di avere un corpo grigio all‟interno di 
una cavità nera in equilibrio termico con essa.  

Allora l‟energia ricevuta deve essere pari a quella irradiata e quindi deve aversi: 

na G E
    

ove G è l‟irradiazione (cioè l’energia ricevuta) alla frequenza  .  

Poiché l‟energia ricevuta dal corpo grigio proviene dal corpo nero per il quale è G = En 
semplificando i due membri si ottiene la legge di Kirchhoff. 

9.5 I CORPI NON GRIGI 

I corpi che non appartengono ai corpi neri e neppure ai corpi grigi sono detti corpi selettivi e sono, 
in pratica, i corpi reali.  

Essi emettono sempre meno del corpo nero (che oltre ad assorbire tutto emette anche più di 
qualunque altro corpo esistente) ma può avere uno spettro di emissione che non é più in rapporto 
costante con quello del corpo nero (come avviene per il corpo grigio) ma variabile con la lunghezza 
d'onda.  

I corpi selettivi possono emettere più in certe zone dello spettro e meno in altre rispetto al corpo 
grigio (e quindi sempre meno del corpo nero) donde il loro nome selettivi.  

Lo scambio radiativo dei corpi selettivi é molto complesso poiché oltre alle complicazione della 
geometria (e quindi nel calcolo dei fattori di forma) essi impongono il calcolo delle potenze scambiate 
anche al variare delle lunghezze d'onda.  

Inoltre i corpi selettivi non hanno emissione termica specifica esprimibile in forma analitica ma 
quasi sempre in forma tabellare o grafica derivate dalle sperimentazioni pratiche 

                                                
36 Il tungsteno emette nell‟intervallo del visibile, 0.38÷0.78 m , più dei corpi grigi a parità di temperatura. Questa proprietà é 
sfruttata per migliorare l'emissione luminosa delle lampade in quanto con il filamento di tungsteno emettono assai meglio 
che con filamento di altro materiale. 
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9.6 CONCETTO DI FATTORE DI FORMA 

Lo scambio radiativo fra due o più corpi neri é problema di non facile soluzione tranne in casi e 
geometrie semplici per altro abbastanza comuni nella realtà. Pur tuttavia è opportuno approfondire in 
questa sede lo studio del Fattore di Forma in considerazione delle applicazioni che di questo sarà fatta nel 
prosieguo, ad esempio per lo studio degli scambi radiativi fra corpo umano e pareti di un ambiente per 
le condizioni di benessere. In Figura 118 é indicato il caso di due corpi neri che si vedono secondo due 

angoli solidi  e '‟ ed aventi una distanza R fra due punto P e P' giacenti su di essi. In generale la 
trattazione per il calcolo del Fattore di Forma richiede ulteriori approfondimenti sullo scambio radiativo. 
Dette T1 e T2 le temperature delle due superfici, si ha il seguente sviluppo. L‟intensità emisferica della 
superficie A1 vale: 

1 2
1 1 2 1 1 1 1

1 1 1

cos
cos

dq
I dq I dA d

dA d





   


 [142] 
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Figura 118: Scambio radiativo fra corpi neri (Fattore di Forma) 

Se la superficie A1 è un Corpo Nero (CN) allora si può dimostrare che l‟intensità di emissione 

emisferica è legata alla emissione globale, come visto in precedenza, dalla relazione seguente: 

4

1 1 2 2
1 1 2

cosnE T dA
I d

r

 

 
     

Questa relazione vale anche per le grandezze monocromatiche per cui è: 

e
i 



  

allora il flusso che dal corpo nero 1 va verso il corpo nero 2 è dato dalla relazione: 

1 2 1 2

1 2 1 2

cos cos
n

dA dA
dq E

r

 


   

Si definisca ora il Fattore di Forma come la frazione dell'energia complessivamente emessa dal 
corpo nero 1 che giunge al corpo nero 2: 

1 2

1 2 1 21 2
12 2

1 1

cos cos1

n A A

dA dAdq
F

E A r

 


     [143] 

Allora si può scrivere per il flusso che da 1 va verso 2: 

1 2 12 1 1nQ F A E   

Analogamente si può ragionare per la superficie 2 per cui il flusso che da 2 va verso 1 è dato da: 

2 1 2 1

2 1 2 2

cos cos
n

dA dA
dq E

r

 


   
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2 1

2 1 2 12 1
21 2

2 2

cos cos1

n A A

dA dAdq
F

E A r

 


     [144] 

Si osservi come il Fattore di Forma F12 dipende solo da grandezze geometriche e non da grandezze 
radiative. In pratica esso dipende solo da come le due superfici si vedono mutuamente. 

Il flusso radiativo che dalla superficie 2 viene irradiato verso la superficie 1 è:  

2 1 21 2 2nQ F A E   

Se le due superfici sono alla stessa temperatura allora vale la relazione: 

2 1 1 2 12 1 1 21 2 2     e quindi     =n nQ Q F A E F A E   

essendo En1=En2 si ha: 

12 1 21 2F A F A    [145] 

Pertanto è sufficiente conoscere uno solo dei fattori di forma (o di vista) per conoscere, note le 
superfici emittenti, l‟altro. Del resto data la formulazione analitica di F12 deriva anche: 

1 2

1 2 1 2

12 2

1

cos cos1

A A

dA dA
F

A r

 


   

2 1

2 1 2 1

21 2

2

cos cos1

A A

dA dA
F

A r

 


   

Ma poiché:  

1 2 2 1

1 2 1 2 2 1 2 1

2 2

cos cos cos cos

A A A A

dA dA dA dA

r r

   

 
   

risulta anche: 

12 1 21 2F A F A   [146] 

Questa relazione è detta relazione di reciprocità o anche teorema di reciprocità. 

Dunque il flusso netto scambiato si può scrivere come: 

4 4

1 2 2 1 1 12 1 2 21 2

4 4 4 4

1 12 1 2 2 21 1 2( ) ( )

Q Q Q A F T A F T

A F T T A F T T

 

 

     

      

9.6.1 ADDITIVITÀ DEI FATTORI DI FORMA 

Se la superficie A(j)  risulta dalla somma di Ak  (k=1,2,..n )  superfici parziali, allora sussiste la 

seguente proprietà di additività dei Fattori di Forma: 

( )

1

n

i j ik

k

F F


  

Moltiplicando ambo i membri per Ai , si ha: 

( )

1 1 1

n n n

i i j i ik i ik k ki

k k k

A F A F A F A F
  

      

l'ultimo passaggio è lecito per il teorema di reciprocità. 
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Figura 119: Additività dei Fattori di Forma 

Ne segue che il generico Fattore di Forma è dato dalla relazione: 

1
( )

n

k ki

k
i j

i

A F

F
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

  [147] 

oppure , sempre per il teorema di reciprocità, dalla relazione: 

1
( )

( )

n

k ki

k
j i

j

A F

F
A




  [148] 

Esempio di calcolo dei fattori di forma 

Data la situazione di Figura 119 calcolare F13 fra la superficie 1 e la superficie 3. 

1

2

3

j

i

 

Figura 120: Scambio radiativo fra superfici piane (pareti d’angolo)  

Si applichi la relazione di additività dei fattori di forma: 

1

n

i ij k ki

k

A F A F


  

con i=3  ;   j =(1+2)  ;    k=13. Si ha subito: 

3 3(1 2) 1 13 2 23 13 3 3(1 2) 2 23

1

1
A F A F A F F A F A F

A
 

        

I termini del tipo F3(1+2) e F23  sono ricavabili dai diagrammi solitamente disponibili, come 

riportati in Figura 120. Applicando il teorema di reciprocità si ha: 
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1
31 13

2

A
F F

A
  

Con F13  dato dalla formula precedente. Oppure mediante le regole dell‟additività si ha: 

1 1
31 13 3 3(1 2) 3 32 3(1 2) 32

2 3 1

1A A
F F A F A F F F

A A A
 

        

In alternativa si può ancora scrivere, sempre per la regola di additività, la relazione: 

( )

1

n

i j ik

k

F F


  

ancora con: 

i=3  ;   j = (1+2)  ;    k=1,3 

e pertanto si ha subito : 

3(1 2) 31 32 31 3(1 2) 32F F F F F F       

Quanto sin qui detto trova applicazione in Architettura anche nella verifica di illuminazione 
diurna, come illustrato dalla seguente Figura 121.  

 

Figura 121: Verifica dell’illuminamento diurno in un punto interno di una sala  

In questo caso si può vedere l‟effetto dovuto alla parte di finestra libera e a quella di una 
ostruzione. L‟additività dei fattori di forma dianzi descritta consente di calcolare il fattore di forma 
dovuto alla sola parte di finestra libera. 

9.7 PRINCIPIO DELLA SFERA UNITARIA 

Un metodo molto applicato deriva dall‟applicazione del principio della sfera unitaria derivato dal 
teorema di Lagrange. Si osservi la Figura 122.  

Il principio della sfera unitaria dice che l'irraggiamento (vedi paragrafo seguente per la definizione) 
prodotto da una superficie in un punto P giacente sul piano orizzontale è equivalente a quello prodotto 
da un elemento dS giacente sulla sfera di raggio unitario avente centro in P e che vede con lo stesso 
angolo solido la superficie irraggiante.  
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



 

Figura 122: Applicazione del teorema di Lagrange 

Tale irraggiamento è proporzionale anche alla proiezione sul piano orizzontale della superficie dS 
intercetta sulla sfera. La dimostrazione è immediata come qui di seguito indicato. L‟irraggiamento G è 
dato da: 

2

cos cosI A
E

R

   
  

A parità di angolo solido si ha: 

'cosI A I A     

ove A‟ è la proiezione dell‟area A sulla semisfera di raggio unitario. Ne segue che l‟irraggiamento 
G vale: 

2

' cos
  

I A
G

R

 
  

Si osserva che A’cos è la proiezione di A‟ sul piano orizzontale interno alla semisfera. Detta A‟‟ 
questa proiezione si ha: 

2

''
''

I A
G I A

R


    

essendo R=1. 

9.8 METODO DELLA RADIOSITÀ 

Se le superfici radiative non sono nere il calcolo degli scambi diviene più complesso perché 

occorre tenere conto non solo dell‟energia emessa dalle superfici (0T
4) per effetto della temperatura 

alla quale si trovano ma anche dell‟energia riflessa. Si definisce, infatti, radiosità la somma: 

i i i i niJ G E     [149] 

ove si ha il seguente simbolismo: 

 J  radiosità, [W/m²] 

   fattore di riflessione della parete, 

   emissività termica della parete, 

Eni emissione globale del corpo nero alla medesima temperatura della parete, [W/m²]. 

Ricordando che dalla:  =1  per un corpo opaco (=0) e grigio (, si ha = 1 -  1-,  
allora risulta: 
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(1 )i i i i niJ G E      [150] 

Il bilancio energetico sul Volume di Controllo vale : 

( )i i i iQ A J G     [151] 

Allora eliminando Gi  dalla 1) e 2) , risulta : 

( )
1

i i
i ni i

i

A
Q E J




 


   [152] 

Questa relazione si può ancora scrivere nella forma equivalente: 

1
ni i

i
i

i i

E J
Q

A









    [153] 

che esprime il flusso termico Qi come rapporto fra le differenze delle emissioni e la resistenza 
radiativa superficiale del mezzo data dalla relazione: 

1 i
rs

i i

R
A






     [154] 

D'altra parte l'energia ricevuta da Ai è pari a quella emessa da tutte le N superfici che vedono Ai: 

1 1 1

N N N

i i k k ki k i ik i k ik

k k k

G A J A F J A F A J F
  

      [155] 

per cui eliminando Ai: e combinando con le precedenti equazioni si ottiene : 

1 1 1

1

( ) ( )
N N N

i i i k ik i i ik k ik

k k k

Q A J J F A J F J F
  



 
     

 
  


 

1 1 1 1

( ) ( )
1

N N N N
i k

i ik i ik k i ik i k

k k k k

i ik

J J
A F J F J A F J J

A F
   


         

I termini a denominatore dell‟ultimo membro sono detti resistenze radiative volumetriche: Si può 
trovare lo stesso risultato con un ragionamento diretto. Considerando due superfici grigie che 
scambiano calore allora l‟interscambio radiativo è dato dalla relazione (supponendo la temperatura della 
superficie 1 maggiore di quella della superficie 2): 

12 1 1 12 2 2 21Q J A F J A F   

Per la regola di reciprocità dei fattori di forma si può scrivere anche: 

   1 2
12 1 12 1 2

1 12

1

J J
Q A F J J

A F


    

ove, nell‟ultima eguaglianza, si è esplicitata la resistenza radiativa volumetrica 
1 12 2 21

1 1
A F A F

 . 

Ritornando alla cavità composta da N superfici radiative37 allora il sistema di equazioni risolutive 
è dunque il seguente: 

                                                
37 Il numero minimo di superfici radiative è pari a 2 supponendo che una di esse almeno sia concava (come in un 

forno a legna). In questo caso, come in tutti i casi nei quali si hanno superfici concave, allora occorre tenere conto anche 
dell‟aliquota di energia irradiata su se stessa e quindi occorre valutare il fattore di vista Fjj. 
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1

1

1

ni i
i

i

i i

N
i k

i

k

i ik

E J
Q

A

J J
Q

A F








 








 






   [156] 

Le incognite sono: 

Qi   e   Ji  (i=1,2...N) 

si hanno dunque 2N equazioni  in 2N incognite  

1 1
rv

ij j ji j

R
F A F A

    [157] 

La Figura 125 schematizza il calcolo di una rete elettrica (solamente ohmica) equivalente ad uno 
scambio radiativo. 

9.9 CASO DELLE DUE SORGENTI CONCAVE  

Si considerino due superfici non nere generiche tali da formare una cavità chiuse (superfici 
convesse-concave) come indicato in Figura 126.  

Le equazioni di bilancio sono in generale le seguenti: 

1

1

1

ni i
i

i

i i

N
i k

i

k

i ik

E J
Q

A

J J
Q

A F








 








 






  [158] 

In questo caso si hanno, particolarizzando, le seguenti equazioni: 

Q
i

G
i


i i

En i

J
i

G
i

A
 i

Ti

k

 

Figura 123: Metodo della radiosità 
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1 1
1

1

1 1

1 1 1 2 1 2
1

1 11 1 12 1 12

2 1 2 2 2 1
2

2 21 2 22 2 21

2 2
2

2

2 2

1

1 1 1

1 1 1

1

n

n

E J
Q

A

J J J J J J
Q

A F A F A F

J J J J J J
Q

A F A F A F

E J
Q

A










 






  
  






   
   




 






  [159] 

 

Figura 124: Fattori di forma per casi elementari 
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E
ni

i
J

k

J
1

J
2

1- i

i 
i

J
N



A  Fi ik

J i

 

Figura 125: Rete equivalente allo scambio radiativo  

1

2

 

Figura 126: Schema di scambio radiativo fra due superfici formanti una cavità  

Poiché per la legge di reciprocità e per la conservazione dell‟energia: 

1 12 2 21 1 2eA F A F Q Q Q     

le due equazioni intermedie si riducono ad una sola ed il precedente  sistema diventa : 

1 1
1

1 11

1 1
1 1

1 2 1 2

1 12

1 12

2
2 2

2 2
2 2

2

2 2

1
( )1

1
( )

1

1
( )

1

n

n

n

n

E J
Q

Q E J
A

A

J J Q J J
Q A F

A F

Q J E
AJ E

Q

A
















    




    



  
    







 

e  sommando membro a membro si ottiene la relazione:  

1 2

1 2

1 1 1 12 2 2

1 1 1
n nE E

Q

A A F A

 

 




 
 

   [160] 

Infine , ricordando che: 

4 4

1 1 2 2en nE T E T    
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si ha: 

4 4

1 2

1 2

1 1 1 12 2 2

( )

1 1 1

T T
Q

A A F A



 

 




 
 

  [161] 

Questa relazione, detta di Christiansen, consente di determinare il fattore di forma: 

12
1 2

1 1 1 12 2 2

1

1 1 1
F

A A F A

 

 


 

 

   [162] 

Utilizzando l‟analogia elettrica si può riportare lo schema radiativo fra le due superfici formanti 
cavità nella seguente rete equivalente. 

E
n1 J

1 J
2

E
n2

1- 
1

A1


1

1- 
2

A2


2

1

A1
F12

Resistenza

spaziale

Resistenze

superficiali

 

Figura 127: Rete elettrica equivalente 

Che può essere risolta con le classiche regole della Fisica. 

9.9.1 SUPERFICI FINITE PIANE E PARALLELE 

Nel caso di superfici piani e parallele (quindi con cavità che si chiude all‟infinito) si ha la 
situazione di figura seguente e il fattore di forma diviene: 

1 2  

Figura 128: Scambio radiativo fra superfici finite piane e parallele. 

4 4

1 2

1 2

1 1 1 12 2 2

( )

1 1 1

T T
Q

A A F A



 

 




 
 

  [163] 

In realtà per superfici finite si dovrebbero considerare gli effetti di bordo: il flusso termico emesso 
dai bordi non colpisce esattamente la superficie opposta e quindi si ha una dispersione di linee di flusso.  

Pertanto il fattore di forma come sopra calcolato è in eccesso rispetto a quello reale.  

Pur tuttavia è consigliabile egualmente utilizzare questa relazione ed evitare le complessità 
derivanti dal considerare le superfici finite. 
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9.9.2 SUPERFICI INFINITE PIANE E PARALLELE 

Ponendo le aree delle superfici: 

1 2 12; 1A A A F    

si ha, per lo scambio radiativo, la relazione: 

4 4

1 2

1 2

( )

1 1
1

A T T
Q



 




 

  [164] 

1 2  

Figura 129: Scambio radiativo fra superfici infinite piane e paralle le. 

Se  1=2 =   risulta: 

4 4

1 2( )

2
1

A T T
Q










 

9.9.3 SFERE O CILINDRI CONCENTRICI 

Consideriamo due superfici cilindriche o sferiche concentriche, come indicato nella seguente 
figura. Ponendo, per evidenti ragioni, il fattore di forma: 

2

1

 

Figura 130: Scambio radiativo fra sfere e cilindri concentrici  

12 1F   

risulta, facendo uso del teorema di reciprocità, che il flusso scambiato vale: 

4 4

1 1 2

1

1 2 2

( )

1 1
( 1)

A T T
Q

A

A



 




 

  [165] 
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9.9.4 PARETE CHE IRRADIA VERSO IL CIELO 

Consideriamo il caso della figura seguente: una parete irradia verso la volta celeste. 

Risultano essere, per evidenti ragioni geometriche: 

1

c p

pc

A A

F






 

Pertanto il flusso irradiato dalla parete vale: 

4 4( )p p p cQ A T T     [166] 

ove Tc è la temperatura della volta celeste che deve essere calcolata opportunamente in 
considerazione degli assorbimenti differenziati dei vari componenti gassosi dell‟atmosfera. 

A

A
c

p

 

Figura 131: Scambio radiativo fra parete e volta celeste. 

9.9.5 SCHERMI RADIATIVI 

Un concetto molto utile nelle applicazioni pratiche è quello di schermo radiativo. Date due superfici 
radianti si interponga fra di esse una terza superficie, come indicato in figura seguente.  

Se le superfici sono di lunghezza infinita (o se c'è piccolo effetto di bordo nel caso di superfici 

finite, come già osservato) si può porre per i fattori di forma: 13 23 1F F   e quindi , dopo qualche 

passaggio, il flusso termico scambiato fra le superfici 1 e 2 diviene: 

4 4

1 2
12

31 32

1 2 31 32

( )

1 11 1

A T T
Q



 

   




 
  

  [167] 

e se : 1 2 31 32         allora la precedente relazione si semplifica nella seguente: 

 
4 4

1 2
senza12 12
schermo

1 ( ) 1

22 2
1

A T T
Q Q





 
 

  
  
 

  [168] 

Pertanto una parete intermedia di eguali caratteristiche emissive (cioè di eguale emissività rispetto 
alle pareti esterne) comporta una riduzione a metà del flusso termico scambiato.  

Estrapolando per N schermi intermedi si  ha, sempre nell‟ipotesi di eguali emissività: 

 
4 4

1 2
senza12 12
schermo

1 ( ) 1

2( 1) ( 1)
1

A T T
Q Q

N N





 
 

  
   

 

 [169] 

Quindi il flusso termico fra le due superfici esterne si riduce di un fattore N+1.   
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







1

13

23

2

T
1

T
2

Q

En1
En2J JJ JEn3

1- 1


1

A

1- 3 1


3 1

A

1- 3 2


3 2

A

1- 2


2

A

1 31 32 2

1

A F
1 3

1

A F
2 3  

Figura 132: Schermo radiativo interposto fra due superfici radianti.  

Questo risultato trova notevoli applicazioni per la schermatura di sorgenti radiative, ad esempio 
di superfici fortemente irradiate dal sole38 che porterebbero ad avere una disuniformità interna della 
temperatura media radiante e quindi un forte senso di disconforto termico.  

In genere una parete avente più intercapedini interne riduce fortemente il flusso termico radiativo 
rispetto ad una parete normale. 

9.10 FORMALISMO MATRICIALE NELLA RADIAZIONE TERMICA 

Vediamo qui una generalizzazione del metodo di calcolo dello scambio radiativo fra superfici non 
nere formanti una cavità.  Nel caso di geometrie complesse occorre sempre utilizzare regole generali 
che possono facilmente essere applicate.  

Il metodo che si espone porta a scrivere un sistema di equazioni di scambio radiativo che può 
essere facilmente risolto mediante CAD matematici oggi alla portata di tutti o con programmi 
appositamente predisposti. 

9.10.1 CASO ESEMPIO: CAVITÀ FORMATA DA TRE SUPERFICI 

Si consideri inizialmente una cavità radiativa formata da tre superfici, come indicato nella 
seguente figura. 

1 2

3  

Figura 133: Scambio radiativo in una cavità chiusa 

Le equazioni di bilancio sono, supponendo note le superfici, i fattori di forma e le emissività: 

                                                
38 Si pensi ad una parete che funzioni da muro Trombe-Michell che si porta a temperature di alcune decine di gradi al 

di sopra della media delle temperature delle altre pareti di un ambiente solarizzato (vedi applicazioni bioclimatiche). 
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1 1 2 31 2

1

1 1 1 12 1 13

2 2 2 32 1

2

2 2 2 21 2 23

3 3 3 1 3 2

3

3 31 3 323 3

1 1 1

1 1 1

1 1 1

n

n

n

E J J JJ J

A A F A F

E J J JJ J

A A F A F

E J J J J J

A F A FA














  
  





  

 






   

  



 

ovvero anche: 

1 1
1 12 13 1 12 2 13 3

1 1

2 2
2 21 1 21 23 2 23 3

2 2

3 3
3 31 1 32 2 31 32 3

3 3

( ) ( ) ( )
1 1

( ) ( ) ( )
1 1

( ) ( ) ( )
1 1

n

n

n

E F F J F J F J

E F J F F J F J

E F J F J F F J

 

 

 

 

 

 


      

 


      
 


      

 

  [170] 

Definiti ora le matrici e i vettori seguenti : 

   

1
1

1

1

2
2 2

2

3

3
3

3

1

1

1

n

n

n

E

J

E J
C J

J

E













 
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il sistema di equazioni risulta così sintetizzabile: 

          
1

C A J J A C


          [171] 

e quindi risolvibile con le normali regole dell‟Analisi Matematica. Il metodo si estende facilmente 
al caso di N superfici radiative e quindi al caso generale di cavità radiativa. 
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9.11 EFFETTO SERRA NEGLI EDIFICI 

L‟effetto serra negli edifici è generato dalla trasparenza non simmetrica dei vetri delle finestre. 

In Figura 134 si hanno le curve di trasparenza per alcuni tipi di vetri.  

Il vetro comune presenta una finestra fra 0,3 e 3 m e pertanto lascia passare quasi la totalità della 

radiazione solare che ha il suo massimo a 0,55 m. La radiazione solare che penetra all‟interno degli 
ambienti viene da questi assorbita e contribuisce ad innalzare la temperatura di equilibrio.  

 

0.2 1.0 2.0 3.0 m 

0 

0.5 

1 

 

Vetro 
antisolare 

Vetro 
comune 

Quarzo 

Visibile 

 

Figura 134: fattore di trasparenza dei vetri 

Le pareti e gli oggetti interni emettono a loro volta una radiazione termica nel campo 
dell‟infrarosso lontano: supponendo una temperatura media di 27 °C si ha, per la legge di Wien, una 
lunghezza d‟onda di massima emissione di: 

max

2898
10

300
m    

Ne segue che il vetro non lascia passare la radiazione infrarossa proveniente dall‟interno e 
quindi si ha una sorta di intrappolamento di energia all‟interno degli ambienti. Ricordando la relazione: 

Potenza_Entrante - Potenza_Uscente + Potenza_Sorgenti = Accumulo_Potenza  

Ne segue che se l‟ambiente non disperde la potenza entrante aumenta l‟accumulo e quindi cresce 
la temperatura interna.  

E‟ proprio quello che succede in estate: la radiazione solare surriscalda gli ambienti, specialmente 
quelli eccessivamente vetrati, e quindi si ha la necessità di avere un impianto che fa l‟esatto opposto: 
estrae il calore accumulato dagli ambienti per raffrescarli.  

Le pareti vetrate per effetto della loro natura producono non solamente effetti visivi gradevoli 
ma anche (e forse soprattutto) effetti notevoli sul comportamento termico generale di un edificio.  

Questi componenti dovrebbero essere considerati sempre con attenzione da parte dei 
progettisti perché un loro uso smodato provoca veri e propri disastri energetici.  

L‟uso di grandi pareti finestrate (finestre e nastro) porta ad avere forti dispersioni termiche in 
inverno ed altrettanto forti rientrate di calore in estate, come sopra detto.  

Inoltre l‟inserimento di grandi superfici finestrate può avere conseguenze negative anche sulla 
verifica dei disperdimenti termici dell‟edificio ai sensi della Legge 10/91.  

Le superfici vetrate, inoltre, modificano sensibilmente la temperatura media radiante dell‟ambiente e 
pertanto hanno influenza negativa sulle condizioni di benessere ambientale interna agli edifici.  
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9.12 EFFETTO SERRA NELL’ATMOSFERA TERRESTRE 

Un comportamento analogo a quanto avviene negli edifici si ha nell‟atmosfera terrestre per 
effetto dell‟assorbimento della CO2 presente nell‟aria.  

 

Figura 135: Radiazione solare fuori dell’atmosfera e al suolo 

In Figura 135 si ha lo spettro della radiazione solare a livello del mare e si può osservare come 

oltre i 2,7 m si abbia un assorbimento totale dovuto al vapore acqueo e alla CO2. 

La radiazione terrestre verso lo spazio ha una lunghezza d‟onda data da: 

max

2898
9.6

290
m    

e quindi si ha un blocco, del tutto simile a quello operato dal vetro. 

Poiché la quantità di CO2 presente nell‟atmosfera cresce con il consumo di combustibili, per 
effetto delle trasformazioni chimiche di ossidazione del carbonio, allora si ha un effetto serra crescente 
che porta ad un incremento della temperatura di equilibrio della terra.  

Negli ultimi decenni si è avuto un incremento di circa 1 °C della temperatura media terrestre con 
conseguenze visibili sul clima. 
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10 SCAMBIATORI DI CALORE 

Lo scambiatore di calore è un dispositivo capace di trasferire energia termica da un corpo ad un 
altro. In genere lo scambio energetico è effettuato mediante due fluidi di lavoro ma questa è solo una 
disposizione impiantistica non vincolante per lo scambio termico. Probabilmente lo scambiatore è il 
dispositivo più utilizzato nell‟impiantistica (sia civile che industriale), nell‟industria e nelle applicazioni 
tutte. Qualunque sia la natura dell‟impianto (elettrico, elettronico, meccanico, edilizio,….) si hanno 
sempre scambi termici da realizzare. Un computer, ad esempio, ha notevoli problemi di smaltimento 
del calore generato dal riscaldamento dei suoi componenti elettronici (vedi, ad esempio, il processore 
centrale) che impediscono, spesso, l‟ingegnerizzazione in sistemi di ridotte dimensioni. 

Un getto di calcestruzzo genera calore per effetto delle reazioni di presa del cemento e se non si 
prevede opportunamente come smaltirlo si va incontro a seri problemi specialmente quando le 
dimensioni del manufatto sono non trascurabili.  

Il corpo umano è, in un certo senso, uno scambiatore di calore e la nostra vita è regolata da 
precisi meccanismi di scambio termico con l‟ambiente e di termoregolazione corporea. In una casa 
moderna si hanno innumerevoli esempi di applicazione degli scambiatori di calore: nei frigoriferi 
domestici, negli impianti di climatizzazione, …..Data la natura del corso si vuole qui dare un cenno alla 
problematica degli scambiatori di calore anche in vista di una loro utilizzazione nel corso di Impianti 
Termotecnici. 

10.1 SCAMBIATORI DI CALORE A CORRENTI PARALLELE 

Si studieranno, anche a scopo euristico, gli scambiatori a corrente parallele, cioè gli scambiatori 
che hanno direzione di flusso parallele (tubi concentrici), vedi Figura 136, sia in modo equiverse (nella 
stessa direzione) che controverso (in direzioni opposte), Figura 137. 

 

Figura 136: Scambiatore di calore a correnti parallele equiverse  

Indichiamo con tic, la temperatura di ingresso del fluido caldo (che supponiamo fluire nel del 
condotto interno) e tuc la temperatura di uscita del fluido caldo. Analogamente siano t if e tuf le 
temperature di ingresso e di uscita del fluido freddo (che fluisce nel condotto esterno). 

Indichiamo con m‟ la portata del fluido caldo e con m‟‟ quella del fluido freddo. Un semplice 
bilancio energetico globale fra i due fluidi, supponendo che all‟esterno del condotto freddo ci sia un 
isolamento termico che impedisce perdite di calore, porta a scrivere l‟equazione: 

   ' ' '' ''ic uc uf ifQ m c t t m c t t      

ove vale il segno + per correnti equiverse e il segno – per correnti controverse.  

Da questa equazione è possibile calcolare una incognita note le altre grandezze. 
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Figura 137: Scambiatore di calore a correnti parallele controverse 

Con riferimento alla Figura 138, per un elemento differenziale di superficie dS, dette tc e tf le 
temperature correnti dei due fluidi di lavoro, si ha ancora il bilancio differenziale: 

 

Figura 138: Modalità di scambio in una sezione intermedia 

' ' '' ''c fdq c m dt c m dt     

che può ancora scriversi nella forma: 

1 1

' ' '' ''

fc
dtdt

dq

c m c m

     

Combinando il secondo e terzo membro si ottiene anche: 

 
1 1

' ' '' ''

c fd t t d
dq

M

c m c m


   



 

ove si sono posti: 
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1 1

' ' '' ''

c ft t

M
c m c m

  

 
 

e la modalità di trasmissione del calore fra i due fluidi porta a scrivere: 

 c fdq KdS t t KdS    

Eguagliando le due espressioni di dq si ottiene l‟equazione differenziale: 

d
KdS

M


   

Supponendo costanti i coefficienti (cioè le proprietà termofisiche e la trasmittanza termica K) si 
ha un‟equazione differenziale a variabili separabili che risolta, tenuto conto delle condizioni iniziali 

i ic ift t    e u uc uft t   , porta alla soluzione: 

KMS

ie    

ove S è la superficie totale di scambio termico. 

  

Figura 139: Distribuzione della differenza di temperatura per correnti equiverse  

Questa equazione ci dice che la distribuzione della differenza di temperatura all‟interno dello 
scambiatore è esponenziale ed ha andamenti che dipendono dal verso di flusso. In Figura 139 si ha la 
distribuzione per flussi equiversi.  

Si osservi che la differenza di temperatura è massima nella sezione di ingresso ed è minima nella 
sezione di uscita di entrambi i fluidi. Ciò penalizza il funzionamento dello scambiatore poiché a grandi 
differenze di temperature si hanno anche grandi irreversibilità del sistema. 

Quando si esamina il caso di scambio in controcorrente allora si ha: 

1 1

' ' '' ''
M

c m c m
   

Ciò significa che M può assumere valori positivi (c‟m ‟< c‟‟m‟‟), negativi (c‟m‟ > c‟‟m‟‟) e nulli 
(c‟m‟=c‟‟m‟‟).  

I tre casi sono riportati in Figura 140 (M>0), Figura 141 (M<0) e in Figura 142 (M=0). 
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Figura 140: Distribuzione della differenza di temperatura per controcorrente con M>0 

 

Figura 141: Distribuzione della differenza di temperatura per controcorrente con M<0 

So osservi che quando si ha M=0 le curve degenerano in due rette con = costante. 

I prodotti c’m’ e c’’m’’ sono detti capacità termiche di flusso del fluido caldo e del fluido freddo, 
rispettivamente.  

Si osserva immediatamente che, nel caso di scambio in controcorrente, le differenze di 
temperatura fra i due fluidi si mantengono mediamente inferiori al caso di scambio in equicorrente.  

Pertanto le irreversibilità prodotte dagli scambiatori in controcorrente sono minori di quelli in 
equicorrente, ovvero si hanno modalità di scambio migliori.  

Ricordando l‟equazione globale di scambio termico e le posizioni sin qui fatte si può ancora 
scrivere: 

   ' ' '' '' i u
ic uc uf ifQ m c t t m c t t

M

 
        

Se ricaviamo M dall‟equazione di distribuzione di temperatura si ha anche: 

ln

i u

i

u

Q KS
 






  



FISICA TECNICA INDUSTRIALE – TRASMISSIONE DEL CALORE 

PROF. ING. GIULIANO CAMMARATA 

193 

 

Figura 142: Distribuzione della differenza di temperatura per controcorrente con M=0 

Si suole porre: 

ln

i u
ml

i

u

T
 






   

e quindi il calore scambiato si può scrivere nella forma: 

mlQ KS T   

10.2 EFFICIENZA DEGLI SCAMBIATORI 

Possiamo definire efficienza di una scambiatore di calore il seguente rapporto: 

Calore Effettivamente Scambiato

Calore Massimo Scambiabile
   

Il calore massimo che può essere scambiato si ha quando la superficie di scambio termico tende 
ad infinito. L‟esame dei diagrammi sulle distribuzioni di temperature mostra che, al tendere di 

S  una delle temperature dei due fluidi tende ad eguagliare quella corrispondente dell‟altro fluido. 

Ad esempio per l‟equicorrente, Figura 139, al tendere ad infinito di S le due temperature di uscita 
dei fluidi tendono ad eguagliarsi: tuc=tuf. Pertanto l‟efficienza di scambio per correnti equiverse diviene: 

 

 

 
' '

' '

ic uc

ic uf

c m t t

c m t t






 

Nel caso di correnti controverse si hanno tre casi (a seconda del segno di M). 

M>0  cioè c’m’ < c’’m’’ 

Allora il fluido caldo ha minore capacità termica di flusso del fluido freddo. Al tendere all‟infinito 
della superficie la temperatura di uscita del fluido caldo tende a quella di ingresso del fluidi freddo. 

L‟efficienza diviene: 

 

 
' '

' '

ic uc

ic if

c m t t

c m t t






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M<0  cioè c’m’ > c’’m’’ 

Il fluido freddo ha minore capacità termica di flusso del fluido caldo. Al tendere all‟infinito della 
superficie la temperatura di uscita del fluido freddo tende a quella di ingresso del fluidi caldo. 

L‟efficienza diviene: 

 
 

'' ''

'' ''

uf if

ic if

c m t t

c m t t






 

M=0  cioè c’m’ = c’’m’’ 

In questo caso si ha un caso limite: i due fluidi hanno eguali capacità termiche di flusso e 
l‟efficienza si calcola indifferentemente con una delle due relazioni sopra viste. 

10.2.1 FORMA UNIFICATA DELL’EFFICIENZA DI SCAMBIO TERMICO 

Dalle due ultime relazioni si osserva che, indicando con Cmin la minore delle due capacità termiche 
di flusso, l‟efficienza di scambio termico è data dal rapporto: 

minC

ic if

t

t t






 

cioè a numeratore si ha la differenza di temperatura, in valore assoluto, del fluido di minore 
capacità termica e a denominatore si ha sempre la differenza fra le temperature di ingresso del fluido 
caldo e del fluido freddo. Il significato dell‟efficienza di scambio termico appare evidente da quanto 
sopra detto: al crescere dell‟efficienza crescono anche le dimensioni dello scambiatore e con esse il 
costo. Pertanto nella pratica si utilizzano scambiatori di calore che ottimizzano l‟efficienza e il costo.  

Ad esempio un valore tipico è =0.80. Valori più elevati comportano incrementi di costi notevoli 
mentre valori inferiori portano ad avere scambiatori più economici.  

Oltre al valore economico sopra evidenziato l‟efficienza ha ha un significato termodinamico 
importante. Se l‟efficienza è bassa si hanno anche forti differenze di temperature fra i due fluidi e quindi 
anche forti irreversibilità di scambio.  

Per contro, un valore elevato dell‟efficienza comporta minori differenze di temperature e quindi 

una minore produzione di irreversibilità termica. Se si avesse (al limite) =1 si avrebbero differenze di 

temperature nulle (forma indeterminata per ) e quindi si raggiungerebbe la condizione ideale di 
scambio termico isotermo. 

10.3 PROGETTO DI UNO SCAMBIATORE DI CALORE 

Il progetto di uno scambiatore di calore può essere fatto in due modi principali dei quali si darà 
un rapido cenno nel prosieguo. L‟Allievo tenga presente che Egli dovrà utilizzare gli scambiatori nel 
corso di Impianti e pertanto la fase di progetto è demandata agli specialisti del settore. 

10.3.1 METODO DELLE DIFFERENZE MEDIE LOGARITMICHE 

E‟ questo il metodo più antico. Si utilizza la relazione già indicata in precedenza: 

ln

i u

i

u

Q KS
 






  

Pertanto, se si conoscono le differenze di temperature fra i due fluidi e il flusso termico 

scambiato    ' ' '' ''ic uc uf ifQ m c t t m c t t     allora si può ricavare la superficie di scambio S. 

Le cose sono, nella realtà, più complesse perché il calcolo di K richiede la conoscenza di alcuni 
parametri geometrici (diametri dei tubi, come si evince dal §1.2.2).  
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Pertanto il progetto procede per tentativi assegnando i diametri e calcolando la lunghezza dei 

condotti (S=dL).  

Se è nota la superficie di scambio, S,  le precedenti relazioni consentono di calcolare una delle 
quattro temperature.  

Si osservi che si sono esaminati solamente i casi di fluidi in condizioni di scambio termico 
normale e si sono trascurati i casi di scambio termico con cambiamento di fase (vaporizzazione o 
condensazione) di uno o entrambi i fluidi.  

Si rimanda l‟Allievo ai Manuali specializzati per le applicazioni più particolari. 

10.4 SCAMBIATORI CON GEOMETRIA COMPLESSA 

Nella pratica l‟utilizzo degli scambiatori a correnti parallele sin qui studiati è reso difficile da una 
serie di motivi tecnici.  

Quasi sempre si utilizzano geometrie più complesse che consentono di sfruttare meglio gli spazi, 
come indicato in Figura 143 per correnti incrociate (vedi percorso tratteggiato). 

 

Figura 143: Scambiatore a corrente incrociate del tipo shell and tube  

Lo studio analitico di queste geometrie risulta complesso ed è al di fuori degli scopi del presente 
capitolo.  

Si dirà, tuttavia, che per la progettazione si procede in modo semplificato utilizzando la relazione: 

mlQ KS T F   

ove F è un fattore che dipende dalla geometrica dello scambiatore e dalle temperature dei fluidi di 
lavoro.  

Opportune relazioni pratiche o diagrammi sono fornite dai costruttori in manuali specializzati.  

Si osserva, però, che la geometria più efficiente è quella a corrente parallele in controcorrente.  

Le altre geometrie commerciali pongono vantaggi pratici (migliore ingegnerizzazione dei sistemi) 
ma non termodinamici. 
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Figura 144: Fascio tubiero estratto da uno scambiatore di calore 

10.5 METODO NTU: UNITÀ DI TRASFERIMENTO TERMICO 

Da qualche decennio ha preso campo una nuova metodologia di progetto e verifica degli 
scambiatori di calore basata sul metodo detto NTU (Number Transfer Unit) ovvero Unità di Traferimento 
Termico.  Si definisce, infatti, NTU il rapporto: 

 
min

KS
NTU

cm
  

con il simbolismo già visto in precedenza. Esso ha un significato fisico ben preciso: possiamo 
scrivere, infatti: 

 
min

( ) 1

1

KS
NTU

cm





 

e quindi l‟NTU è il rapporto fra il calore scambiato con salto termico T=1 (mediante scambio 

termico KST) e trasportato dal fluido, (cm)minT.  

A seconda delle geometrie utilizzate si pone l‟efficienza  in funzione di NTU , di un parametro 
geometrico e del rapporto fra le capacità termiche di flusso c’m’/c’’m’’. 

Oltre che relazioni analitiche si hanno anche grafici, vedi Figura 145 e in Figura 146, che 
consentono di effettuare facilmente i calcoli.  

Di solito in fase di progetto, fissata la geometria e il rapporto fra le capacità termico di flusso, 

scelta l‟efficienza (ad esempio =0.8) si determina dai grafici NTU e dalla sua definizione si calcola S. 

Il metodo NTU consente di effettuare facilmente anche le verifiche termiche: dato lo scambiatore 

di superficie S e note le capacità termiche di flusso si calcola NTU e quindi si ha l‟efficienza .Dalla 
definizione dell‟efficienza si calcola la temperatura incognita desiderata. 
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Figura 145: Curve (,NTU) per assegnata geometria 
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Figura 146: Curve - NTU per alcuni tipi di scambiatori di calore
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