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INTRODUZIONE 
 
Le moderne macchine per generazione di potenza meccanica si basano sempre più sulle turbine, 

sia a vapore che a gas. Queste sono organi di notevole complessità progettuale che coinvolge numerosi 
discipline quali la Fisica Tecnica, le Macchine e la Fluidodinamica. 

Q uest‟ultim a discip lin a n on  è in serita n ell‟o rdin am en to  della n o stra F aco ltà e p ertan to  resta al di 
fuori dei normali percorsi di studio che gli Allievi Ingegneri Meccanici possono scegliere. 

La Meccanica dei Fluidi è storicamente impostata come Idraulica con nome apparentemente 
cambiato e non copre gli argomenti relativi ai fluidi comprimibili e quindi tipici della Fluidodinamica. 

In questo breve opuscolo si desidera affrontare alcuni dei concetti fondamentali della 
Fluidodinamica necessari per le applicazioni impiantistiche e macchinistiche. 

Si affronteranno, pertanto, i problemi della comprimibilità dei fluidi e dei loro effetti nel moto in 
condotti a sezione variabile (equazioni di Hugoniot) e a sezione costante. 

Sono interessanti i moti di Fanno e di Raileigth e i concetti di parametri di attrito e di lunghezza 
massima nel moto dei fluidi compressibili. 

Si lasciano fuori da questa trattazione tutti gli altri (numerosi) problemi di fluidodinamica che 
in teressan o  altri cam p i dell‟In gegn eria (quale, ad esem p io , aero n autica e/o  sp aziale). 

Gli argomenti qui selezionati, quindi, sono il minimo indispensabile per la moderna formazione 
di un ingegnere meccanico e trovano immediata applicazione nei corsi di Macchine ed Impianti.. 

Il moto dei fluidi reali è solitamente parte della Fluidodinamica e/o della Meccanica dei Fluidi 
(ch e n el caso  dell‟acqua pren de il n o m e di Idraulica). P ertan to  gli allievi (e in  sp ecial m o do  i M eccan ici) 
dovrebbero già conoscere gli argomenti fondamentali di questo capitolo. 

Tuttavia alcuni aspetti, di carattere più termotecnici, sono di solito sviluppati in altre discipline 
tecniche quali appunto la Termofluidodinamica e gli Impianti Termotecnici. 

In questa sede si vuole presentare in forma organica e con un linguaggio più vicino alla Fisica 
Tecnica, anche per evitare sovrapposizioni inutili, la problematica del Moto dei Fluidi reali (in parte 
derivabile dallo studio della convezione termica) in vista delle applicazioni termotecniche ed 
impiantistiche. 

In particolare si affronteranno con maggior dettaglio gli aspetti tecnici legati al dimensionamento 
delle reti tecnologiche ed impiantistiche in genere. 

Del tutto nuovo è poi il capitolo su fluidi bifase (cioè di liquidi in presenza di una fase aeriforme 
o anche del proprio vapore) che trova applicazioni importanti e fondamentali nel progetto di impianti 
(ad esem p io  caldaie, gen erato ri di vap o re, turb in e, … ). 

Si osserva subito che gli argomenti trattati richiederebbero da soli interi corsi annuali. Tuttavia, 
data la natura del Corso, si sono sviluppati solamente gli argomenti ritenuti fondamentali rimandando 
l‟ap p ro fo n dim en to  ai testi in  letteratura. 

 
Catania 23/07/2006 

. 
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1.  FLUIDI COMPRIMIBILI - DEFLUSSO MONODIMENSIONALE 
Le grandezze fisiche che caratterizzato il moto di un mezzo fluido variano, in generale, 

tridimensionalmente pertanto elaborare una teoria del moto a tre variabili euleriane risulta di enorme 
co m p lessità an ch e n ell‟ipo tesi di regim e stazio n ario . So ven te si fa riferim en to  allo  studio  del deflusso 
bidimensionale scegliendo con opportuno criterio la giacitura del piani di riferimento in modo che le 
variazioni del comportamento del fluido lungo la terza dimensione siano trascurabili.  

F requen tem en te quan to  detto  risulta p o ssib ile o  tutt‟al p iù si ren de n ecessaria qualch e co rrezio ne 
da apportare ai risultati lungo la dimensione trascurata; diversamente si può interpretare il fenomeno su 
più piani paralleli interpolando poi i risultati a quote intermedie, così facendo il moto viene a perdere 
una dimensione, e quindi una variabile euleriana, cosicché le variazioni delle grandezze fisiche 
caratterizzanti il moto del fluido vengono considerati solo lungo le linee di corrente e 
perpendicolarmente ad esse. 

Tutte le volte che le variazioni del comportamento del fluido in direzione perpendicolare alle 
linee di corrente non sono rilevanti di può fare riferimento alla teoria monodimensionale del deflusso salvo, 
anche in questo caso, ad apportare opportune correzioni di tipo bidimensionale; è in genere lecito 
ricorrere a questa semplificazione nel moto lungo i condotti, sempre a condizione che le dimensioni 
trasversali siano piuttosto piccole rispetto alla lunghezza del condotto stesso e ciò equivale a supporre 
che lungo le linee di corrente congruenti i fenomeni avvengano identicamente, in tale ipotesi è 
sufficiente studiare quel ch e avvien e lungo  la lin ea m edian a dell‟efflusso  (sp esso  co in ciden te co n  l‟asse 
del condotto) per poi estrapolare i risultati, eventualmente corretti, a tutte le altre linee di corrente. 

La teoria monodimensionale implica nel regime stazionario una sola variabile euleriana e si 
presenta semplice ed efficace, capace di fornire una visione essenziale dei fenomeni; occorre però dire 
che essa si presenta concettualmente insufficiente in quanto nel moto di un fluido non può essere 
trascurata l‟esistenza degli attriti i quali producono variazioni di quantità di moto che sono causa di 
in desiderate distrib uzio n i di velo cità n ella direzio n e n o rm ale a quella del deflusso . D ‟altra p arte le fo rze 
d‟attrito , aven do  carattere decisam en te n o n  co n servativo , non sono funzione della sola posizione per 
cui, anche nel regime stazionario, non sono direttamente valutabili alla maniera euleriana ne tanto meno 
a quella lagrangiana ne consegue che entrambi i criteri di analisi cinematica debbano limitarsi in pratica, 
pur mantenendo il loro rigore, al solo studio dei moti ideali. 

Tale limitazione può essere tuttavia superata mediante certi artifici consistenti nel considerare a 
potenziale, lungo la regione interessata al deflusso, anche le forze di attrito valutandone globalmente, e 
sperimentalmente, il lavoro dissipato. Ma se tale criterio può essere accettato ai fini del bilancio 
energetico esso non si presta a definire con semplicità i riflessi degli attriti sulla distribuzione delle 
velo cità co sicch é l‟artificio  rim ane valido solo a condizione di limitare il campo di moto ad un esiguo 
tubo di flusso (che al limite degeneri in una linea di corrente) su ogni sezione del quale la velocità possa 
ritenersi costante. 

Q uesta è p ro b ab ilm en te la ragio n e ch e p o rta a defin ire “ euleriana” la teo ria m o n o dim en sio n ale del 
deflusso mentre in realtà il criterio euleriano è di carattere generale in quanto si estende alle tre 
dimensioni dello spazio; in effetti solo in forma monodimensionale il metodo euleriano risulta 
applicabile, quando si tratta di deflusso con attrito, in virtù della predetta possibilità di valutare, sia pure 
per via empirica, il lavoro dissipato in funzione della successione delle velocità nel campo di moto. 

Facendo riferimento al gas perfetto, approssimazione valida per gas a media e bassa densità, viene 
qui preso in esame il moto monodimensionale con e senza attrito nei deflussi interni per i quali le 
variazioni di densità sono della massima importanza per individuare la natura della corrente; questo 
modello fisico anche se, come già detto, sembra piuttosto limitato approssima molto bene la realtà di 
molte correnti fluide.  

L ‟ip o tesi di m o n o dim en sio n alità p resup p o n e quin di ch e tutte le gran dezze fisich e in teressate 
(pressione, densità, temperatura, velocità, ecc.) abbiano distribuzione uniforme in qualsiasi sezione del 
condotto. 
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1.1. COMPRIMIBILITÀ ED ESPANSIONE 

L a variazio ne vo lum etrica di un fluido  in fluisce sull‟an dam en to  del m o to  in  m an iera alquan to 
complessa ed anche nel deflusso in condotti cilindrici, dove per fluidi a densità costante il moto può 
essere considerato mediamente uniforme, i cambiamenti di densità fanno variare la velocità anche lungo 
la direzione di avanzamento; proprio queste variazioni di densità e velocità sono quelle che 
determinano la necessità di una trattazione di tale deflusso distinta da quella svolta per i fluidi 
incomprimibili in quanto in tale circostanza il campo dinamico e quello termico interagiscono 
mutuamente.  

Lo studio del comportamento di un fluido comprimibile in moto necessita pertanto della 
co n o scen za dell‟equazio ne cin etica di stato  e quella del p ro cesso  term o din am ico  resp o n sab ile della 
variazione volumetrica suddetta.  

Viene qui dedicata particolare attenzione ad deflusso adiabatico, sia nei condotti a sezione 
variabile che in quelli cilindrici, visto che nella gran parte dei problemi tecnici è quello che presenta 
interesse maggiore; viene però anche analizzato il moto isotermo nei condotti cilindrici anche se la 
realizzazione di tale deflusso, come si avrà modo di vedere, può avvenire solo a particolari condizioni.  

E ‟ n o to  dalla Termodinamica che lo stato fisico di una sostanza pura ed omogenea è descritto 
attraverso  l‟equazio n e: 

( , , ) 0f p v T    [1.1] 

oppure in forma esplicita da una delle equazioni: 
  ( , )

 ( , )
( , )

v v p T
p p v T
T T p v





  [1.2] 

le quali differenziate divengono: 
  
  

  
  

  
  

p T

v T

p v

v vdv dT dp
T p

p pdp dT dv
T v

T TdT dv dp
v p

 
 

 
 

 
 

     
   

       
   

     
   

 

ovvero in termini di variazione relativa: 
1  1   

  

1  1 1
  

 
1 1 1 1

  
  

p T

v

T

p v

dv v vdT dp
v v T v p

dp p dT dv
p p T p v

p
dT dv dp

v pT T T
T T

 
 


 



 
 

      
   

      
 
 

 
   
   
   

 

che possono essere scritte nella forma: 
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1 

1 1  
  

T

T

dv dT dp
v

dp dT dv
p pv

dT dv dp
T T T

 




 

 

 

 

  [1.3] 

nelle quali il termine: 
1  

 p

v
v T


   
 

  [1.4] 

prende il nome di coefficiente di espansione isobara1 ed esprime la variazione relativa di 
volume specifico al variare della temperatura in un processo a pressione costante; il termine: 

1  
 T

T

v
v p


 

  
 

  [1.5] 

viene denominato coefficiente di comprimibilità isoterma, esso indica la variazione relativa di volume 
specifico al variare della pressione in un processo a temperatura costante; inoltre: 

1  
 v

p
p T


   
 

  [1.6] 

rappresenta il coefficiente di tensione isovolumico ed esprime, in una trasformazione a volume costante, 
l‟effetto  della tem p eratura sulla pressione. Tale coefficiente e quello di espansione isobara sono in 
generale funzioni della pressione e della temperatura. Le [1.3]  costituiscono le equazioni differenziali di 
stato relative ad un fluido qualsiasi allo stato termodinamico monofase. 

I coefficienti termodinamici sopra definiti non sono indipendenti tra loro, infatti tenuto conto 
che per una funzione del tipo (1.1) si può scrivere: 

   1
   T p v

p v T
v T p

  
  

         
     

 

ovvero anche: 
 
 

1
  
  

p

vT

v
T

v p
p T




 
 

 
 
 


   

     

 

e quindi dalle (1.4), (1.5) e (1.6) si ottiene: 

 T

p
 

   [1.7] 

relazione che consente il calcolo di uno dei coefficienti noti che siano gli altri due. 
Se il fluido in esame è un gas perfetto per i coefficienti espansione e di tensione si scrive: 

1
 

1
 

p

v

RT R
v T p pv

RT R
p T v pv







 
  

 

   
 

 

                                                 
1 Spesso detto anche coefficiente di dilatazione cubica dei materiali. 

ZEqnNum296624
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il che equivale a scrivere: 
1
T

     [1.8] 

ossia tali coefficienti sono indipendenti dalla pressione. 
Integrando la prima delle [1.3] lungo un processo isobaro e la seconda lungo un processo 

isovolumico si ottiene rispettivamente: 

0

0

0

0

  exp   

 exp   

T

T

T

T

v v dT

p p dT





    
    




 

si o sserva ch e se l‟in tervallo  di tem p eratura n o n  è gran de i co efficien ti   e  possono ritenersi 
con buona approssimazione costanti pertanto le suddette relazioni divengono: 

 
 

0 0

0 0

  exp   

 exp  

v v T T

p p T T





   
   

  [1.9] 

inoltre sviluppando in serie e trascurando i termini di ordine superiore si può scrivere: 
 
 

0 0

0 0

 1  

 1  

v v T T

p p T T





    
    

  [1.10] 

come temperatura iniziale si può considerare quella del ghiaccio fondente pari a 273,15 K. Per 
grandi intervalli di temperatura le suddette espressioni possono ancora essere ritenute valide a 
condizione che  e  siano da intendere come valori medi lungo tali intervalli. Sempre nel caso di gas 
perfetto per il coefficiente di comprimibiltà isotermo si ha:  

2

1
 T

T

RT RT
v p p p v



 
  

 
 

ovvero anche: 
1

T p
     [1.11] 

esso quindi non dipende dalla temperatura. La comprimibilità di un fluido può anche avvenire 
isoentropicamente, in tal caso dalle equazioni del primo e secondo principio della termodinamica 
risulta: 

   
   

 0

 0
s s

s s

du p dv

dh v dp

 

 
 

ovvero nella forma equivalente: 
                   
  s s

u hp v
v p

 
 

      
   

 

quindi effettuando il rapporto: 
 
   
   
 

s

ss

s

h
p h v v
u p u p
v


  
  


 
                
 

 

e scrivendo nella forma: 
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1   1
  ss

v h
v p u p
 
 
       

  
 

si può definire un altro coefficiente termodinamico di variazione volumetrica dato dalla: 
1  

 s
s

v
v p


 

  
 

   [1.12] 

denominato coefficiente di comprimibilità isoentropica il quale rappresenta la variazione di volume 
specifico al variare della pressione in un processo ad entropia costante; tale coefficiente, come si avrà 
modo di vedere poco più avanti, è legato alla velocità di propagazione delle onde di pressione in un 
mezzo fluido. Pertanto la relazione: 

 1
 s s

h
u p


 
   
 

  [1.13] 

rap p resen ta l‟equazio n e differen ziale di un a trasfo rm azio n e iso en tro p ica, n o ta dalla 
termodinamica, ed esprime la variazione delle proprietà calorifiche, entalpia ed energia interna, del 
fluido in funzione delle sue proprietà termiche, pressione e volume specifico, in un processo 
isoentropico. La quantità: 

 
 s

hk
u




   
 

 

rappresenta appunto l‟esp o n en te dell‟iso en tro p ica, sicch é p er un  fluido  qualsiasi il co efficien te di 
comprimibilità isoentropico assume la forma: 

1
s k p
    [1.14] 

se il fluido è un gas perfetto risulta: 
 
 

p

s s v

ch dhk
u du c




         
   

 

pertanto la [1.14] diviene: 
1
 s k p

    [1.15] 

e dal confronto con la [1.11] ne risulta: 
T

s

k 


    [1.16] 

ossia il coefficiente adiabatico k è dato dal rapporto tra i due coefficienti di comprimibilità 
isotermo ed isoentropico, rispettivamente. Si osserva altresì che la suddetta espressione, come si può 
dimostrare, ha validità anche per un fluido qualsiasi. 

I gas hanno la tendenza a comprimersi molto più elevata rispetto a quella dei liquidi, in condizioni 
standard di pressione e temperatura  risulta dell‟o rdin e di 10 -5 m²/N. I liquidi oppongono maggiore 
resistenza alle azioni che tendono a comprimerli. Integrando la prima delle [1.3] per un processo 
isotermo si ottiene: 

0
0  exp   

p

Tp
v v dp      

an ch e qui co n sideran do  no n  eccessivo  l‟in tervallo  di p ressio n e si p uò  scrivere: 
 0 0 exp  Tv v p p      [1.17] 

quindi sviluppando in serie e trascurando i termini di ordine superiore al primo si ha: 
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 0 0 1 Tv v p p      [1.18] 

Per i liquidi più comuni T  è d ell‟o rdin e di  9  210  /m N , in  p artico lare n el caso  dell‟acqua, alle 
medesime condizioni di pressione e temperatura, esso vale circa 10 25 10  /m N  ossia ventimila volte 
più piccolo del corrispondente valore che compete al gas, di conseguenza atteso il piccolo valore di T  
dalla [1.18] si deduce che il valore di v è praticamente coincidente con quello di 0v  e ciò consente di 
co n siderare i liquidi co m e “fluidi in co m p rim ib ili”.  

Tuttavia anche i gas possono essere trattati allo stesso modo dei liquidi tutte le volte che il loro 
movimento non comporta sensibili variazioni di pressione. 

L ‟ip o tesi di in comprimibilità porta ovviamente ad una fondamentale semplificazione negli 
sviluppi analitici e fornisce al tempo stesso risultati di completa attendibilità per molti problemi pratici.  

Non si deve però dimenticare che il fluido incomprimibile costituisce una semplice astrazione, 
analoga a quella del corpo rigido; in un fluido reale e per processi isotermici ad ogni variazione di 
p ressio n e si asso cia un a variazio ne dell‟energia p o ten ziale elastica con n essa ai co rrisp o n den ti 
cambiamenti di volume e tale variazione di energia equivale al lavoro meccanico compiuto dalle 
pressioni esterne sulla superficie di contorno durante la variazione volumetrica.  

L ‟ip o tesi di in co m p rim ib ilità p resup p o rreb b e ch e la p ressio n e del fluido  p o tesse variare 
indipendentemente da un effettivo lavoro delle pressioni esterne; assume pertanto una certa importanza 
stab ilire en tro  quali lim iti è effettivam en te lecito  am m ettere l‟in co m p rim ib ilità dei fluidi. 

1.2. VELOCITÀ DEL SUONO E NUMERO DI MACH 

Si consideri un tubo cilindrico nel quale un pistone viene spostato con un improvviso movimento 
x da sinistra verso destra; a seguito di tale spostamento si viene a generare nel fluido immediatamente 

vicin o  al p isto n e un  aum en to  di p ressio n e il quale n o n  si m an ifesta all‟istan te in tutti i punti del 
condotto, essendo il fluido dotato di inerzia e di elasticità, bensì si propaga, verso destra, con velocità c; 
tale velocità di propagazione di questa perturbazione provocata nel fluido viene denominata velocità del 
suono. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figura 1 

 c 

 .b 

 p dp
d 



  
 c 

 dw 

a 

 c - dw 
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P er p o tere determ in are questa velo cità si co n sideri un  riferim en to  so lidale co n  l‟o n da di 
p ressio n e, in  tal caso  il fluido  sco rre da destra verso  sin istra e p assan do  attraverso  il fro n te d‟o n da la sua 
velocità passa dal valore c al valore c dw . N ell‟ip o tesi ch e il fluido  si m uo ve di m o to  stazio n ario  
risp etto  al riferim en to  so lidale co l fro n te d‟o n da app lican do  l‟equazio n e di b ilan cio  di quan tità di m o to 
in due sezioni immediatamente a monte ed a valle di questo si ha: 

2 2 ( )( )p c p dp d c dw         

e trascurando infinitesimi di ordine superiore si può scrivere: 
2 2   dp c d c dw    

A p p lican do  in o ltre l‟equazio n e di b ilan cio  di m assa si scrive: 
 ( )( )c d c dw      

che diviene: 
  c d dw   

e sostituita nella precedente fornisce: 
2 22dp c d c d    

dalla quale si ottiene: 
dpc
d

   [1.19] 

Se si tiene conto che la velocità di propagazione delle vibrazioni sonore nel mezzo fluido è molto 
grande nessuno scambio di calore, anche se piccolo, riesce a prodursi nelle zone di compressione e di 
d ep ressio n e dell‟o n da da un a p arte ed il m ezzo dall‟altra co sicch é le vib razion i del m ezzo  do vute alla 
p ro p agazio n e dell‟o n da si p o sso n o  co n siderare adiab atich e ed iso en tro p ich e, p ertan to  la  [1.19] deve 
essere scritta: 

 
 s

pc 
 
 

  
 

  [1.20] 

nota come equazione di Laplace. L ‟ip o tesi ch e ha co n do tto  alla [1.20] è che l‟eccesso  di p ressio n e sia 
piccolo, al limite infinitesimo; in realtà si dimostra che non essendo tale incremento infinitesimo la 
velocità di propagazione effettiva 'c  differisce dal valore fornito dalla suddetta espressione, ovvero si 
verifica che 'c c  per incrementi di pressione positivi e viceversa per incrementi negativi. Il valore di c 
calcolato con la [1.20] viene anche denominato velocità del suono di frequenza zero, infatti quando le 
vibrazioni sonore d i frequen za sufficien tem en te alta si p ro p agan o  in  un  m ezzo  fluido  l‟ip o tesi sulla lo ro 
natura isoentropica cessa di essere valida, per tali situazioni la velocità del suono dipende anche dalla 
frequenza.  

Tuttavia per un intervallo di frequenze che presentan o  p ratico  in teresse l‟equazio n e di L ap lace 
fornisce valori di c che, a meno di qualche centesimo di percento, coincidono con i dati sperimentali. 

Esprimendo la [1.20] in termini di volume specifico si ha: 

2  
 s

pc v
v



    
 

 

e tramite la [1.14] si ottiene: 

s

vc


   [1.21] 

Se il fluido  è un  gas p erfetto , ten uto  co n to  dell‟equazio n e di stato , la suddetta relazio n e divien e: 
  c k R T   [1.22] 
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la velocità del suono dipende in tal caso dalla sola temperatura, mentre in un gas reale c è 
funzione anche della pressione. 

Osservando la [1.20] si deduce che am m ettere l‟inco m p rim ib ilità equivale ad assegn are valo re 
infinito alla velocità del suono, ciò significa che ogni piccola variazione di pressione provocata in un 
punto qualsiasi della massa fluida venga istantaneamente risentita in tutti gli altri punti.  

N ell‟esem p io  citato  il fluido  è co m p rim ib ile p er cui esso  n o n  si sp o sta sub ito  alla velocità del 
pistone, come ciò invece avrebbe luogo se al posto del fluido il pistone spingesse un cilindro di metallo. 

A ffin ch é l‟ip o tesi di in co m p rim ib ilità n o n  dia luo go  a co n traddizio ni tro p p o  eviden ti le 
dimensioni della massa fluida devono essere abbastanza limitate in modo tale da potere ritenere 
trascurabile il tempo effettivamente necessario per la trasmissione delle variazioni di pressione fino ai 
punti più lontani, oppure tali variazioni risultino così lente e graduali ed il tempo predetto sia 
brevissimo. 

Nel caso di liquidi sarà allora necessario mettere in conto la comprimibilità nello studio dei 
fen o m en i ch e riguardan o  l‟in izio  e l‟arresto  del m o vim en to  en tro  lun gh i co n d o tti (co lp o  d‟ariete) e n o n  
se n e p o trà p rescin dere n em m en o  n el caso  di co n do tti b revi quan do  l‟avviam en to  o  l‟arresto  del m o to  
avvengono in un intervallo di tempo estremamente breve. 

La comprimibilità deve soprattutto essere presa in considerazione allorquando il fluido acquista 
velocità che si avvicina al valore di c, ciò si verifica con relativa frequenza nei processi gasdinamici ed 
aerodinamici sia perché la velocità del suono negli aeriformi è assai minore di quella che compete ai 
liquidi (da un  quarto  ad un  quin to , circa, di quella dell‟acqua) e sia p erch é in  sen o  all‟aria è p iù facile 
raggiungere velocità di trasporto molto elevate. 

L ‟esisten za di questa velocità di p ro p agazio n e è resp o n sab ile di un a fo n dam en tale distin zio n e tra 
il regime subsonico (w < c) ed il regime supersonico (w > c), tale distinzione si rende necessaria in quanto il 
comportamento termodinamico del fluido nei due regimi di moto è assai diverso.  

Si consideri a tal proposito una corrente fluida in moto a sia w la velocità in un punto qualsiasi in 
corrispondenza del quale lo stato termodinamico è caratterizzato dai valori di  p,v,T ; allora il rapporto 
adimensionale: 

wM
c

   [1.23] 

viene denominato numero di Mach e sta ad indicare il rapporto tra la velocità del fluido in un 
punto, in un dato stato termodinamico, e la velocità del suono nel medesimo punto e allo stesso stato; 
pertanto il regime di deflusso di un fluido, al variare della velocità, viene così classificato: 

M < 1  regime subsonico 
M = 1  regime sonico 

M <<1 regime incomprimibile 
M > 1  regime supersonico 
M >>1 regime ipersonico 

Come visto solo per 1M  (in  p ratica all‟in circa 0,3M  ) si p uò  riten ere accettab ile l‟ip o tesi 
di incomprimibilità; per valori elevati della velocità w non si può trascurare lo stato termodinamico del 
fluido il quale sarà sottoposto ad espansioni e compressioni. 

1.3. STATI TERMODINAMICI PARTICOLARI 

E ‟ n o to  che i valori di  p,v,T  individuano lo stato termodinamico di un fluido e questa terna di 
grandezze in un punto qualsiasi, in corrispondenza del quale il fluido è dotato di velocità w, rappresenta 
uno stato termodinamico generico comunemente chiamato stato locale; questo stato non mette in 
evidenza nessun particolare circa il comportamento fisico del fluido. 

Si consideri adesso un deflusso adiabatico senza scambio di lavoro e con variazione di energia 
p o ten ziale trascurab ile; app lican do  l‟equazio n e di b ilan cio  en ergetico fra uno stato locale (h,w) ed uno 
stato 0 0(  , 0)h w   risulta: 
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2

0 2
wh h    [1.24] 

questo stato fisico particolare viene denominato stato di ristagno ovvero anche stato di arresto 
adiabatico ed 0h  rappresenta l’en talpia di ristagn o ossia quel valore di entalpia che il fluido avrebbe se a 
partire da condizioni locali fosse portato adiabaticamente fino alla condizione di velocità nulla. 

Se 1 1( , ) h w e 2 2( , )h w  so n o  due stati lo cali e se il fluido  scam b ia calo re l‟equazio n e di b ilancio  
energetico, tenuto conto della precedente, si può scrivere: 

2 2
2 1

12 2 1 02 012 2
w wq h h h h

   
        
   

  [1.25] 

d alla quale si o sserva ch e l‟entalpia di ristagno rimane costante se non vi è scambio di calore con 
l‟estern o , an ch e in  p resen za di fen o m en i dissip ativi; essa aum en ta, o dim in uisce, n el caso  di 
somministrazione, o sottrazione, di calore al fluido.  

L ‟en talp ia di ristagn o  è quin di un a grandezza rappresentativa del contenuto energetico del fluido, 
p rescin den do  dall‟effettiva utilizzazio ne di tale energia al fin e di o tten ere lavo ro . N el caso  di gas 
perfetto la [1.24] diviene: 

2

0 2 p

wT T
c

     [1.26] 

che rappresenta la temperatura di ristagno, d efin ita in m an iera analo ga a quan to fatto  p er l‟en talpia; 
in tal caso dalla [1.25] si ha: 

 12 02 01pq c T T    [1.27] 

pertanto anche la temperatura di ristagno è rappresentativa del contenuto energetico per un gas 
perfetto e varia solo se vi è scambio di calore co n  l‟estern o . In  un  deflusso  adiab atico  si h a sem p re: 

0 0cos .                cos .h t T t   

Scrivendo la [1.26] nella forma: 
2 2

0 11 1
2 2p

T w k w
T c T kRT


     

e quindi per le [1.22] e [1.23] risulta: 
20 11

2
T k M
T


    [1.28] 

ossia per un dato gas il rapporto tra la temperatura di ristagno e quella locale è funzione del 
numero di Mach. Inoltre essendo: 

 
1

0 0

k
kT p

T p
 

 
 

 

dalla [1.28] si ottiene: 
 

120 11
2

k
kp k M

p
   

 
  [1.29] 

che rappresenta la pressione di ristagno, ossia quella pressione che il gas avrebbe se partendo da 
condizioni locali (p,w) fosse portato isoentropicamente fino alla condizione di velocità nulla. 

F acen do  riferim en to  all‟equazio n e di b ilan cio  energetico  in  fo rm a m eccan ica e trascuran do  
ancora variazioni di energia potenziale si può scrivere: 
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2 2 22 1
1

0
2 R

w w dp l



    

e supposto che gli estremi di integrazione siano due stati di ristagno tale espressione diviene: 
02 0
01

0
R

dpl


   [1.30] 

tale eguaglianza è dovuta al fatto che calcolare l‟in tegrale suddetto  n elle co n dizio n i di ristagn o  
equivale ad eseguire il calcolo considerando, ad ogni passo di integrazione, pressione e densità nelle 
condizioni di ristagno. 

Nel caso di gas perfetto e se questo non scambia calore la [1.30] si scrive: 
02 0 01

0 001
0 02

lnR
dp pl RT RT
p p

    [1.31] 

dalla quale risulta: 

01 02
0

 exp  Rlp p
RT
 

  
 

  [1.32] 

pertanto nel moto adiabatico la pressione di ristagno non è una costante, lo diviene solo che il 
deflusso avviene isoentropicamente, ovvero: 

01 02 00                  Rl p p p    

sicché la pressione di ristagno è una grandezza rappresentativa del contenuto entropico del gas e 
quindi dalla sua cap acità di trasfo rm are in  lavo ro  m eccan ico  l‟en ergia p o sseduta. E ssen do  in o ltre: 

 1

0 0

k
T
T





 

 
 

 

ancora dalla (1.28) risulta: 
1 

120 11
2

kk M


   
 

  [1.33] 

si ottiene la densità di ristagno, definita allo stesso modo della pressione di ristagno e come tale è 
una costante solo nel deflusso isoentropico. In questo caso sarebbe: 

1  1
01 01 02 02   k kT T    

ed essendo costante la temperatura di ristagno sarà anche: 
01 02 0     

Le equazioni [1.28], [1.29] e [1.33] dimostrano che nel caso di deflussi adiabatici reversibili esiste 
un legame univoco tra il numero di Mach ed i rapporti fra le grandezze termodinamiche locali e quelle di 
ristagno.  

Si può concludere che lo stato di ristagno costituisce uno stato di arresto adiabatico per entalpia e 
temperatura mentre per pressione e densità esso è uno stato di arresto isoentropico. 

Si faccia ancora riferimento alla [1.26] che può essere messa nella forma: 
2

0

2 1 1
kRTw kRT

k k
 
 

 

ovvero anche: 
22 2
0

2 1 1
cw c

k k
 
 

  [1.34] 
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dalla quale si o sserva che la velo cità lo cale del gas dim in uisce all‟aum en tare della velo cità del 
suono e viceversa; da qui si deduce che in corrispondenza di un dato punto, caratterizzato da un dato 
stato termodinamico, le due velocità hanno eguale valore sicché: 

cw c w   

in tale stato il numero di Mach diviene unitario ed il valore comune alle due velocità vale: 

0
2

1cw c
k




  [1.35] 

che prende il nome di velocità critica. 
Essendo noto lo stato di ristagno la temperatura critica si può determinare dalla [1.28], sicché: 

0
2 

1cT T
k
    

 [1.36] 

ed è ovvio che tale valore da solo non è sufficiente a definire uno stato termodinamico, sono 
necessari i valori di pressione e densità per i quali, come si è visto, si rende necessaria la condizione di 
isoentropicità del deflusso; pertanto dalla [1.29] si perviene alla: 

 
1

0
2 

1

k
k

cp p
k

    
 [1.37] 

e dalla [1.33] si ha: 
1 

1

0
2 

1
k

c k
 

    
  [1.38] 

Queste ultime tre equazioni individuano lo stato termodinamico corrispondente alla condizione 
di 1M   che viene così denominato stato critico.  

Partendo da uno stato locale ( , , , )p T w  combinando le suddette relazioni con le [1.28], [1.29]  e 
[1.33] si può scrivere: 

2

 
12

1 
12

2 1   
1 1

2 1 
1 1

2 1 
1 1

c

k
k

c

k

c

kT T M
k k

kp p M
k k

k M
k k

 





     

     

     

 [1.39] 

lo stato critico isoentropico è pertanto uno stato termodinamico corrispondente alla condizione 
1M   ottenuto a partire da condizioni locali o di ristagno.  
Essendo il deflusso isoentropico i valori di  , ,c c cT p   sono costanti in ogni punto del campo di 

moto. Questo particolare stato termodinamico è fondamentale n ello  studio  dell‟efflusso  dei gas lun go  i 
condotti a sezione variabile (ugelli e diffusori) nei quali, come si avrà modo di vedere qui di seguito, sia 
p er geo m etria sia p er co n dizio n i di m o to  l‟en tro p ia si p uò  riten ere costan te, alm en o  in  p rim a 
approssimazione. 

Dalla [1.34] si osserva che nel moto isoentropico la velocità ha un limite superiore che si ottiene 
allorquando la velocità locale del suono diviene nulla, in caso si può scrivere: 

max 0
2 

1
w c

k



  [1.40] 
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questa velocità in pratica sarebbe realizzata solo allo zero assoluto di temperatura in 
co rrisp o n den za del quale l‟en talp ia del gas sareb b e to talm en te trasfo rm ata in  en ergia cin etica; tale valo re 
in condizioni isoentropiche non può quindi essere raggiunto. 

Facendo riferimento alla [1.40] la [1.34] assume la forma: 
2 2

2 2
max 0

1w c
w c

    [1.41] 

la quale mostra come tutti i possibili regimi di moto sopra descritti per un gas perfetto giacciono 
su un ‟ellisse di assi ( , )w c , come è illustrato nella  Figura 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figura 2 

1.4. FATTORE DI COMPRIMIBILITÀ 

Si faccia riferim en to  all‟equazio n e en ergetica p er un  fluido  in co m p rim ib ile la quale, trascuran do 
variazioni di energia potenziale e le resistenze per attrito, si scrive: 

 
 2

0
1 0

2
w p p


    

essendo 0p  la pressione di ristagno del fluido; scrivendo tale equazione nella forma: 
 2

0
 
2
w p p

    [1.42] 

si osserva che la pressione dinamica del fluido si identifica come differenza tra la pressione di 
ristagno e quella locale; non si può dire altrettanto nel caso di un fluido comprimibile. Si consideri 
infatti il rapporto: 

0
 2 

2

k
p pf

w


    [1.43] 

che viene denominato fattore di comprimibilità, da esso si deduce che se il fluido è incomprimibile si 
ha 1kf   mentre se il fluido è comprimibile deve essere 1kf   e pertanto si ha: 

 2

0
 
2
w p p

    [1.44] 

w  

M 1  

c 

M 1  
M 1  

M 1  

M 1  

maxw  

0c  
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Al fine di valutare la differenza di pressione 0p p  si consideri un gas perfetto che si muove 
isoentropicamente, in tal caso si può scrivere: 

 2
2  

2 2
w k p M

   

di conseguenza la [1.43] diviene: 

0
 2

2 1
 k

pf
k M p

 
  

 
 

e quindi per la [1.29] risulta: 
 

1 2
 2

2 11 1
 2

k
k

k
kf M

k M


        
 

  [1.45] 

pertanto per un dato gas, ovvero per un assegnato valore di k, il fattore di comprimibilità è 
funzione del solo numero di Mach locale. Sviluppando in serie binomiale il termine in parentesi si può 
scrivere: 

 
12 2 4 6 81 (2 )1 1 ( )

2 2 8 48

k
kk k k k kM M M M O M
        

 
 

e la [1.45] diviene: 
2

4 621 ( )
4 24k

M kf M O M
      [1.46] 

sicché dalla [1.43] si ottiene la differenza di pressione richiesta, ossia: 
2 2

4 6
0

 21 ( )
2 2 24
w M kp p M O M  

     
 

  [1.47] 

Se il moto del gas è lontano dal regime sonico, ossia per 1M  , i termini alla seconda ed alla 
quarta potenza delle ultime due relazioni divengono piccolissimi di conseguenza dalla [1.46] risulterebbe 
che 1kf  , ossia il fluido si può considerare incomprimibile, mentre la  si identificherebbe con la [1.42]. 

Tale risultato risulta alquanto significativo, il deflusso adiabatico dei gas attorno ad oggetti e lungo 
i condotti si può ritenere incomprimibile finché il numero di Mach è piccolo, 0,3M   circa, ottenendo 
così nel modello a densità costante una indubbia semplificazione di calcolo. 
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2.  MOTO ADIABATICO NEI CONDOTTI A SEZIONE VARIABILE 
Allorquando i fluidi si comportano come comprimibili si hanno interessanti comportamenti per il 

loro moto all‟interno di condotti a sezione variabile che qui si presentano. 

2.1. MOTO ISOENTROPICO: VELOCITÀ E PORTATA SPECIFICA 

Nello studio dei condotti a sezione variabile il problema che in pratica si pone è quello di 
analizzare la loro conformazione e le condizioni operative necessarie al fine di ottenere mentre il fluido 
scambia lavoro, ed eventualmente calore, che esso subisca determinate trasformazioni; viceversa di 
in dividuare le trasfo rm azio n i ch e il fluido  sub isce nell‟attraversare un co n do tto  di fo rm a assegn ata ed in 
determinate condizioni.  

I condotti che vengono qui esaminati sono suddivisi in due classi fondamentali dove il fluido 
segue un comportamento totalmente diverso, si definisce infatti:  
 - ugello un condotto che, a prescindere dalla sua forma geometrica, consente di ottenere un 

incremento della velocità a spese di una diminuzione di pressione e densità;  
 - diffusore un condotto che, prescindendo dalla forma geometrica, consente di realizzare una 

diminuzione della velocità a vantaggio di un aumento di pressione e di densità. Si vedrà nel 
prossimo paragrafo che la modalità del deflusso in questi particolari condotti dipende 
esclusivamente dal regime di partenza della corrente fluida pur conservando la stessa geometria. 
Si consideri allora un fluido che viaggia in regime stazionario in un condotto a sezione variabile 

per il quale siano rispettate le seguenti ipotesi: 
 - pareti termicamente isolate, 
 - non vi sia scambio di lavoro meccanico, 
 - le variazioni di energia potenziale dovute al campo gravitazionale siano trascurabili, 
 - deflusso monodimensionale. 

L a p rim a ip o tesi è sen z‟altro  verificata in  quan to  trattan do si di co n do tti co rti ed avendo a che fare 
con velocità elevate ne risulta che la quantità di calore scambiata attraverso le pareti è molto piccola ed 
in pratica quasi sempre trascurabile, la terza ipotesi si ritiene accettabile appunto perché le alte velocità 
danno luogo a variazioni di energia cinetica molto grandi rispetto e quelle di energia potenziale, anche la 
quarta ipotesi si ritiene valida se il condotto è ad asse rettilineo o comunque poco incurvato di modo 
ch e i filetti fluidi sian o  p aralleli e diretti seco n do  l‟asse. L a seconda ipotesi non viene per il momento 
p resa in  co n siderazio n e. So tto  le suddette co n dizio n i l‟equazio ne di b ilancio  di en ergia nella fo rm a 
termodinamica si scrive: 

 
2 2

1
1 0

2
w w h h

    

dalla quale si ricava: 

 2
1 1w w h h     [2.1] 

che consente la determinazione della velocità del fluido in una sezione generica del condotto a 
partire da uno stato locale noto, caratterizzato dai valori 1 1( , )h w , e viene denominata velocità adiabatica; 
m en tre l‟equazio ne di b ilan cio  di en ergia nella fo rm a m eccan ica si scrive: 

1

2 2
1 0

2
p

Rp

w w dp l



    

dalla quale risulta: 

12
1 2 

p

Rp

dpw w l


 
   

 
   [2.2] 
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che consente di determinare la velocità in una generica sezione del condotto a partire dallo stato 
locale noto caratterizzato dai valori 1 1( , )p w . 

Le equazioni [2.1] e [2.2] sono di carattere generale nel senso che sono valide per qualsiasi fluido, 
anche se per dare forma risolutiva alla seconda sono necessarie la conoscenza del processo 
term o din am ico  e del lavo ro  delle fo rze d‟attrito  altrim en ti il problema risulta due volte indeterminato. 

Se il condotto, ugello o diffusore, è convenientemente breve e la superficie lambita dal fluido è 
ben levigata la trasformazione si può considerare praticamente reversibile in quanto il termine Rl  
d ivien e p iutto sto  p icco lo  risp etto  al valo re ch e assum e l‟en ergia cinetica n ella sezio n e fin ale e p ertan to  
può essere considerato trascurabile, almeno in prima approssimazione, di conseguenza la (2.2) diviene: 

12
1 2

p

p

dpw w


     [2.3] 

Si può dire pertanto che la [2.1] è valida nel caso di processo reversibile ed irreversibile ma 
necessariamente adiabatico mentre la [2.3] è applicabile a qualunque processo purché necessariamente 
reversibile il quale se è anche adiabatico la suddetta espressione viene denominata velocità isoentropica. 

Facendo riferimento alla [2.1] e se il fluido è un gas perfetto si può scrivere: 

 2
1 12 pw w c T T    

ovvero anche: 

2
1 1

1

2 1
1

k Tw w RT
k T

 
     

  

e ten uto  co n to  sia dell‟equazio n e di stato  ch e l‟equazio n e di trasfo rm azio n e in  fun zio n e di 
pressione e temperatura si ottiene: 

1

2
1 1

1

2 1
1

k
kk pw w RT

k p

 
          

  [2.4] 

ovvero la velocità isoentropica del gas perfetto; è immediato verificare che alla suddetta 
equazione si può pervenire anche attraverso la [2.3] so stituen do  n ell‟in tegrale l‟equazio n e di 
trasformazione in funzione di pressione e densità. 

La portata di massa specifica si può ottenere dalla relazione: 

 m w
A




 

nella quale essendo: 
11   

1
1

1 1

kkp p p
p RT p

 
  

    
   

 

e tenuto conto della (2.4) si perviene alla relazione: 
1 1 

21
1 1

1 1 1

2 1
1

k
k km p p k pw RT

A RT p k p

 
               


  [2.5] 

ossia la portata specifica isoentropica di un gas perfetto. Si osserva che qualora la velocità 1w  non sia 
nota si può mettere la [2.4] nella forma: 

ZEqnNum211701
ZEqnNum446317
ZEqnNum463846
ZEqnNum530613
ZEqnNum953100
ZEqnNum992859
ZEqnNum372661


FISICA TECNICA INDUSTRIALE –  VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 16 

1

2 2
1 1

1

2 1
1

k
kk pw w RT

k p

 
          

  [2.6] 

inoltre potendo scrivere: 
2

2 2 2 1
1 1 ww w w

w
      

   
 

ten uto  co n to  dell‟equazion e di b ilan cio  di m assa: 

1

1 1

 w A
w A



   

   
   

 

e dell‟equazio n e di trasfo rm azio n e la p receden te esp ressio n e divien e: 
22  

2 2 2
1

1 1

1
kA pw w w

A p

 
               

 

e sostituendo nella [2.6] si ottiene: 
1

1

22  1

1 1

2
1 1

1

k
k

k

k RT pkw
pA p

A p

 
                

   

  [2.7] 

in tal caso la velocità isoentropica viene messa in relazione con la geometria del condotto; per la 
portata di massa si può allora scrivere: 

2 1 

1
22  1 11

1 1

2
1

1

k
k k

k

m k p p pk
A R p pT A p

A p

 
                      

   


  [2.8] 

tale esp ressio n e co n sen te an ch e di riso lvere il p ro b lem a in verso , o ssia quello  di determ in are l‟area 
della sezione di uscita del condotto, nota che sia quella in ingresso, affinché sia garantita una data 
portata di massa di gas compatibile con lo stato termodinamico iniziale e la pressione finale. 

Per semplificare le espressioni suddette si potrebbe considerare una particolare sezione del 
condotto ove vi siano condizioni tali per le quali sia nulla, o quanto meno trascurabile, la velocità del 
fluido; nella maggior parte delle situazioni reali tale sezione non esiste però ad essa si può sempre fare 
riferimento in quanto noto che sia il suo stato termodinamico 1 1 1 1( , , , )p T w  si può sempre 
determinare lo stato di ristagno ad essa associato 0 0 0( , , )p T  attraverso le equazioni [1.28], [1.29] e 
[1.33] sicché la [2.4] 

1

0
0

2  1
1

k
kk pw RT

k p

 
         

  [2.9] 

mentre per la portata di massa specifica risulta: 
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2 1 

0

0 00

2
1

k
k kpm k p p

A R k p pT

 
               


  [2.10] 

Se si tiene conto della [1.29] per la suddetta equazione si può scrivere: 
2 1  

0

0 00

0
2 20 12

2           1
1

2 1 1 1 11 111 22

k
k k

k

pm k p p
A R k p pT

pk
kR kT Mk M





 
                

 
 

        
 



 

e quindi semplificando ed ordinando si ottiene: 

0
1 

0 2( 1)211
2

k
k

pm k M
A R T k M





  

 


  [2.11] 

la quale esprime la portata specifica in funzione dello stato termodinamico di ristagno e del 
numero di Mach; tale relazione costituisce una forma alternativa alla [2.10] ed h a un ‟im p o rtan za 
notevole nel campo della termofluidodinamica applicata alle macchine. 

Uno dei problemi fondamentali nello studio del comportamento degli ugelli e diffusori è quello di 
determinare il valore massimo di portata specifica che può defluire nel condotto in esame e più 
precisamente a quale stato termodinamico tale valore corrisponde. 

Con riferimento alla [2.10] si osserva che la portata specifica varia al variare della pressione ed il 
valore massimo si ottiene allorquando risulta massimo il termine in parentesi quadra per il quale, in 
corrispondenza di una data pressione p , deve essere nulla la derivata prima: 

2 11 1

0 0 0 0

2 1 0
  

k
k kp k p

k p p k p p


     
    

   
 

dalla quale si ottiene: 
 

1

0
2 

1

k
k

cp p p
k

     
 

pertanto la massima portata specifica si raggiunge in corrispondenza dello stato critico sicché 
sostituendo questo valore di pressione nella [2.10] si p ervien e all‟esp ressio n e: 

1 
2( 1)

0

max 0

2
1

k
k

c

pm m k
A A R kT


          

 
  [2.12] 

Dalla [2.10] si osserva che la portata  aumenta al diminuire della pressione fino al valore fornito  
dalla [2.12] per poi decrescere fino ad annullarsi addirittura laddove la velocità assume valore 

massimo, è eviden te ch e questo  disco rso  è in accettabile; in  p ratica attraverso  l‟o sservazio n e 
sperimentale si è visto che una volta raggiunta la pressione critica la portata conserva costantemente il 
valo re m assim o  sicch é l‟an dam en to  della fun zio n e [2.10] è quello riportato nella figura 3 dove il ramo di 
curva tratteggiato ha solo un significato matematico ma non corrisponde ad alcuna situazione reale. 
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                                                                  Figura 3     
Q uesto  fatto  p o n e sen z‟altro  un  lim ite alla validità della [2.10] in quanto non essendo fisicamente 

giustificabile il secondo ramo della curva suddetta tale equazione è accettabile solo per cp p . 

2.2. TEOREMA DI HUGONIOT 

L ‟ip o tesi di co n siderare reversib ile il deflusso  adiab atico  n egli ugelli e diffuso ri co stituisce  
o vviam en te so lo  un ‟ap p ro ssim azio n e an ch e se abb astan za accettab ile visto ch e, per quan to  detto  in  
precedenza, si tratta di condotti di caratteristiche geometriche tali che i fenomeni dissipativi non hanno 
ne lo spazio ne il tempo sufficiente per far sentire in modo apprezzabile i loro effetti; nella realtà però 
questa è una semplificazione che viene fatta solo in una prima fase di calcolo, o di verifica, al fine di 
determinare i valori teorici di velocità, portata di massa e le altre grandezze fisiche e successivamente, in 
un  seco n da fase, ven go no  m esse in  co n to  le irreversib ilità, fra l‟altro  in evitab ili, m o difican do  i valo ri 
delle suddette grandezze mediante opportuni coefficienti correttivi determinabili solo attraverso 
l‟o sservazio n e sp erim en tale.  

Considerando in una prima approssimazione il moto isoentropico attraverso le equazioni 
differenziali di bilancio di massa ed energia si può analizzare il comportamento di un fluido 
comprimibile che attraversa un condotto a sezione variabile. Per le condizioni poste inizialmente 
l‟equazio ne differen ziale di b ilan cio  energetico  si scrive: 

 0dpw dw


     [2.13] 

che si può anche mettere nella forma: 

2

1 0
s

dw dp d
w w d


 

 
  

 
 

ovvero per la [1.20] e la [1.23]. 

2

1 0dw d
w M




     [2.14] 

in o ltre differen zian do  l‟equazio n e di continuità: 
  cos .w A t   

risulta: 

0d dA dw
A w



     [2.15] 

m
A


0

p
p0

cp
p



max

m
A
F
HG
I
KJ  

ZEqnNum925461
ZEqnNum152853
ZEqnNum830298


FISICA TECNICA INDUSTRIALE –  VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 19 

quindi sostituendo nella [2.14] ed ordinando si ha: 

 2 1dA dwM
A w
    [2.16] 

quindi sostituendo nella [2.13] si ha: 

 2
21

 
dA dpM
A w
    [2.17] 

sostituendo ancora la [2.15] nella [2.14] si ottiene: 

2

1 1dA d
A M




   
 

  [2.18] 

Le [2.16], [2.17] e [2.18]sono le equazioni di Hugoniot le quali descrivono il moto di un fluido 
comprimibile qualsiasi lungo un condotto a sezione variabile, più precisamente attraverso le suddette 
equazioni è possibile risalire al comportamento totalmente opposto del fluido nei riguardi dei due 
regimi di deflusso.  

Nel caso di deflusso subsonico le variazioni della sezione del condotto causerebbero la variazione 
delle grandezze fisiche nel modo seguente: 

0 0
0      0                   0      0

0 0

dw dw
dA dp dA dp

d d 

    
         
       

 

mentre in regime supersonico si avrebbe: 
0 0

0      0                   0      0
0 0

dw dw
dA dp dA dp

d d 

    
         
       

 

Da queste condizioni si vede che per poter incrementare la velocità del fluido, a spese di una 
diminuzione di pressione e densità, occorre un condotto convergente in regime subsonico ed un 
divergente in regime supersonico pertanto in un convergente non può essere realizzato il regime 
supersonico, al limite si raggiunge il regime sonico; un condotto che realizza questa condizione di moto 
viene denominato rappresenta ugello e può essere costituito da un solo convergente o da un 
convergente collegato ad un divergente, come è illustrato nella Figura 4a. 

Per decelerare il fluido, con recupero di pressione e densità, occorre un convergente in regime 
supersonico ed un divergente in regime subsonico; un condotto che realizza questo deflusso 
rappresenta un diffusore, illustrato nella Figura 4b. 

Si osserva quindi come la denominazione, ovvero la caratteristica del condotto, non dipende dalla 
forma geometrica bensì dal regime di moto della corrente. 

Da queste considerazioni si può enunciare il teorema di Hugoniot secondo il quale nel moto 
isoentropico in un condotto a sezione variabile il passaggio da moto subsonico a supersonico, e 
viceversa, può avvenire solo in una sezione di area minima che viene chiamata sezione di gola. 

Con riferimento al gas perfetto che fluisce in regime stazionario è possibile ricavare una relazione 
fra il n um ero  di M ach  e l‟area della sezio n e trasversale del co n do tto ; in  tal caso  si fa riferim en to  alla 
sezione di gola in corrispondenza della quale si è raggiunta la velocità del suono, ovvero la condizione 

1M  , e che pertanto viene definita sezione critica cA . 
L ‟equazio n e di b ilan cio di m assa tra la sezio n e suddetta ed un a sezione generica consente di 

scrivere: 
   c c cw A w A   

ovvero anche: 
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1/ 21  cc c c c c

c

kRTw TA
A w M TM kRT

  
  

                  
        

 

 

Figura 4  
 
Tenuto conto della prima e terza delle [1.39] si ottiene: 

1 
2( 1)21 2 1

1 1

k
k

c

A k M
A M k k


     

   [2.19] 

questa funzione, rappresentata nella Figura , presenta un minimo per 1M   dove si ha cA A , per 

ogni altro valore del rapporto 1
c

A
A
  si hanno due valori del numero di Mach: uno per il regime 

subsonico 
 1c M

A
A



 
 
 

 ed uno di regime supersonico 
  1c M

A
A



 
 
 

 e quindi per aumentare il numero di 

Mach la sezione trasversale deve diminuire, nel senso del deflusso, a velocità subsoniche ed aumentare a 
velocità supersoniche; viceversa per diminuire il numero di Mach. 

Tutto ciò è in accordo con quanto dedotto dalle equazioni di Hugoniot. I valori del rapporto 
c

A
A

 

sono tabulati ed anche diagrammati per dato numero di Mach ma anche per un dato valore di k il quale, 
come si osserva ancora dal diagramma di  Figura 5, influenza il suddetto rapporto solo per elevati valori 
del numero di Mach e più precisamente nel caso di regimi supersonici. 
 

a 

1M   1M   1M   1M   

   Ugello 

b 

M 1
 

1M  M 1
 

1M 

     Diffusore 
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Figura 5 

Nello studio del funzionamento degli ugelli e diffusori risulta conveniente esprime il rapporto 
c

A
A

 

in funzione del rapporto di pressione 
0

p
p

, infatti facendo riferimento alle [2.10] e [2.12] dal loro 

rapporto risulta: 
1 
1

2 1 

0 0

1 2 
2 1

k
k

k
c k k

k
A k
A p p

p p






  
  

   
   

   

  [2.20] 

dalla quale ad ogni valore del rapporto
c

A
A

corrispondono due soluzioni isoentropiche: una di 

moto subsonico 
0 1M

p
p



 
 
 

 ed una di moto supersonico 
0 1M

p
p



 
 
 

; per cA A  si ha la soluzione 
0

cp
p

 . 

Si osserva che per dato condotto, ugello o diffusore, e a seconda del regime di moto, subsonico o 
supersonico, in cui si trova il fluido una delle due soluzioni suddette dovrà necessariamente essere 
scartata in quanto risulterebbe incompatibile con il comportamento caratteristico del condotto in 
esame, più in particolare si possono fare le seguenti considerazioni conclusive per ciascuno dei due 
condotti.  

Nel caso di un ugello si può dire che se il fluido arriva alla sezione di gola con moto subsonico il 
deflusso nel divergente, per il teorema di Hugoniot, prosegue subsonicamente e questa è una 
condizione da non prendere in considerazione in quanto il condotto funzionerebbe come un tubo di 
Venturi, il fluido nella sezione di gola deve necessariamente arrivare con velocità sonica in tal caso nel 
divergente il moto o ritorna subsonico, soluzione da scartare, come può divenire supersonico che 
rappresenta la condizione che si vuole realizzare; questa situazione di moto è schematicamente illustrata 
nella Figura 6. 

 
 
 

 

c

A
A

 

M<1 M>1 M=1 

cA A  

M 
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                                                                Figura 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                 Figura 7 
Opposto è il comportamento del diffusore in quanto se il fluido perviene alla sezione di gola con 

moto supersonico esso nel divergente procede supersonicamente, condizione da non prendere in 
considerazione, il fluido deve arrivare nella sezione di gola con velocità è sonica allora nel divergente il 
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moto può ritornare supersonico, soluzione da scartare, come può divenire subsonico e questa 
rappresenta la condizione che si vuole realizzare; la situazione di moto è illustrata nella  Figura 7. 

Una p artico lare equazio ne di H ugo n io t si p uò  o tten ere p arten do  dall‟equazio n e differen ziale di 
bilancio energetico nella forma: 

0wdw dh   
la quale per un gas perfetto diviene: 

0
1

kRwdw dT
k

 


 

ovvero scrivendo in termini di variazioni relative: 

2

1 0
1

dw kRT dT
w k w T
 


 

ed ordinando si ottiene: 
2(1 )dT dwk M

T w
    [2.21] 

tale equazione, a differenza delle tre precedenti, vale per moto adiabatico con attrito ma il fluido 
deve essere un gas perfetto, essa mette in evidenza che nei fenomeni di efflusso la variazione di 
temperatura è sempre opposta in segno alla variazione di velocità e pertanto ad una diminuzione di 
velocità corrisponde un aumento di temperatura, il gas si comprime, così come ad un aumento di 
velocità consegue una diminuzione di temperatura, il gas si espande; si può quindi affermare che, in 
valore assoluto, ad una variazione di velocità segue una variazione di temperatura tanto più rapida 
quanto più è elevato il numero di Mach. 

2.3. CONDIZIONE DI FUNZIONAMENTO DI UN UGELLO 

Si è visto attraverso il teorema di Hugoniot come la trasformazione termodinamica che un fluido 
subisce n ell‟attraversare un  ugello  o  un  diffuso re dip en de, o vviam en te p er un  dato  fluido , so lo  dalla 
legge co n  cui la sezio n e del co n do tto  varia lun go  l‟asse, tale teorema costituisce pertanto la base per 
potere effettuare una analisi qualitativa del comportamento di un ugello, o di un diffusore, di 
caratteristiche geometriche prefissate una volta assegnato lo stato termodinamico del fluido a monte e 
facendo variare la pressione a valle. 

Questo studio viene qui condotto facendo riferimento al moto isoentropico di un gas perfetto 
che si espande in un ugello considerando separatamente i casi in cui esso è costituito da un solo 
convergente o da un convergente -d ivergen te in  quan to  il fun zio n am en to  di quest‟ultim o  è leggerm en te 
più complesso del primo.  

Analoghe considerazioni  ma nel verso opposto, ovvero a diagrammi capovolti, si possono poi 
fare nel caso del diffusore. 

1.1.1. UGELLO CONVERGENTE  
Nella Figura 8 è rappresentato un ugello convergente dove il gas a partire da uno stato 

termodinamico di ristagno a monte fluisce in un ambiente la cui pressione sp  viene fatta decrescere 
con continuità a partire dal valore 0p . Il funzionamento di questo condotto è caratterizzato da quattro 
situazioni fondamentali: 
 a)   Se 0sp p  non si ha deflusso in quanto non si realizza alcun gradiente di pressione in seno al 

fluido  ed è quin di n ulla la p o rtata di m assa; l‟an dam en to  della p ressio n e segue o vviam en te la lin ea 
orizzontale del diagramma di  fig. 2.7. 

 b)   Se 0c sp p p   si viene ad avere un gradiente di pressione in seno al gas ed essendo il moto 
subsonico si ha anche 2sp p  e quindi la velocità nella sezione di uscita vale: 
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1 

2 0
0

2 1
1

k
k

spkw RT
k p

 
         

 

mentre la portata di massa specifica è: 
2 1  

0

2 0 00

2
1

k
k k

s sp p pm k
A R k p pT

 
               


 

 

 
un  ulterio re ab b assam en to  di p ressio n e m a sem p re co m p reso  n ell‟in tervallo  suddetto  del 

diagramma, non farebbe altro che aumentare la velocità e la portata ma il regime di moto nella sezione 
di uscita rimane subsonico. 
 c)  Se s cp p  il regime di moto nella sezione di uscita è sonico: 

2   c cw w k R T   

pertanto la portata di massa raggiunge il valore massimo: 
1 

2( 1)
0

2 0max

2
1

k
kpm k

A R kT


        


 

 d)  Se s cp p  il gradiente di pressione nel convergente rimane come nella curva c così come 
rim an go n o  in alterate velocità e p o rtata n ella sezio ne di uscita m a il fluido  all‟uscita del co n do tto   
subisce delle onde di espansione e solo più a valle si adegua alla pressione sp  d ell‟am b ien te.   

p p pc s o   

p ps o  

p
T

0

0
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L ‟assen za di un  divergen te a valle di 2A  impedisce pertanto al fluido di raggiungere il regime 
supersonico e ciò è in perfetto accordo con il teorema di Hugoniot.  

1.1.2. UGELLO CONVERGENTE - DIVERGENTE 
Si è detto  ch e il fun zio n am en to  di questo  co n do tto  è un  p o ‟ p iù co m p lesso  d el p receden te se n o n  

altro nel divergente visto che dovendosi qui realizzare il regime supersonico è possibile la formazione di 
o n de d‟urto  an ch e se questo  fen o m en o  n o n  verrà qui preso in considerazione.   

Partendo da una pressione a valle uguale a quella a monte, condizione corrispondente al valore di 
portata nulla, la pressione di scarico sp viene al solito ridotta con continuità dal valore di ristagno 01p  a 
valori via via decrescenti e per ogni valore di sp  si calcola un valore di pressione gp  in corrispondenza 
della sezione di gola.  

Finché risulta g cp p  la velocità del fluido il tale sezione è subsonica e pertanto il moto risulta 
subsonico anche nel divergente sicché il condotto si comporta come un tubo di Venturi.  

Allorquando si ha g cp p  la sezione di gola diviene critica e la portata del fluido diviene 
massima a questo punto il moto nel tratto convergente è completamente definito mentre il moto nel 
divergente dipende dalle condizioni imposte a valle.  

Si è visto che in questa situazione le soluzioni nel divergente possono essere due in tal caso la 
(2.20) deve però essere scritta: 

1 
1

2 1  

01 01

1 2 
2 1

k
k

k
c k k

k
A k
A p p

p p






  
  

   
   

   

 

da questa equazione si possono ricavare i due valori di pressione  2 2  1Mp p


  e  2 2 1Mp p


  
nella sezione di uscita del divergente.  

Per cui si può trarre una prima conclusione: 
    a)  per 2 01sp p p   il moto del fluido nel divergente risulta subsonico isoentropico, che 

rappresenta la soluzione da scartare; 
    b)  per  2sp p  si ottiene nel divergente il moto supersonico isoentropico, che sarebbe la 

soluzione ottimale. 
Resta adesso da chiarire che cosa accade al fluido quando si verifica 2 2sp p p    ed ancora 

quando si ha 2sp p . 
Si è detto che se il moto è supersonico è necessario  p reven ire la fo rm azio n e di o n de d‟urto  le 

quali p o sso n o  aver luo go  all‟in tern o  del divergen te ed an ch e n ell‟am b ien te dove il fluido  avrà lo  sb o cco .  
A  causa della fo rm azio ne di un ‟o n da d‟urto  la p ressio n e di ristagn o  dim in uisce b ruscam en te dal 

valore a monte 01p , dove si ha 1M  , a quello a valle 02p , dove si verifica 1M  .  
Se il fro n te d‟o n da p uò  fo rm arsi in  un a sezio n e qualsiasi del divergen te si sup p o n ga che questo 

avvenga nella sezione di uscita e pertanto, senza peraltro entrare nei dettagli di questo argomento, si 
dimostra che: 

2
2

2

2 1
1 1

p k kM
p k k





  
  

 

nella quale 2p   è la pressione che si ha nella sezione 2 prima della formazio n e dell‟o n da m en tre 

2p  è la p ressio n e im m ediatam en te a valle del fro n te d‟o n da, 2 1M  è il numero di Mach a monte del 
fro n te d‟o n da, n o n  vien e co n siderato  quello  a valle 2 1M . 
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                                                                 Figura 9 
 
 
 
 
 
 

Figura 9 
C alco lata la p ressio n e a valle dell‟o n da d‟urto  co n  l‟equazio n e suddetta si p o sso n o  fare le seguen ti 

considerazioni: 
 c)  per 2 2sp p p     il m o to  n o n  è iso en tro p ico  co n  fo rm azio n e di un ‟o n da d‟urto  in un a 

sezione interna al divergente; 
 per 2sp p   il m o to  è iso en tro p ico  n el divergen te co n fo rm azio n e di un ‟o n da d‟urto  in  

corrispondenza della sezione di uscita; 
 e) per 2 2sp p p     il m o to  è iso en tro p ico  n el divergen te m a co n  fo rm azio n e di o n de d‟urto  

esterne di compressione, ovvero il fluido è sopraespanso; 
 f)  per  2sp p  il moto è isoentropico nel divergente ma con formazione di onde d‟urto  estern e  

di espansione, ovvero il fluido è sottoespanso. 
La curva discreta tracciata nel divergente rappresenta il luogo dei punti in corrispondenza dei 

quali si m an ifesta un ‟o n da d‟urto  n o rm ale, tutti i p un ti di tale curva rap p resentan o  p ressio n i a valle del 
fro n te d‟o n da. 

1.1.3. OSSERVAZIONI 
In  tutto  ciò  ch e si è detto , an ch e sull‟ugello  co n vergen te, si o sserva ch e no n  è stata p resa in  

co n siderazio n e la lun gh ezza del co n do tto  p ertan to  l‟ugello  p o treb b e teo ricam en te avere qualun que 
lunghezza, è evidente che se il condotto è molto breve la diminuzione di pressione avviene con forti 
gradienti nella direzione assiale mentre se esso è lungo si avrebbero gradienti di pressione minori; nella 
realtà questa lunghezza viene fissata da diversi criteri di carattere costruttivo. 
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Per lo stato termodinamico a monte è stato convenientemente scelto quello di ristagno al quale, 
co m e già detto , si p uò  sem p re risalire da un o  stato  lo cale n o to  in  quan to  un a velocità n ulla all‟in izio  
dell‟esp an sio n e sign ifich ereb b e co n siderare in fin ita l‟area della sezio n e, si p uò  p erò  in  p ratica ten dere a 
questa co n dizio n e co struen do  le p areti dell‟ugello  tan gen ti alle p areti del serb ato io  di m o n te, co m e è 
illustrato nella Figura 10, cosicché la velocità risulta piccola e quindi trascurabile e non è necessario poi 
ch e la p arte co n vergen te dell‟ugello  ab b ia un  p ro filo  p artico lare, qualun que fo rm a è accettab ile p urch é 
l‟area decresca gradualm en te fin o  alla sezio n e di go la; il tro n co  co n vergen te p uò  avere un a lun gh ezza 
abbastanza breve e questo significa che le perdite per attrito fra fluido e parete sono considerate quasi 
nulle.   
 
 

 
 
 
 
 
 
 
 
 
 
 
                                                                   Figura 10 
Molto più delicato è invece il divergente il quale deve essere realizzato più accuratamente in 

quan to  qui il fluido  ha sup erato  la b arriera del suo n o , in o ltre allo rquan do  il fluido  esce dall‟ugello  le 
pareti del divergente devono avere curvatura molto graduale fino a divenire parallele in corrispondenza 
della sezione di uscita.  Inoltre se p er ridurre gli attriti o cco rre ch e il tratto  divergen te sia b reve l‟an go lo 
di divergenza non può essere troppo grande altrimenti si avrebbe il distacco della vena fluida dalle 
pareti con formazione di vortici e conseguenti fenomeni dissipativi.  

Nella maggior parte dei casi pratici il profilo di un ugello ha forma tronco-conica con angolo 
convergente fino a circa 45 m en tre l‟an go lo  di ap ertura n el divergen te è in  gen ere co m p reso  tra i 7 e 
i 10. Da queste considerazioni si può dire che per un ugello convergente - divergente le dimensioni 
fondamentali, cioè quelle da calcolare, si riducono alle aree della sezione di gola ed alla sezione di uscita 
m en tre se l‟ugello  è co stituito  da un  so lo  co n vergen te il calco lo  riguarda so lo  l‟area della sezio n e di 
uscita. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                Figura 11 
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2.4. MOTO ADIABATICO CON ATTRITO 

Il deflusso isoentropico ha una notevole importanza teorica in quanto costituisce un riferimento 
limite mentre il moto adiabatico irreversibile riveste grande importanza pratica in quanto qualunque 
movimento fluido lungo un condotto di qualsivoglia geometria è sempre accompagnato da perdite di 
energia anche in condotti corti e ben profilati come lo sono gli ugelli e i diffusori, principale 
resp o n sab ile di tali p erdite è l‟attrito  do vuto  p revalen tem en te alla visco sità del fluido  ed alla rugo sità 
delle pareti nonché, con riferimento ai fluidi che qui vengono trattati, all‟effetto  della co m p rim ib ilità.  

Gli effetti dovuti alla viscosità del fluido si manifestano in due modi: 
 - formazione di uno strato limite in una zona a ridosso delle pareti per cui anche supponendo 

isoentropico il deflusso i valori delle aree introdurre nelle espressioni della portata no sarebbero 
più quelli geometrici;  

 -  p er effetto  dell‟attrito  in  sen o  al fluido  e tra fluido  e p arete si avrà n el caso  di un  ugello  un a 
riduzione della velocità di efflusso e di portata rispetto ai corrispondenti valori isoentropici, nel 
caso di un diffusore una parte della variazione di energia cinetica verrà convertita in calore di 
co n seguen za a p arità di variazio n e di en talp ia e di energia cinetica l‟aum en to  di p ressio n e risulterà 
minore di quello che si avrebbe nella corrispondente compressione isoentropica. 

Si co n sideri il deflusso  di un  fluido  in un  ugello  do ve a causa delle p erdite p er attrito  l‟en tro p ia 
cresce nella direzione del moto, inoltre tenuto conto che durante il deflusso, con o senza attrito, il 
fluido si espande sino alla pressione 2p  all‟uscita dell‟ugello  il p un to  2r  corrispondente allo stato 
termodinamico reale si troverà sulla stessa isobara ma più a destra del punto 2 e poiché le isobare nel 
diagramma h-s hanno pendenza positiva si ha che  2 2rh h  e pertanto durante il deflusso si ha sempre 

1 2 1 2rh h h h    conseguentemente la velocità del gas irrw  all‟uscita dall‟ugello  sarà sem p re in feriore di 
quella isoentropica. 

Si scriva l‟equazio n e di b ilan cio  en ergetico  tra un o  stato  lo cale gen erico  ed un o  stato  lo cale n o to  
la quale se il moto è isoentropico allora si scrive: 

 
2 2

1
1 0

2
w w h h

    

mentre per il moto adiabatico si ha: 

 
2 2

1
 1 0

2
irr

irr
w w h h

    

il ren dim en to  iso en tro p ico  dell‟ugello  è dato  dall‟esp ressio n e: 
2 2

1

1  
2 2

11

2

2

irr

irr
ie

w w
h h

w wh h





 


 

ovvero se la velocità iniziale si ritiene trascurabile, per quanto è stato fatto osservare in 
precedenza, si può ancora scrivere: 

2

2
2

2

irr

ie

w

w
    [2.22] 

in  tal caso  il ren dim en to  iso en tro p ico  di un  ugello  è dato  dal rap p o rto  tra l‟en ergia cinetica 
adiabatica e quella isoentropica nella sezione di uscita, pertanto risulta: 

irr iew w   
che si può anche scrivere come: 
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irr ww k w   [2.23] 

sicché la velocità adiabatica irrw  si ottiene da quella isoentropica, fornita dalla [2.4], moltiplicando 

questa per il fattore w iek   che viene denominato coefficiente di velocità, è un coefficiente di riduzione 
sp erim en tale ch e, n ella m aggio r p arte dei casi, è p o co  disco sto  dall‟un ità e dip en de dalla forma e dalla 
rugosità delle pareti.  

Nel caso di ugelli convergenti wk  h a un ‟in fluen za trascurab ile sulla velo cità in quan to  assum e 
valori compresi fra 0,97 0,99  ed il moto si considera abbondantemente isoentropico; nel caso di 
ugelli convergenti - divergenti i valori di wk  sono compresi fra 0,94 0,96 e ciò perché il condotto è 
più lungo e sia perché nella parte divergente si realizzano velocità più elevate. 

La perdita di en ergia per attrito  p uò  essere esp ressa co m e la differen za tra l‟energia cin etica 
iso en tro p ica n ella sezio ne di uscita dell‟ugello  e quella adiab atica irreversib ile in  co rrisp o n den za della 
stessa sezione, ossia:  

2 2

2
irr

attr
w wE 

    [2.24] 

che attraverso la [2.22] diviene: 

 
2 2

1
2 2attr ie

w wE        [2.25] 

nella quale il termine   viene chiamato coefficiente di perdita di energia. 
Se 1 e 2  so n o  gli stati term o din am ici in  cui si tro va il fluido , risp ettivam en te, all‟in gresso  e 

all‟uscita dell‟ugello  la differen za tra la velo cità iso en tro p ica in  uscita: 

 2 1 22 w h h   
e quella adiabatica nella medesima sezione: 

 2 1  22 irr irrw h h   
la perdita di energia può essere scritta: 

 2 2attr irrE h h     [2.26] 

ed è dun que esp ressa co m e differen za tra l‟en talp ia adiab atica e quella iso entro p ica n ella sezio ne 
di uscita dell‟ugello . In o ltre ten uto  co n to  della [2.25] ed utilizzando la velocità isoentropica la suddetta 
relazione assume la forma: 

 1 2 attrE h h     [2.27] 

e quindi eguagliando i secondi membri di queste espressioni si può determinare il valore 
d ell‟en talp ia adiab atica n ella sezio n e di uscita: 

 2 2 1 2 irrh h h h     [2.28] 

N el diagram m a di  F igura 12 è rap p resen tato  il deflusso  adiab atico  dell‟ugello , si o sserva ch e 
l‟area so tto  la curva 1 2irr  rap p resen ta il lavo ro  n ecessario  p er vin cere le fo rze d‟attrito  ch e si 
trasforma irreversibilmente in calore assorbito dal fluido sicché la temperatura del gas nella sezione di 
uscita dell‟ugello  è m aggiore di quella iso en tro p ica; d‟altra lun go  l‟adiab atica 1 2irr  risulta: 

2

1
 irrs

attr s
q T ds  

 
 
 
 

ZEqnNum139945
ZEqnNum826754
ZEqnNum501351


FISICA TECNICA INDUSTRIALE –  VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 30 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                Figura 12 
 

si osserva dal diagramma T s  ch e l‟area so ttesa dalla curva isobarica 2 2irr rappresenta la perdita di 
energia cinetica per attrito attrE ; in fatti ten uto  co n to  ch e p er lun go  un ‟iso b ara reversib ile si h a: 

Tds dh  
allora integrando tra i punti 2 e 2irr  risulta: 

2

2
2 2 irrT

irrT
T ds h h    [2.29] 

nella quale il primo membro rappresen ta p ro p rio  l‟area della curva tratteggiata so p ram en zio n ata, 
dal co n fro n to  co n  l‟area so ttesa dalla curva 1 2irr si osserva che la perdita di energia cinetica per attrito 

attrE  rappresenta solo una parte del calore di attrito la rimanente parte, non tratteggiata, viene 
assorbita dal fluido e si trasforma di nuovo in lavoro meccanico.  

Pertanto vale sempre la disuguaglianza: 
2 2irr attrh h q    [2.30] 

ne consegue che la forma della curva 1 2irr , esp rim en te “convenzionalmente” un  adiab atica 
irreversibile, non ha alcuna importanza per l‟analisi del deflusso  co n  attrito . 

Nel caso un deflusso adiabatico con attrito essendo 0estq   risulta: 
 attrdh vdp dq   

quindi integrando: 
2

1
2 1

p

irr attrp
h h vdp q     [2.31] 

D ‟altra p arte ten uto  co n to ch e p er un  p ro cesso  iso en tro p ico  si h a: 
2

1
2 1

p

p
h h vdp   

si può affermare che i due integrali delle equazioni suddette non sono affatto identici, infatti 
sottraendo membro a membro si può scrivere più precisamente: 

     2 2

1 1
2 2

p p

irr attrp pattr rev
h h vdp vdp q     [2.32] 

e quindi attraverso la (2.30) dalla suddetta espressione si deduce che: 

   2 2

1 1

p p

p pattr rev
vdp vdp   

T 

s 

2irr  

1 

2 

p p 1  

p p 2  
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pertanto il lavoro utilizzabile in un moto adiabatico con attrito è sempre maggiore di quello 
corrispondente al deflusso isoentropico.  

Tenuto conto della (2.26) la (2.32) assume la forma: 

   2 2

1 1

p p

attr attrp pattr rev
vdp vdp q E      [2.33] 

espressione che rispecchia quanto detto in precedenza. 
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3.  MOTO ADIABATICONEI CONDOTTI CILINDRICI 
 

3.1. L ’A T T R IT O  N E I F L U ID I COMPRIMIBILI. TEOREMA DI FANNO 

L ‟an alisi dim en sio n ale dim o stra ch e n el caso  di regim i di m o to  co m p letam ente svilup p ati il fatto re 
d‟attrito  dip en de in  generale dal n um ero  di R eyn o lds, dal n um ero  di M ach  e dall‟even tuale scab rezza 
relativa, nel caso  di co n do tti co n  p arete a co m p o rtam en to  n o n  liscio ; l‟esp erien za p erò  co n ferm a che 
per regimi subsonici, o al limite sonici, la dipendenza del fattore di attrito è trascurabile nei riguardi del 
numero di Mach di conseguenza per la determinazione del fattore stesso possono essere utilizzate con 
buona approssimazione le stesse correlazioni che riguardano il moto dei fluidi incomprimibili. 

D iversam en te accade n el regim e sup erso n ico  do ve il fatto re d‟attrito  dipen de da altri p aram etri, 
oltre a quelli sopra citati, e ciò trova spiegazione nel fatto che in tale regime non si può avere un moto 
completamente sviluppato in quanto la condizione M 1  può essere mantenuta per una lunghezza di 
condotto molto limitata oltre la quale ven go n o  a m an ifestarsi i fen o m en i d‟urto , co m e verrà illustrato  
p o co  p iù avan ti. In  tale circo stan za lo  sp azio  attraversato  dal fluido  rap p resen ta p er in tero  un a “regio ne 
di in gresso ” n ella quale il fatto re d‟attrito  risulta variab ile sezio n e per sezion e in  quanto dipende dal 
numero di Mach, dal numero di Reynolds locale Re( x ) , dallo spessore iniziale dello strato limite 
n o n ch é dal grado di turb o len za in iziale; co n seguen tem en te verreb b e anch e a cedere l‟ip o tesi di 
monodimensionalità del moto sicché le equazioni di bilancio precedentemente scritte non sarebbero più 
valide. Il fattore di attrito che viene utilizzato nel deflusso supersonico viene definito come un  fattore 
medio apparente che continua a soddisfare ancora le equazioni di bilancio nel deflusso monodimensionale 
ma molto difficilmente può essere determinato con considerazioni teoriche.  

Sp erim en talm en te si è visto  ch e i fatto ri d‟attrito  ch e si in co n tran o  n el regim e sup erso n ico  
risultano normalmente più bassi di quelli che si manifestano nel moto dei fluidi incomprimibili, in 
particolare nel caso di condotti a sezione circolare con pareti a comportamento liscio con riferimento ai 
campi di variazione: 

4  5

    10 d l 50 d    
2,5 10 Re 7 10
      1,2 M 3

 

   
 

 

è stato riscontrato che il fattore di attrito medio è compreso tra i valori: 
0,008 0,012   

ovvero si ottengono valori di   praticamente dimezzati rispetto a quelli ottenuti nel moto dei 
fluidi incomprimibili. 

P o ten do  allo ra esp rim ere gli effetti dell‟attrito  in  term in i di proprietà medie del fluido nella 
sezione considerata e secondo quanto già detto al §1.1 sull‟ip o tesi di m o n o dim en sio n alità del m o to  si 
faccia riferim en to  all‟equazio n e di b ilan cio  di energia m eccan ica n ella fo rm a differen z iale la quale 
trascuran do  l‟en ergia p o ten ziale del cam p o  gravitazio n ale, in  questo  caso  del tutto  in in fluen te, e sen za 
scam b i di lavo ro  co n  l‟estern o  si scrive: 

2
2w dpd w dx 0

2 2d



 

   
 

 

che può essere messa nella forma: 

2
dw dp dx 0
w w 2d




     [3.1] 

tale equazione nel caso di gas perfetto ed in funzione del numero di Mach si può ancora scrivere: 
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2
dw 1 dp dx 0
w kM p 2d


     [3.2] 

L ‟equazio n e differen ziale di b ilan cio  di m assa p er il caso  in  esame ha espressione: 
dw d 0
w




    [3.3] 

inoltre differenzian do  l‟equazio n e di stato  dei gas perfetti risulta: 
dp d dT
p T




    [3.4] 

di conseguenza la [3.3] diviene: 
dp dT dw 0
p T w
     [3.5] 

In o ltre dall‟esp ressio n e differen ziata del n um ero  di M ach : 
dM dw 1 dT
M w 2 T

   

combinata con la [2.21] si ottiene la variazione relativa della velocità: 

2

dw 1 dM
k 1w M1 M

2




  [3.6] 

mentre dalla [3.5] ed ancora attraverso la [2.21]risulta: 
2dp dw1 ( k 1)M

p w
      

e quindi per la [3.6] si ottiene: 
2

2

dp 1 ( k 1)M dM
k 1p M1 M

2

 



  [3.7] 

Sostituendo le  [3.6] e [3.7] nella [3.2] si scrive: 

2

2 2 2

1 1 ( k 1)M dM dx 0k 1 k 1 M 2d1 M kM 1 M
2 2


 
     

        

 

la quale, sommando dentro parentesi, assume la forma: 
2

3 2

1 Mdx dM
k 12d kM 1 M

2

 


  
 

  [3.8] 

Si faccia adesso  riferim en to  all‟equazio n e: 
dpTds dh


   

che combinata con la [1.24] scritta in forma differenziale: 
wdw dh 0   

diviene: 
Tds wdw dp    
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Ricavando la variazione relativa di pressione dalla (3.1) risulta: 
2dp wdw w dx

2d
    

e sostituendo nella precedente si ha: 
2wds dx

T 2d


  

ovvero in funzione del numero di Mach: 
2ds kRM dx

2d


  

e tenuto conto della [3.8] si p ervien e all‟esp ressio n e differen ziale della variazio n e di en tro p ia in 
funzione del solo numero di Mach: 

 2

2

R 1 M
ds dM

k 1M 1 M
2




  
 

  [3.9] 

da essa risulta che: 

M 1

s 0
M 

    
 

inoltre, come è semplice verificare, risultando anche: 
2

2
M 1

s 0
M



 
  

 

si deduce che lo stato di massima entropia si ha in corrispondenza del regime sonico. Integrando 
la [3.9] si ottiene: 

2k 1 k 1s R ln M ln 1 M C
2( k 1) 2

           
  [3.10] 

la quale assieme alla [1.28] consente di tracciare nel piano T, s le curve del deflusso adiabatico, 
dette linee di Fanno, più precisamente fissata una temperatura di ristagno 0T  si ottiene un fascio di curve 
ognuna delle quali è valevole per un dato numero di Mach e ciascuna di esse ha un limite, stato di 
massima entropia, in corrispondenza di M 1 ; ricavando dalla [1.28] il numero di Mach e sostituendo 
nella [3.10] si o ttien e l‟equazio n e di un a curva p er quel dato  n um ero  di M ach , o ssia: 

0 0T TR 2 k 1s ln 1 ln C
2 k 1 T k 1 T
          

  [3.11] 

inoltre essendo: 

 p 0w 2c T T    [3.12] 

si deduce che le linee a temperatura costante sono anche linee a velocità costante 
conseguentemente gli stati appartenenti al ramo superiore di ogni curva corrispondono a velocità 
subsoniche mentre gli stati corrispondenti al ramo inferiore delle curve suddette corrispondono a 
velocità supersoniche, Figura 13.  

Il verso di evoluzione del deflusso è quello indicato dalle frecce in  quan to  la p resen za dell‟attrito  
n o n  p uò  ch e causare un  aum en to  di en tro p ia e pertan to  se il m o to  è in izialm en te sub so n ico  l‟aum en to 
di entropia porta ad aumento della velocità, ovvero del numero di Mach, mentre se il moto è 
inizialmente supersonico si ha una diminuzione di velocità sicché in entrambi i casi la velocità del fluido 
tende al regime sonico.  
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Da queste considerazioni si può adesso enunciare il teorema fondamentale di Fanno, ovvero: nel 
deflusso adiabatico non isoentropico in un condotto cilindrico un moto subsonico non può mai divenire supersonico ed un 
m oto su person ico, in  assen za di on de d’u rto, n on  pu ò m ai diven ire su bson ico, lo stato lim ite com u n e è il regim e son ico. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                              Figura 13 
 

3.2. PARAMETRO LIMITE E GRADIENTE DI PRESSIONE 

Da quanto finora visto si può dire che facendo riferimento ad uno stato termodinamico in una 
certa sezione del condotto in corrispondenza della quale il numero di Mach è M esiste una lunghezza 
massima, valutata a partire dalla sezione medesima, alla fine della quale si ha M 1 . 

Tale lunghezza si può ottenere integrando la [3.8], ossia: 
max l 1 2

3 20 M

2(1 M ) dx   dM
k 1d kM 1 M

2

 


  
 

   

ch e fo rn isce l‟esp ressio n e: 
2

2
max

2
2

k 1 M l 1 M k 1 2ln k 1d kM 2k 1 M
2




 
 


  [3.13] 

la variabile adimensionale a primo membro prende il nome di parametro limite di attrito e come si 
può osservare essa è funzione del solo numero di Mach; pertanto dato il diametro del condotto ed il 
numero di Mach in una sezione nota il parametro di attrito consente di determinare la lunghezza l 
residua che si può assegnare al condotto affinché il moto avvenga adiabaticamente senza che si 
verifich in o  fen o m en i d‟urto , al lim ite p er maxl l  il numero di Mach allo sbocco assume valore unitario.  

Tale lunghezza è molto limitata infatti osservando la (3.13) per una velocità che al limite è 
infinitamente grande si può scrivere: 

max

M

l 1 k 1 k 1lim ln 1
d k 2 k 1


 

          
 

e quindi per k 1,4  ed un valore medio del fattore di attrito di 0,01 la lunghezza in 
corrispondenza della quale si raggiunge il regime sonico vale: 

maxl 82d  

maxs  

M 1  

M 1  

T  

s  
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La lunghezza tra due sezioni del condotto, Figura 14, in corrispondenza delle quali i numeri di 
Mach sono, rispettivamente, 1M  e 2M  si può ottenere calcolando dapprima le lunghezze limiti 
 

1
max M

l  e  
2

max M
l  attraverso la [3.13] e p oi dall‟esp ressio n e: 

   
1 2

12 max maxM M
l l l    [3.14] 

 
 
 
 
 
 
 
 
 
 
 
                                                              Figura 14 
 

       viceversa dato il numero di Mach 1M  la [3.14] consente di determinare il numero di Mach 
incognito allo sbocco. 

Sostituendo la [2.21] nella [3.5] si ricava la variazione relativa di velocità:  

2
dw 1 dp
w (1 k )M 1 p

 
   

 

e quindi tenuto conto che:  
2

2w kM
p


   [3.15] 

la (3.1) si scrive: 

   
2

2
2

kM dp1 w 0
(1 k )M 1 dx 2d

 
 

     
 

dalla quale si ricava: 
2

2
2

dp 1 ( k 1)M w
dx M 1 2d

 
  

   
  [3.16] 

e pertanto risulta: 
dp 0             M 1
dx
dp 0             M 1
dx

 

 
 

sicché si ha una perdita di pressione nel regime subsonico. Si osserva inoltre che per M 1  dalla 
[3.16] si ottiene: 

2dp w
dx 2d

   

ovvero il gradiente di pressione che si manifesta nei fluidi incomprimibili. 

1M  2M  M 1   

 
1

max Ml  
 

2
max Ml  

12l  
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3.3. STATO TERMODINAMICO DI RIFERIMENTO 

Anche per il deflusso adiabatico nei condotti cilindrici viene considerato come stato di 
riferimento quello corrispondente alla condizione M 1 , dove si è visto che il fluido raggiunge la 
massima entropia, ma a differenza dello stato critico isoentropico la condizione suddetta viene 
raggiunta in modo irreversibile e pertanto delle equazioni scritte il precedenza restano valide solo la 
[1.28] e la [1.36], ovvero la prima delle [1.39], quest‟ultim a vien e in  tal caso co n siderata co m e quella 
temperatura caratteristica dello stato critico adiabatico. 

Se si considera un processo adiabatico che parte da uno stato locale ( p,T , ,w )  fino a 
raggiungere lo stato di massima entropia c c c c( p ,T , ,w )  l‟equazio ne di co n tin uità si scrive: 

c cw w   
ossia anche: 

 
1/ 2

c
c cc

w M kRT TM
w TkRT
  

 
    

 
 

e quindi per la prima delle [1.39] si ottiene: 
1/ 2

2
c

2 k 1M M
k 1 k 1

 
     

  [3.17] 

In o ltre ten uto  co n to  dell‟equazio n e di stato  si p uò  scrivere: 
c

c c

p p
T T 
  

sicché: 

c c
c

Tp p
T




     
  

 

e tenuto conto della [3.17] e tramite la prima delle [1.39] si p ervien e all‟esp ressio n e: 
1/ 2

2
c

2 k 1p pM M
k 1 k 1

     
  [3.18] 

A n co ra dall‟equazio ne di co n tin uità risulta: 

c
c

ww 


  

e tramite la [3.17] si ha: 
1/ 2

2
c

w 2 k 1w M
M k 1 k 1

     
  [3.19] 

la quale unitamente alle [3.17], [3.18] e la prima delle [1.39] definiscono lo stato critico adiabatico 
ovvero lo stato di massima entropia. 

Nella  Figura 15 è rappresentato il processo i cui estremi sono gli stati sopra menzionati, in tal 
caso  in  co rrisp o n den za dell‟iso en tro p ica maxs s  si può scrivere: 

k
k 1

0 c
k 1p p

2
   

 
 

m en tre lun go  l‟iso en tro p ica ap p artenen te allo  stato lo cale vale la [1.29] e dal rapporto di queste 
pressioni di ristagno si ha: 

k
k 120

0 c

p p 2 k 1 M
p p k 1 k 1

      
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la quale tramite la [3.18] assume la forma: 
k 1

2( k 1 )20

0

p 1 2 k 1 M
p M k 1 k 1


      

  [3.20] 

che fornisce il rapporto tra la pressione di ristagno relativa allo stato locale e quella che si ha nello 
stato critico adiabatico. 
 
 
 
 
 
 
 
 
 
 
  
 
                                                                         Figura 15 
 
L ‟aum en to  di en tro p ia n ella suddetta trasfo rm azio n e vale: 

1 k
k

c c
p

T ps c ln
T p





 
  

 
 

d ‟altra p arte lun go  l‟iso en tro p ica lo cale e quella critica si p uò  scrivere risp ettiv amente: 
1 k 1 k

k k
o o

1 k 1 k
k k

c c o o

Tp T p

T p T p

 

 





 

e dal rapporto di ambo i membri ne risulta: 
k 1 k 1

k k
c o

c o

T pp
T p p

 

   
      

 

e p ertan to  l‟aum en to  di entro p ia si p uò  scrivere n ella fo rm a: 
k 1

k
o o

p
o o

p ps c ln Rln
p p





 
    

  [3.21] 

ovvero in funzione del rapporto tra la pressione di ristagno locale e quella appartenente allo stato 
di massima entropia. 

Si può dire che lo stato critico adiabatico è adesso definito in modo completo in quanto oltre alle 
equazioni precedenti la [3.21] fornisce il valore della massima entropia a partire da condizioni locali 
note. 

3.4. FUNZIONAMENTO DEI CONDOTTI MISTI 

Lo studio del moto in ugelli e diffusori è stato trattato separatamente da quello nei condotti 
cilindrici in quanto benché in entrambi i casi il deflusso è adiabatico si è visto che solo nel primo caso è 
possibile, alm en o  in  p rim a ap p ro ssim azio n e, trascurare gli effetti dell‟attrito .  

  p 

 s maxs  

 T 

 s 

oT T  op  op 

cp  

ZEqnNum606960
ZEqnNum332808


FISICA TECNICA INDUSTRIALE –  VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 39 

Viene adesso preso in esame lo studio del moto adiabatico in un condotto cilindrico collegato a 
m o n te ad un  ugello , questo  deflusso  si p uò  defin ire “misto” sia p er geo m etria ch e p er comportamento 
fisico  del fluido  in  quan to se n el co n do tto  cilin drico  vale il teo rem a di F an no  n ell‟ugello  vale quello  di 
Hugoniot.  

Questo studio viene affrontato in maniera ancor più sintetica di quello fatto per gli ugelli sia 
p erch é i fen o m en i d‟urto , p rincipali responsabili del comportamento del fluido, non vengono qui presi 
in considerazione ed anche per gli aspetti più complessi che questo deflusso combinato comporta per il 
quale si rim an da il letto re ai trattati sp ecifici sull‟argo m en to .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
                                                                 Figura 16 
 

1.1.4. CONDOTTO ALIMENTATO DA UN CONVERGENTE 
Nella Figura 16 il condotto è collegato, attraverso un ugello convergente, a monte ad un serbatoio 

con pressione e temperatura di ristagno note ed a valle ad un ambiente la cui pressione sp  viene fatta 
d ecrescere co n  co n tin uità a p artire dal valo re della p ressio n e di ristagn o  a m o n te. N ell‟ugello  il m o to  è 
isoentropico mentre nel tratto cilindrico il deflusso è adiabatico con attrito. 

Facendo riferimento al diagramma delle pressioni sottostante alla figura si osserva che se la 
p ressio n e n el serb ato io  a valle è uguale a quella di ristagn o  a m o n te n o n  c‟è m o vim en to , curva a, mentre 
per valori via via decrescenti di sp  rispetto alla 0p , curve b e c, si realizza il deflusso in regime 
subsonico e nella sezione di uscita si ha 2M 1 ; ad ogni diminuzione di sp  si verifica un incremento 
del numero di Mach e quindi un accrescimento della portata fino a che quando la pressione sp  
raggiunge il valore critico, curva d, nella sezione di uscita si ha 2M 1  e la portata ha valore massimo 
così come in corrispondenza della sezione di imbocco del tratto cilindrico anche il numero di Mach 
raggiunge un valore massimo.  

Per valori di sp  minori della cp , curva e, non si manifesta alcuna variazione della portata che 
rimane uguale al suo valore massimo corrispondente a 2M 1  anche perché per il teorema di Fanno il 
numero di Mach in tale sezione non può superare il valore unitario.  

c
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p
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P ertan to  il deflusso  all‟in tern o  del co n do tto rimane inalterato ma oltre la sezione di uscita il fluido 
sub isce delle o n de di esp an sio n e p er p o i raggiun gere p iù a valle l‟adeguam en to  alla p ressio n e sp . 

1.1.5. CONDOTTO ALIMENTATO DA UN CONVERGENTE - DIVERGENTE 
Il condotto cilindrico viene collegato al serbatoio di monte con un ugello convergente - 

divergente ed anche qui lo stato di ristagno nel serbatoio è noto così come può essere fatta variare la 
p ressio n e dell‟am b ien te risp etto  alla p ressio n e di ristagn o  del serb ato io ; è eviden te che in questo caso si 
deve necessariamente ammettere che nel divergente il moto sia isoentropicamente supersonico 
altrimenti, per quanto è già noto, si ricadrebbe nel caso precedente.  

P er studiare l‟in fluen za della p ressio n e sp  sul deflusso di possono distinguere tre casi a seconda 
che la lunghezza reale del condotto è minore, uguale o maggiore di quella massima compatibile con lo 
stato fisico iniziale fissato nella sezione di ingresso del tratto cilindrico, come è rappresentato nella  
Figura 17, nella quale la sezione intermedia rappresenta la maxl  calcolata in corrispondenza del numero 
di Mach nella sezione iniziale del condotto cilindrico. 
 -  

1
max M

l l  in questo primo caso la sezione di sbocco è la 2 2   allora per s cp p  il moto è 

interamente supersonico nel condotto e solo nella sezione di uscita si ha 2M 1 , curva e, mentre 
se s cp p  si ha ancora 2M 1  ma il fluido subisce delle onde di espansione e solo più a valle si 
h a l‟adeguam en to  alla p ressio n e sp , curva g; se s cp p  si ha 2M 1  m a un ‟o n da d‟urto  n o rm ale 
si viene a formare nel condotto, curva d, in dipendenza del valore di sp  e tale onda si sposta 
verso  m o n te all‟aum en tare di sp . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                Figura 17 

 -  
1

max M
l l  in questo secondo caso la sezione di sbocco è la 2 2  in corrispondenza della 

quale, calcolata la pressione con le equazioni di Fanno, si ha che 2 cp p  per cui il moto nel 
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co n do tto  è sup erso n ico  sen za o n de d‟urto  o vvero  se s 2 cp p p   si ha la curva m mentre se 

s 2 cp p p   si hanno onde di espansione, curva n, e quin di l‟adeguam en to  alla p ressio n e sp  più 
a valle, per una particolare pressione s 2p p  si viene a fo rm are un ‟o n da d‟urto  n ella sezio n e di 
sbocco, curva c. 

 -  
1

max M
l l  in  quest‟ultim o  caso  la sezio n e di sb o cco  è la 2 2   e il fluido subisce sempre 

un ‟o n da d‟urto  all‟in tern o del co n do tto  e p iù p recisam en te se s cp p  si ha 2M 1  e quindi la 
sezio n e del co n do tto  n ella quale si fo rm a l‟o n da d‟urto  dip en de dalla sp , curva a ; per s cp p , 
curva f , si ha 2M 1  e tale valore vale anche per s cp p  anche se il fluido subisce onde 
oblique di espansione, curva h, e so lo  p iù a valle si ha l‟adeguam en to  alla p ressio n e sp . 

Si osserva che man mano che la lunghezza del condotto cilindrico viene incrementata a partire da 
 

1
max M

l l‟o n da d‟urto  n o rm ale si sp o sta verso  m o n te fin o  a fo rm arsi n ella sezio n e 1 1  di conseguenza 

il moto in tutto il condotto è interamente subsonico ed in corrispondenza della sezione finale si 
raggiunge il regime sonico. 
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4.  MOTO ISOTERMO NEI CONDOTTI CILINDRICI 
 

4.1. PERDITE DI PRESSIONE E PORTATA DI MASSA 

Si è detto inizialmente che nel caso di comprimibilità la velocità del fluido anche per condotto a 
sezione costante varia per effetto dei cambiamenti di densità e pertanto non si annulla la variazione di 
energia cinetica. Tuttavia se il fluido viaggia di regime laminare stazionario le basse velocità fanno si che 
le variazioni suddette si possono ritenere praticamente trascurabili ai fini del bilancio di energia 
meccanica. Si può p ervenire ad un ‟esp ressio n e del gradien te di p ressio n e in  tale regim e p arten do  dal 
gradiente di pressione per un fluido incomprimibile per il quale, come è noto, nel caso di un condotto 
cilindrico a sezione circolare vale la relazione: 

2
p 32 w

l d
 

   [4.1] 

che messa in funzione della portata di massa diviene: 

4
p 128 m

l   d
 

 
   [4.2] 

Questa equazione per un fluido comprimibile deve essere necessariamente scritta per un tronco 
di condotto di lunghezza elementare dx, ossia: 

4
dp 128 m
dx   d


 

   

che nel caso del gas perfetto si scrive: 

4
dp 128 RT  m
dx  d p




   

sicché integrando su tutto il tronco di lunghezza l si ha: 
2 2
1 2

4
p p 128  m l RT

2  d







 

ovvero anche: 
1 2

4
p p 128  m lp RT

2  d







  [4.3] 

d ‟altra p arte se la tem p eratura del gas è co stan te n elle due sezio n i estrem e si può scrivere: 
1 1 2 2p RT             p RT    

quindi dalla semisomma risulta: 
1 2 1 2

m
p p RT RT

2 2
   

   

e sostituendo nella [4.3] si ottiene: 

4
m

p 128  m
l   d
 

 



   [4.4] 

relazione analoga alla [4.2] pertanto il gradiente di pressione di un gas perfetto in regime laminare 
stazionario si può ottenere dal corrispondente gradiente di pressione di un fluido incomprimibile 
adottando per la densità il valore medio delle densità nelle sezioni estreme del condotto. 

In regime turbolento le variazioni di velocità conseguenti alle diminuzioni di pressione sono 
so ven te p iutto sto  rilevan ti p er cui n ell‟equazio n e di b ilan cio  di en ergia devo n o  essere co m p utate le 
variazioni di energia cinetica anche se, co m e si avrà m o do  di vedere, l‟app ro ssim azio n e fatta p er il 
regime laminare può in qualche caso valere anche in tale regime. 
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Se la tem p eratura è co stante l‟equazio n e [3.3] diviene: 
dp d
p




  

e dal confronto con la [3.4] risulta: 
dw dp
w p
  

sicché la  [3.1] assume la forma: 

 2
dp dp dx 0
p w 2d




      [4.5] 

Se lo stato fisico iniziale del fluido è caratterizzato dai valori  1 1 1, p ,w  l‟equazio n e di b ilan cio 
di massa è data da: 

1 1w w   

e quindi scrivendo: 
   2

1 1w w w w w     

e ten uto  co n to  dell‟equazio n e di stato  risulta an ch e: 
2  2

 2 2  21 1
1 1

w RTw w
p

 


   

p ertan to  l‟equazio ne  [4.5] si scrive: 

 2  2
1 1

dp p dp dx 0
p RT w 2d




      [4.6] 

Se si ammette che  f Re   ed essendo in tale deflusso cost.   risulta che: 
wdRe cos t.


   

di conseguenza è anche cos t.   e quindi integrando la  [4.6] si ottiene: 

2 2 2  2 1
1 2 1 1

2

l pp p 2RT w ln
d p

 

   
 

  [4.7] 

che può essere scritta nella forma: 

2  2 1
1 1

1 2 2

2RT l pp w ln
p p d p

 
 

    
  [4.8] 

Si osserva che il logaritmo del rapporto delle pressioni estreme è ampiamente trascurabile quando 
il condotto non sia troppo breve; ad esempio per 0,03   e se 1 2p 2p , che in pratica è un rapporto 
estremamente elevato, in un condotto lungo circa 2000 diametri si avrebbe: 

1

2

l p30              ln ln2 0,69
d p

    

ovvero per le condizioni suddette, abbastanza svantaggiose, il termine logaritmico è circa 45 volte 
più piccolo del precedente e quindi praticamente trascurabile; questo significa che la variazione di 
energia cinetica dovuta alle variazioni di densità risulta trascurabile rispetto a quella dissipata per effetto 
d ell‟attrito  sicch é la [4.8] diviene: 
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2  2
1 1

1 2

2RT lp w
p p 2d

 


 

ch e tram ite l‟equazio n e di stato  p uò  essere an ch e scritta: 

 2
1 1

2

1

p 2 w
pl d 21
p

  
 
 
 
  
 

  [4.9] 

espressione che fornisce il gradiente di pressione per il deflusso isotermo il quale può essere 
determinato come se il fluido fosse incomprimibile partendo dai valori iniziali di densità e velocità 
correggendo poi con il fattore in parentesi che a sua volta, essendo 1 2p p , è sempre maggiore 
d ell‟un ità. Si p uò  quin di afferm are ch e: 

T cost cost

p p
l l 

 

 

      
   

 

ossia la resistenza effettivamente incontrata dalla corrente fluida è maggiore di quella che si 
avrebbe se il fluido fosse incomprimibile ed avente una densità è pari a quella del gas in corrispondenza 
della sezio n e in iziale del co n do tto ; d‟altra parte se si p en sa ch e n el m o to  turbolento la resistenza che 
incontra il fluido è proporzionale al prodotto 2w  e tenuto conto che w cos t.   tale resistenza 
cresce al crescere di w  ossia al diminuire della densità, ciò che subisce il fluido durante il deflusso. 

Si faccia riferim en to  all‟equazio n e [4.7] la quale tram ite l‟equazio n e di stato del gas p uò  essere 
scritta: 

2 2 1
1 2

2

m l pp p RT 2ln
A d p

      
  


 

ovvero anche: 
2

2 2 1
1

1 2

p m l pp 1 RT 2ln
p A d p

            
      


 

si può dunque ricavare la portata di massa specifica: 
2

2

11

1

2

p1
pm p

l pA RT 2ln
d p


 
 
 



  [4.10] 

ovvero la determinazione della portata di massa note che siano le pressioni nelle sezioni estreme, 
o quantomeno il valore del loro rapporto, in un condotto di dato diametro; nei casi in cui si può 
trascurare il termine logaritmico, come visto  in  p receden za, si o ttien e l‟esp ressio n e sem p lificata: 

2

1 2

1

m p d p1
A l pRT 

  
   
   


  [4.11] 

dalla quale o anche dalla [4.10], sempre che siano note le pressioni suddette, si può determinare 
quale diametro deve avere il condotto che deve convogliare una data portata di massa m. 
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4.2. PARAMETRO LIMITE. STATO CRITICO 

Il gradiente di pressione può essere anche scritto in funzione del numero di Mach se si considera 
ch e l‟equazio n e  [4.5] può essere messa nella forma: 

 2
 2w dp1 w 0

p dx 2d
  

 
   

 
 

e tenuto conto della  [3.15] la precedente diviene: 
 2

2
dp 1 w
dx kM 1 2d

    
  [4.12] 

dalla quale si osserva che in corrispondenza del valore: 
 1M

k
    [4.13] 

si ha che dp    facendo cadere in difetto la [4.12]; la [4.13] rappresenta lo stato critico isotermo in 
corrispondenza del quale il regime isotermo può essere mantenuto solo teoricamente ma in pratica tale 
regime sarebbe impossibile da realizzare.  

Si h a allo ra un ‟effettiva p erdita di p ressio n e so lo  p er valo ri di M ach  in ferio ri al valo re critico , 
ovvero risulta: 

1 dpM              0
dxk

    [4.14] 

m en tre p er M ach  sup erio ri al valo re critico  si h a l‟inversio n e del gradien te di pressio n e, o ssia: 
1 dpM              0

dxk
    [4.15] 

Si scriva l‟equazio n e [4.7] partendo da condizioni iniziali note e facendo riferimento ad una 
sezione generica del condotto di ascissa x, per cui: 

  2 2  2 1
1 1 1 1

x pp p p w 2ln
d p

 

   
 

 

ovvero anche: 
2  2

1 1 1

1 1

p w x p1 2ln
p p d p

    
     

  
 

quindi ordinando e scrivendo la suddetta relazione in funzione del numero di Mach si può 
scrivere: 

2

2
1 1 1

x 1 p p1 2 ln
d kM p p
   

    
   

  [4.16] 

La (4.16) è rappresentata nel diagramma di  Figura 18 dalle linee a tratto continuo ognuna delle 
quali è determ in ata p er un  dato  n um ero  di M ach  in iziale e fo rn isco n o  l‟an dam en to  della p ressio n e 
p p( x )  lungo il condotto; le linee a tratto e punto forniscono l‟an dam en to della p ressio n e p er fluido  

incomprimibile, in tal caso infatti si avrebbe: 
 2

1 1
1

x wp p
d 2
 

   

ovvero in funzione del numero di Mach: 
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2
1 1

x 1 p1
d kM p
  
  

 
  [4.17] 

ch e rap p resen ta l‟equazion e delle so p rain dicate rette o tten ute al variare di 1M . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                Figura 18 
 
Come si può osservare il diagramma mette in evidenza ciò che del resto è già stato dimostrato 

ovvero che la pressione diminuisce più rapidamente per il fluidi comprimibili e gli scostamenti sono 
tanto maggiori quanto maggiore è il numero di Mach iniziale. Fissata la portata m e la pressione iniziale 

1p  restano anche determinati il valore di 1M  ovvero la curva caratteristica della corrente fluida; noti 
allora la lunghezza e il diametro del condotto si può leggere sulla curva suddetta il valore del rapporto 

1

p
p

 e quin di, n o to  il fatto re d‟attrito , ricavare la differen za di p ressio n e n ecessaria affin ch é il co n do tto  

possa convogliare la portata assegnata. 
Si può altresì osservare che tutte le curve del suddetto diagramma presentano un punto a 

tangente verticale il quale rappresenta il punto rappresentativo dello stato critico, ciò significa che se la 

lunghezza del condotto è tale che il termine x
d
  sup era l‟ascissa in  quel p un to  è im p o ssib ile ch e il 

condotto possa convogliare la portata assegnata qualunque sia il rapporto delle pressioni nelle sezioni 
estreme; può al massimo essere convogliata quella portata cui corrisponde un numero di Mach iniziale 

tale che la curva rappresentativa abbia tangente verticale proprio nel punto di ascissa l
d
 .  Scrivendo la 

[4.5]  in funzione del numero di Mach si ha: 

2
dp dp dx 0
p kpM 2d


     

quindi ordinando: 

2
1 dpdx 1

2d kM p
    

 
   [4.18] 

e tenuto conto che, per quanto visto in precedenza per la velocità, si può anche scrivere: 

 0 

x
d
  

1

p
p
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dp dM
p M
   [4.19] 

la precedente assume la forma: 

2
1 dMdx 2 1

d kM M
    

 
  [4.20] 

e quindi integrando si ha: 
max l  1/ k  1/ k  1/ k

3
2

 0  M  M  M

1 dM 2 dMdx 2 1 M dM 2
d kM M k M
      

      

dalla quale si ottiene: 
2

2max
2

l 1 kM ln  ( kM )
d kM
 

    [4.21] 

dove il termine a primo membro rappresenta il parametro limite di attrito per il deflusso isotermo 
e la maxl  rappresenta la massima lunghezza di condotto lungo il quale il moto, a partire da una sezione 
di assegnato numero di Mach, si mantenga isotermo senza che si verifichino fenomeni di discontinuità 
nella sezione considerata. 

 
 
 
 
 
 
 
 
 
 
 
                                                                 Figura 19 
 
La  Figura 19 è analoga alla  fig. 3.2, fatta eccezione per il numero di Mach critico, e dalla quale è 

possibile dunque determinare la lunghezza di condotto necessaria affinché il moto passi dalla sezione 
con 1M  alla sezione con 2M  mantenendo il regime isotermo e senza che si verifichino fenomeni 
d ‟urto ; vale an co ra l‟equazio n e [3.14] dove però le massime lunghezze relative ai corrispondenti numeri 
di Mach vengono determinate tramite la [4.21]. 

Si può adesso determinare il rapporto di pressione corrispondente allo stato critico integrando la 
[4.19], ossia: 

1 1

p 1/ k

p M

dp dM
p M



   

dalla quale si ottiene: 

1
1

p M k
p



    [4.22] 

pertanto la [4.16] in corrispondenza dello stato critico diviene: 
max

1 2
1

l 12ln( M k ) 1
d kM


     [4.23] 

12l  

1M  2M  1M
k

   

 
1

max Ml  
 

2
max Ml  
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dalla quale risolvendo per tentativi si ottiene il valore del numero di Mach iniziale che darebbe 
luogo alla massima portata di fluido che il condotto può convogliare sostituendo tale valore 
n ell‟esp ressio n e: 

1
max 1 1 1 1

1

kpm Aw AM 


   

che può essere scritta in funzione della temperatura: 

1
max 1

1

k pm AM
R T

   [4.24] 

tale valore, a differenza della portata massima che si realizza nel deflusso isoentropico, ha solo un 
significato teorico ma non ha alcuna applicazione pratica in quanto, come verrà precisato qui di seguito, 
lo stato critico isotermo non può essere realizzato praticamente.  

4.3. CONDIZIONE DI ISOTERMICITÀ 

Si faccia riferimento alla [1.28] la quale differenziata diviene: 
0dT T( k 1)MdM   

ovvero in termini di variazione relativa si scrive: 
0

0
2

dT k 1 dM
1 k 1T M

M 2





 

e quindi per la [4.20] si p ervien e all‟esp ressio n e: 

 

2
0

20
2

dT k( k 1)M dx
2T dk 1 1 KM

M



    
 

  [4.25] 

la quale assieme alla [4.18] nonché alle già note relazioni: 
dp d dM dw
p M w




    

consente di stabilire il verso di variazione, lungo il deflusso isotermo, delle grandezze dinamiche e 
termiche che lo caratterizzano, risulta infatti: 

0 0

dp 0 dp 0
d 0 d 01 1M                              M        
dw 0 dw 0k k
dT 0 dT 0

 
    

               
       

  [4.26] 

pertanto la [4.13] rappresenta il limite a cui tende il numero di Mach sia partendo da condizioni 
sub so n ich e ch e sup erso n ich e, escluden do  in  questo  seco n do  caso  fen o m en i d‟urto . In o ltre 
differenziando la [1.24] si può scrivere: 

2

0 p 0
wdQ d h dh c dT
2

 
    
 

 

e pertanto, tenendo presenti le condizioni [4.23], si avrebbe: 
1M                 dQ 0
k

   
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ciò  sign ifica ch e l‟attrito  p ro vo ca un a dim in uzio n e di tem p eratura di co n seguen za affin ch é il 
m o to  si m an ten ga iso term o  è n ecessaria un a so m m in istrazio n e di calo re dall‟am b ien te al fluido  e finché 
si verifica tale co n dizio ne l‟ap p o rto  di calo re com p en sa effettivam en te il raffreddam en to  del fluido  
mantenendone costante la temperatura. Mentre se si ha: 

1M                 dQ 0
k

   

in tal caso occorrerebbe sottrarre calore al fluido per mantenere il moto isotermo in quanto 
l‟attrito  causa un aum en to  della tem p eratura; in pratica p erò  questa situazio n e n o n  è realizzab ile in 
quanto è tecnicamente impossibile effettuare uno scambio termico convettivo talmente intenso che 
p o ssa co m p en sare l‟effetto  d ell‟attrito .  

Infine: 
1M                 dQ 0
k

   

in  tale circo stan za l‟ap p orto  o  la so ttrazio n e di calo re n o n  in fluen za la tem p eratura la quale in  
questa circostanza limite rimarrebbe costante, anche questa situazione è solo teorica ma di impossibile 
realizzazione pratica. 

Si conclude che il deflusso isotermo di un gas lungo un condotto cilindrico può essere realizzato 
solo per numeri di Mach sufficientemente lontani dal valore critico e lungo condotti con pareti molto 
trasmittenti perché solo a tale condizio ne l‟azio ne dell‟attrito  risulta co n co m itan te ad un o scam b io  
term ico  co n  l‟estern o  di en tità tale da m an ten ere costan te la tem p eratura per l‟in tera durata del deflusso , 
pertanto lo stato critico sopra definito nonché il valore della portata corrispondente determinato con la  
[4.25] hanno solo un significato teorico. 
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5.  MOTO CON SCAMBIO TERMICO NEI CONDOTTI CILINDRICI 

5.1. DEFLUSSO DI RAYLEIGH 

Si tratta di un moto a regime stazionario, internamente reversibile lungo un condotto cilindrico 
che si realizza mediante scambio di calore e senza scambi meccanici; oltre ai fenomeni dissipativi, con 
riferim en to  p rin cip ale o vviam en te all‟attrito , vien e an ch e trascurata la variazio n e di en ergia p o ten ziale 
del fluido. 

Per lo studio di questo tipo di deflusso oltre alle equazioni di bilancio di massa ed energia 
preceden tem en te utilizzate è n ecessario  fare riferim en to  all‟equazio n e di b ilan cio  di quan tità di m o to  
che nel caso in esame deve essere scritta nella forma:  

2p  w cos t   [5.1] 

Viene qui preso in esame solo il caso più semplice ossia che la somministrazione di energia 
term ica ven ga effettuata dall‟estern o , co m e è illustrato  n ella fig.5.1, escludendo il caso in cui vi siano 
so rgen ti term ich e all‟in tern o  del co n do tto  do vuti a fen o m en i di co m b ustio n e. 

 
 
 
 
 
 
 
 
 
 
 
 
A p p lican do  l‟equazio ne (5.1) alle sezioni estreme del tronco di condotto si può scrivere: 

2 2
1 1 1 2 2 2p w p w     

ed essendo: 
2 2w kpM   

l‟eguaglian za p receden te divien e: 

   2 2
1 1 2 2p 1 kM p 1 kM    

ovvero anche: 
2

1 2
2

2 1

p 1 kM
p 1 kM





   [5.2]  

espressione che collega le pressioni locali nelle sezioni di ingresso e di uscita ai corrispondenti 
numeri di Mach.  

Le pressioni di ristagno 01p , a monte della somministrazione di calore, e 02p , a valle, vanno 
ricavate sup p o n en do  ch e il fluido  n ell‟arrestarsi, in  co rrisp o n den za delle sezio n i m edesim e, n o n  ab b ia 
m o do  di scam b iare calo re ed il p ro cesso  sia reversib ile; p ertan to  l‟equazio n e (1.29) deve essere applicata 
sia nella sezione iniziale che in quella finale, si deve dunque scrivere: 

   figura  5.1 

1 

1 
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1
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1
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k 
k 1201

1
1

k 
k 1202

2
2

p k 11 M
p 2

p k 11 M
p 2





   
 

   
 

 

inoltre dividendo membro a membro: 

 

k 
k 12

2
02 2

201 1
1

k 11 Mp p 2
k 1p p 1 M

2

  
   

 

  [5.3]  

e tenuto conto della (5.2) risulta: 
k 

k 12
2 2

02 1
2

201 2
1

k 11 Mp 1 kM 2
k 1p 1 kM 1 M

2

  
    

 

  [5.4]  

la quale fornisce il rapporto tra le pressioni di ristagno 02p  e 01p , rapporto che è diverso 
d all‟un ità e varia al variare dei n um eri di M ach locali; è evidente, per quanto si è detto in precedenza, 
ch e tale rap p o rto  divien e un itario  se la co rren te fluida n o n  scam b ia calo re co n  l‟estern o . P ertan to  le 
grandezze di ristagno che nel moto isoentropico costituiscono un stato termodinamico fisso nel 
deflusso di Rayleigh esse variano al variare dello stato termodinamico locale. 

Nel deflusso isoentropico di Hugoniot così come in quello adiabatico di Fanno lo stato di 
riferimento è quello che corrisponde al regime sonico, anche in questo caso torna opportuno scegliere 
come riferimento la condizione M 1  che viene raggiunta reversibilmente ma con aumento di 
entropia, come si potrà vedere poco più avanti osservando la linea di Rayleigh.  

Considerando uno stato locale generico la (5.2) diviene: 

2
p 1 k
p 1 kM





   [5.5]  

che fornisce il rapporto tra la pressione p in una sezione qualsiasi del condotto e la pressione p  
che si ha in quella sezione dove risulta M 1 . 

Se 0p  è la pressione di ristagno corrispondente alla pe 0p  è quella corrispondente ad uno stato 
di ristagno in una sezione generica la (5.4) assume la forma: 

k 
k 120

2
0

p 1 k 2 k 1 M
p 1 kM k 1 k 1





       
  [5.6]  

ossia il rapporto tra la pressione di ristagno locale e quella di riferimento corrispondente. 
P er quan to  riguarda la tem p eratura di ristagn o  vale anco ra l‟equazio n e (1.28) in quanto è da 

supporre che n ell‟arresto  il fluido  sub isca un a trasfo rm azio n e adiab atica essa p erò  varia sezio n e p er 
sezio n e, seco n do  l‟equazio n e (1.27), e pertanto si deve scrivere: 

201
1

1

202
2

2

T k 11 M
T 2
T k 11 M
T 2


 


 

  

e quindi facendo il rapporto dei membri: 
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2
2

02 2

201 1
1

k 11 MT T 2
k 1T T 1 M

2

  
   

 

  [5.7]  

D all‟equazio n e di stato  app licata alle sezio n i 1 e 2 si p uò  scrivere l‟eguaglian za: 
1 2

1 1 2 2

p p
T T 
  

dalla quale si ricava il rapporto tra le temperature: 
2 2 1

1 1 2

T p
T p




  

in o ltre dall‟equazio n e di b ilan cio  di m assa, in  fun zion e del n um ero  di M ach , deve essere: 
1/ 2

2 21 2 2 2

2 1 1 11 1

M kRTw M T
w M TM kRT




 
    

 
  [5.8]  

sostituendo tale rapporto nella precedente risulta: 

  
2 2

2 2 2

1 1 1

T M p
T M p

   
   
   

 

e tenendo conto della (5.2) si può ancora scrivere: 
2 22

2 2 1
2

1 1 2

T M 1 kM
T M 1 kM

   
      

  [5.9] 

pertanto la (5.7) assume la forma: 

 
 

 22 2
2 2 102

2
201 1 2
1

k 11 M M 1 kMT 2  k 1T M 1 kM1 M
2

  
 

    
  [5.10]  

si ottiene dunque il rapporto tra le pressioni di ristagno relative agli stati locali delle sezioni 1 e 2 
in funzione dei numeri di Mach corrispondenti.  

Se adesso si considera una generica sezione del condotto il rapporto tra la temperatura locale e 
quella di riferimento corrispondente risulta dalla (5.9): 

 
 

22

22

M 1 kT
T 1 kM






  [5.11]  

mentre il rapporto tra la temperatura di ristagno locale e quella di riferimento corrispondente si 
ottien e dall‟equazio ne (5.10): 

 

 

2 2

0
22

0

k 12M k 1 1 M
T 2
T 1 kM


   
 


  [5.12] 

In maniera analoga si può determinare il rapporto tra le densità locali, infatti facendo riferimento 
alla (5.8) si può scrivere: 

1/ 2

2 1 2

1 2 1

M T
M T





 

  
 

 



FISICA TECNICA INDUSTRIALE –  VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 53 

e quindi per la (5.9) risulta: 
22

2 2 1
2

1 1 2

1 kM M
1 kM M




 
    

  [5.13]  

allora scrivendo la (1.33) in corrispondenza degli stati 1 e 2 si ha: 
1 

k 1201
1

1
1 

k 1202
2

2

k 11 M
2

k 11 M
2











   
 

   
 

 

ovvero facendo il rapporto dei membri: 
1 

k 12
2

02 2

201 1
1

k 11 M
2

k 11 M
2

 
 

  
   

 

 

e quindi per la (5.13) si ottiene il rapporto tra le densità locali di ristagno in funzione dei soli 
numeri di Mach corrispondenti: 

1 
k 1222 2

02 2 1
2

201 1 2
1

k 11 M1 kM M 2
k 11 kM M 1 M

2




   
        

 

  [5.14]  

inoltre considerando uno stato locale e quello di riferimento si può scrivere, tramite la (5.13) il 
rapporto: 

 
2

2
1 kM
1 k M








  [5.15]  

mentre il rapporto tra le corrispondenti grandezze di ristagno si ottiene dalla (5.14), ovvero: 

 

1 2 k 120
2

0

1 kM 2 k 1 M
1 k M k 1 k 1








       
  [5.16]  

Anche la variazione di entropia tra gli stati 1 e 2 può essere espressa in funzione dei numeri di 
Mach corrispondenti, infatti essendo: 

k 1
k

2 1
2 1 p

1 2

T ps s c ln
T p



 
   

 
 

tramite le (5.2) e (5.9) si ottiene: 
k 12 2 k

2 1
2 1 p 2

1 2

M 1 kMs s c ln
M 1 KM

 
               

  [5.17]  

Considerando uno stato locale generico di entropia s e lo stato di riferimento la cui entropia è s  
la suddetta espressione diviene: 
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k 1
k2

p 2
1 ks s c ln M

1 kM




        
 

  [5.18]  

dalla quale è immediato verificare che: 

M 1

 2

2
M 1

s 0
M

s 0
M





    

 
  

 

e pertanto anche nel deflusso di Rayleigh lo stato di massima entropia si ha in corrispondenza del 
regime sonico. Portando in un diagramma ( s,M )  la (5.18) si ottiene la linea di Rayleigh illustrata nella 
figura sottostante. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2. SOMMINISTRAZIONE MASSIMA DI CALORE 

I rapporti tra le varie grandezze in funzione del numero di Mach forniti dalle precedenti 
espressioni consentono di poter capire come deve avvenire lo scambio termico affinché possa essere 
realizzato il deflusso di Rayleigh. 

Facendo riferimento alla (5.12) si osserva che per un dato valore di 0T   un incremento positivo 
del rapporto fornito da tale espressione comporta un aumento della temperatura 0T  cui corrisponde 
una somministrazione di calore, a norma della (1.27), mentre un incremento negativo di tale rapporto 
causa una diminuzione di 0T  con conseguente sottrazione di calore. Inoltre dalla 5.12), come è 
immediato verificare, si può scrivere: 

0

M 1

2
0
2

M 1

0 max 0

T 0
M

T 0
M

  T T







    

 
  



 

pertanto la temperatura di ristagno presenta un massimo in corrispondenza di M 1 , ovvero nel 
punto di massima entropia, e poiché la somministrazione di calore tende a far crescere la 0T , e quindi 

 

figura 5.2 

0 

M 1 

s  
s s  
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anche il rapporto 0 0T / T , il fluido in moto ricevendo calore tende a portarsi al regime sonico di 
conseguenza in regime subsonico il numero di Mach cresce così come in regime supersonico esso 
decresce ed entrambi hanno come limite M 1 ; si deduce pertanto che non è possibile passare dal 
regime subsonico a quello supersonico, e viceversa, somministrando sempre calore; in corrispondenza 
della sezione in cui si raggiunge il valore M 1  occorre iniziare a sottrarre calore altrimenti si verifica la 
fo rm azio n e di o n de d‟urto . 

In sintesi se il fluido si trova in regime subsonico somministrando calore il fluido accelera e tende 
al regime sonico che può venire superato solo effettuando una sottrazione di calore a valle della sezione 
M 1  in tal caso il fluido incrementa la sua velocità, mentre una sottrazione di calore comporta una 
diminuzione della velocità. Se il fluido si trova in regime supersonico una somministrazione di calore 
provoca una diminuzione della velocità fino al regime sonico mentre una sottrazione di calore 
comporta un aumento della velocità. 

Da quanto detto si deduce che il calore che si può somministrare al fluido ha un limite che 
dipende dalle condizioni in cui viene effettuato il moto. Se in corrispondenza di una sezione le 
condizioni sono date da T ed M  la quantità di calore necessaria per portare il fluido fino alla condizione 
M 1  è data da: 

 max p 0 0q c T T    [5.19]  

e tale quantità rappresenta il massimo calore somministrabile in quanto, come si è visto, 0T   è il 
massimo di 0T .  

Per potere esprimere tale calore in funzione del numero di Mach si considerino due sezioni 
generiche 1 e 2 del condotto per cui la quantità di calore da somministrare al fluido per portarlo dallo 
un o  stato  all‟altro  sareb b e data dalla (1.27) che in questo caso conviene scrivere nella forma: 

02
12 p 01

01

Tq c T 1
T
 

  
 

 

ovvero anche: 

01 02
12 p 1

1 01

T Tq c T 1
T T

  
   

  
 

espressione che, per le (5.10) e (1.28), diviene: 

 
 

 2 22
22 12

12 p 1 1 2
21 2
1

k 11 MM 1 kMk 1 2q c T 1 M 1k 12 M 1 kM 1 M
2

                
 

 

pertanto se lo stato 2 corrisponde al regime sonico in corrispondenza di uno stato locale generico 
si può scrivere: 

 
 

22
2

max p 2
2

k 1
1 kMk 1 2q c T 1 M 1k 12 M k 1 1 M

2

 
         

 

 

quindi sviluppando ed ordinando si ottiene: 

 
 

22
p

max 2

c T M 1
q

2M k 1





  [5.20]  

dalla quale si osserva che: 
maxM 0              q    
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è evidente che questa è una situazione limite, essa però serve ad indicare che quando si parte da 
bassi valori del numero di Mach per incrementare la velocità del fluido si devono somministrare 
quantità di calore molto elevate. 

Torna più conveniente disegnare la linea di Rayleigh nel piano termodinamico (T ,s )  le cui 
equazioni parametriche sono date dalle (5.9) e (5.17) scritte in corrispondenza di una stato iniziale noto, 
caratterizzato dai valori 1 1 1(T ,s ,M ) , e da uno stato locale generico (T ,s,M ) : 

 
 

 22
1

1 2
1

k 12 2 k
1

1 p 2
1

M 1 kM
          T T

M 1 kM

M 1 kMs s c ln
M 1 kM



 
 

  
 
              

 

attraverso le quali ad ogni valore del numero di Mach  M  corrisponde una coppia di valori di 
(T ,s )  ottenendo così la curva illustrata nella figura sottostante; si osserva dal diagramma che la 
m assim a tem p eratura lo cale si raggiun ge in  co n dizio n i di m o to  sub so n ico , d‟altra p arte facendo 
riferimento alla (5.11) se si pone:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T 0
M





 

n e risulta l‟equazio ne: 

 
 

 
 

2 23

2 32 2

2M 1 k 4kM 1 k
0

1 kM 1 kM

 
 

 
 

che fornisce la soluzione: 
1M
k

    [5.21]  

pertanto la temperatura locale massima sarebbe: 

 2
max

T 1 k
T

4k

 
   [5.22]  

figura 5.3 

M 1  
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s 

T 
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q 0  
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Si osserva che se nella linea di Rayleigh il fluido evolve in modo internamente reversibile si può 
allo ra scrivere l‟eguaglian za di C lausius: 

dq Tds  

in o ltre l‟equazio ne di b ilancio  di en ergia p o rge: 
2

p p 0
wdq d c dT c dT
2

 
   
 

 

e dal confronto con la precedente risulta: 
p 0Tds c dT  

tale relazione conferma quanto detto in precedenza ossia che il punto di massima entropia lungo 
la linea di Rayleigh è anche il punto di massima temperatura di ristagno, nella fig. 5.4 sono rappresentati, 
dalle linee tratteggiate, gli stati di ristagno della linea di Rayleigh. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3. VELOCITÀ DI RIFERIMENTO E VELOCITÀ MASSIMA 

Per un deflusso reversib ile ch e avvien e co n  scam b io  di calo re l‟equazio n e di b ilan cio  di en ergia 
per un gas perfetto si scrive: 

 
2

p 0
w c T T q
2
    

avendo fatto riferimento ad uno stato iniziale dove il fluido ha velocità nulla e temperatura 0T , 
tale espressione, per quanto è già stato fatto in precedenza, si può scrivere nella forma: 

22 2
0

max
cw c q

2 k 1 k 1
  
 

   [5.23]  

dalla quale si osserva che anche se il deflusso avviene con scambio termico la velocità locale del 
gas dim in uisce all‟aum en tare della co rrisp o n den te velo cità del suo n o , e viceversa, p er cui in  un  dato 
punto le due velocità assumono ugual valore w  fornito dalla suddetta espressione: 

  2
0

max

2 k 1 cw q
k 1 k 1

   
    

  [5.24]  

 figura  5.4 
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pertanto la velocità di riferimento nel deflusso di Rayleigh è sempre maggiore di quella che si 
realizza nel moto isoentropico e tale aumento è funzione della quantità di calore scambiata, in assenza 
di scambio di calore  la (5.24) si identifica con la (1.35). 

La velocità di riferimento può essere espressa in funzione del numero di Mach locale, infatti 
d all‟equazio n e di b ilan cio  di m assa scritta n ella (5.8) e tenuto conto della (5.13) risulta: 

2 2
2 2 1

2
1 1 2

w M 1 kM
w M 1 kM

  
   

 [5.25] 

che fornisce il rapporto delle velocità locali. Allora considerando uno stato locale generico 
caratterizzato dai valori  w,M  e quello di riferimento  w , M 1   si può scrivere: 

 
2

2
w 1 kM
w M k 1

 



  [5.26] 

ed è facile verificare che alla suddetta espressione si può pervenire anche attraverso la (5.24), con 
procedimento meno immediato del precedente.. 

5.4. EVOLUZIONE DEL DEFLUSSO SULLA LINEA DI RAYLEIGH 

Per un fluido che si muove lungo la curva di Rayleigh il problema fondamentale di importanza 
pratica è quello della determinazione dello stato termodinamico finale 2 2 2 2( p ,T ,w ,M )  allorquando, 
come si osserva dalla  fig. 5.1, a partire da uno stato termodinamico iniziale noto 1 1 1 1( p ,T ,w ,M )  ad 
esso viene somministrata la quantità di calore 12q .  

     Lo stato termodinamico iniziale determina nel piano (T ,s )  una particolare linea di Rayleigh 
ed inoltre calcolata la temperatura di ristagno iniziale 01T , tramite la (1.28), resta anche determinata la 
temperatura di ristagno nello stato di riferimento 0T  , attraverso la (5.12), nonché la temperatura di 
ristagno finale 02T , mediante la (1.27); tra queste temperature si può allora verificare che 02 0T T  
oppure 02 0T T . 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Nel caso in cui 02 0T T  se inizialmente M 1  lo stato finale 2 si trova ancora nel ramo 

superiore della linea di Rayleigh, fig.5.5, il deflusso è dunque caratterizzato dal tratto 12 ed è 

figura 5.5 
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univocamente determinato dalle relazioni sopra scritte; se inizialmente è M 1  si possono verificare 
due situazioni: 
 - il fluido si muove lungo il tratto 12'  della linea di Rayleigh, fig.5.6, questa è una soluzione 

accettabile e pertanto lo stato finale 2' è ancora univocamente determinato; 
 - il fluido partendo dallo stato iniziale 1 in corrispondenza di un generico stato a sul tratto 

sup erso n ico  della lin ea di R ayleigh  sub isce un ‟on da d‟urto  p assan do  allo  stato  b del ramo 
subsonico della stessa linea di Rayleigh, accade in questo caso che 0a 0bT T , per poi proseguire 
subsonicamente fino allo stato finale 2" , questa è una soluzione da scartare. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nel caso limite in cui 02 0T T  il fluido evolverebbe fino allo stato M 1  sia che viaggia di 

regime subsonico che supersonico. 
Nel caso in cui 02 0T T  il deflusso non è realizzabile in quanto la quantità di calore 12q  

somministrata al fluido sarebbe maggiore della massima quantità di calore che il fluido può scambiare 
lungo la linea di Rayleigh: 

 max p 0 01q c T T   

ovvero non verrebbe rispettata la condizione principale 01 02 0T T T  . 

figura 5.6 

2''  

2'  

s  

T  

b  

1  
a  

01  
0a  0b  

02'  
02"  

01T  
0a 0bT T  

02' 02"T T  



FISICA TECNICA INDUSTRIALE –  VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 60 

6.  MOTO DEI FLUIDI E RETI DI DISTRIBUZIONE 
I fluidi sono corpi capaci di modificare la loro forma e sono suddivisi in liquidi e in aeriformi. Il 

moto dei fluidi ed il loro comportamento sono soggetti a specifiche leggi fisiche. 
Si vuole qui approfondire maggiormente la problematica relativa al moto dei fluidi e alle reti di 

condotti per impianti termici. Si generalizzerà la trattazione al caso generico di fluidi perché è 
importante conoscere sia il comportamento dei liquidi che quello degli aeriformi.  

A d  esem p io  nell‟am b ito dell‟im p ian tistica civile si han n o  reti per il trasporto di acqua (calda e/o 
fredda) per gli impianti idrotermici come anche reti per il trasporto di aria (vedansi gli impianti di 
climatizzazione ad aria) che reti di gas tecnologici in genere (ad esempio di gas medicali per gli 
ospedali). 

6.1. CARATTERISTICHE TERMOFLUIDODINAMICHE 

Un fluido è caratterizzato da alcune caratteristiche termofisiche e fluidodinamiche che qui 
brevemente si cercherà di richiamare. Intanto alcuni di questi parametri sono già noti dallo studio della 
Termodinamica Applicata. 

1.1.6. CARATTERISTICHE ELASTO -TERMOMETRICHE 
Fra le caratteristiche elastiche si ricorda: 

 v  volume specifico, [m³/kg]; 
   massa specifica (detta anche densità) con =1/v, [kg/m³];

Fra le caratteristiche termometriche: 
 cp  calore specifico a pressione costante, [kJ/kg]; 
 cv  calore specifico a volume costante, [kJ/kg]; 
 k  rapporto di adiabacità k  =cp/cv; 

   coefficiente di dilatazione isobaro, 1
p

v
v T

     
, [K-1].

1.1.7. CARATTERISTICHE FLUIDODINAMICHE 
Fra le caratteristiche più importanti vi è la viscosità d i un  fluido  ch e caratterizza l‟attitudin e ch e 

esso ha a non cambiare il suo stato di quiete o di moto. Si consideri la situazione di Figura 3 ove una 
superficie S è fatta scorrere con velocità w rispetto ad un piano fisso. 

La distribuzione della velocità è triangolare, come indicato in figura. Newton ha mostrato che la 
forza da applicare per mantenere le condizioni di moto è: 

dwF S
dy

   [27] 

Il coefficiente  è una proprietà del fluido e prende il nome di viscosità dinamica. Le sue unità di 
misura sono [Ns/m²] o anche [Pa.s].  

Osservando la distribuzione della velocità si può anche dire che ogni strato del fluido agisce n 
modo da rallentare lo strato più veloce che lo sovrasta e da velocizzare lo strato più lento sottostante. 

La relazione di Newton2 può anche scriversi in una forma opportuna:  

 F grad w
S

   
   [28] 

                                                 
2 Attribuita anche Maxwell e Petroff ma che qui si indicherà di Newton per semplicità. 
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e quindi lo sforzo tangenziale  che ogni strato esercita è funzione del gradiente trasversale di 
velocità e quindi è tanto maggiore quanto maggiore è la variazione di velocità imposta.  

w

Piano Fisso

Piano mobile

Distribuzione di velocità

Forza da applicare

F dw
dy

S 

x

y

 
Figura 3: Moto di Couette fra due piani paralleli 

Se  si mantiene costante con il gradiente il fluido si dice newtoniano. Nella realtà si hanno quasi 
sem p re fluidi n o n  n ew to n ian i (fan gh i, acque n ere, acque reflue,… ) il cui studio  risulta m o lto  co m p lesso  
e al di fuori dei limiti di questo corso. 



dw/dy



Fluidi newtoniani

Fluidi non newtoniani (corpo di Bingham)

Fluidi non newtoniani (corpo plastico)o

Paste
 den

tifric
ie

Fluidi non newtoniani (corpo plastico invertito)

 
Figura 4: Diagramma sforzo –  scorrimento per i fluidi 

In Figura 4 si h a l‟an dam en to  tip ico  di alcun e varietà di fluidi reali. Il fluido  newtoniano è 
rappresentato da una retta con inclinazione costante. Gli altri fluidi hanno  variabile con dw/dy=grad(w) 
e possono essere di diverso tipo (corpi plastici, tipici delle acque nere). Si hanno anche fluidi con uno 
sforzo iniziale 0 residuo , co m e avvien e, ad esem p io  p er alcun i fluidi usati nell‟in dustria o  anch e p er le 
paste dentifrice per le quali occorre uno sforzo iniziale prima che avvenga il moto. Lo studio dei fluidi 
non newtoniani, invero assai complesso, esula dal presente corso. 

G li allievi p o sso n o  tro vare n o tizie utili n ei testi di reo lo gia. V ien e sp esso  utilizzata un ‟altra 
grandezza fluidodinamica importante detta viscosità cinematica (o anche diffusività meccanica) definita dal 
rapporto: 
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


    [29] 

Le unità di misura di  sono quelle di una velocità aereolare [m²/s].  
P er l‟acqua (fluido  di lavoro  fra i p iù im p o rtan ti n ell‟im p ian tistica, sp ecialm ente n egli im p ian ti di 

riscaldamento e di condizionamento) si ha la seguente tabella di riferimento: 

Temperatura 
(°C) 

Viscosità 
cinematica (m²/s) 

Viscosità cinematica 
(cSt) 

Massa volumica 
(kg/m³) 

0 1.7910-6 1.79 999.8 
5 1.5210-6 1.52 999.7 
10 1.3110-6 1.31 999.6 
15 1.1410-6 1.14 999.4 
20 1.0110-6 1.01 998.2 
30 0.8010-6 0.806 995.4 
40 0.6510-6 0.65 992.0 
50 0.5610-6 0.56 987.7 
60 0.4810-6 0.48 983.0 
70 0.4210-6 0.42 977.2 
80 0.3710-6 0.37 972.0 
90 0.3310-6 0.33 964.6 
100 0.3010-6 0.30 958.0 

Tabella 1: V a lori term ofisici p er l’a cq u a  

6.2. REGIMI DI MOTO 

Il moto dei fluidi può avvenire in due regimi fondamentali3 detti: 
 Laminare: quando gli strati di fluido si muovono gli uni parallelamente agli altri. Il moto è 

ordinato e non si hanno oscillazioni interne. Se iniettassimo getti di inchiostro 
colorato a varie altezza questi scorrerebbero parallelamente senza mescolamenti. 

 Turbolento: quando le particelle di fluido sono dotate di moto casuale e pertanto si ha 
mescolamento fra gli strati di fluido. I getti di inchiostro a varie altezze si 
mescolerebbero rapidamente fra loro per la vorticosità del moto. Il moto 
turbolento è quindi un moto disordinato. 

Vi è anche un terzo regime di moto, detto di transizione e che corrisponde ad un regime non 
definito che porta il fluido a passare, in modo alternato, dal regime laminare a quello turbolento e 
viceversa. Questo regime è fortemente dissipativo ed è opportuno evitarlo nelle applicazioni 
impiantistiche. Un modo per caratterizzare il regime di moto è di verificare il Numero di Reynolds. 
Questo, infatti, è definito, come più volte detto anche nei capitoli precedenti, dal rapporto: 

2

Re
cos

wd w Forze di inerzia
w Forze vis e
d

 
 

    

Pertanto se il Numero di Reynolds è elevato (rispetto ad un valore limite caratteristico del tipo di 
moto, come si vedrà fra poco) allora prevalgono le forze di inerzia (proporzionali a w²) ed il moto è 
turbolento.  

                                                 
3 Questo è vero per fluidi monofase mentre per  i fluidi bifase o multifase in genere si hanno molteplici regimi di 

m o to  (a n eb b ia, a tap p i, an ulare, … ). Si tralascia questa trattazio n e co n sid erata la fin alità d el p resen te co rso . 
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Se, invece, Re è piccolo (sempre rispetto al valore limite) allora prevalgono le forze viscose 
(proporzionali al w/d per la [27]) e il moto è laminare. Vedremo fra poco i valori limiti di riferimento 
per i regimi di moto. 

1.1.8. STRATI LIMITI DINAMICI 
Il moto dei fluidi a contatto con le pareti generano un fenomeno molto interessante detto strato 

limite dinamico. Se si osserva la seguente Figura 5 si ha alla sinistra una corrente di fluido indisturbata 
con distribuzione costante della velocità.  

Non appena il fluido tocca la parete fissa i primi strati molecolari del fluido aderiscono ad essa 
fermandosi. 

W w w w

PARETE FISSA

Stra to  lim ite lam ina re

Stra to  lim ite turbolen to

Sub st rato  lam ina re

Co rren te flu ida  ind istruba ta

Zona  di e ffe tto
d ella pa rete

 
Figura 5: Formazione dello strato limite dinamico 

L ‟azio n e di aderen za viene esercitata, tram ite la visco sità din am ica, an che agli strati so p rastan ti 
che, pur non arrestandosi del tutto, vengono rallentati. 

La distribuzione di velocità cambia, come si può osservare nella stessa Figura 5  solo al di sopra 
della zona tratteggiata il diagramma è ancora invariato mentre al di sotto della zona tratteggiata la 
velocità varia da zero (alla parete) fino al 99% della velocità indisturbata. 

La zona ove il disturbo è manifesto e la velocità varia al di sotto del 99% del valore iniziale viene 
detta strato limine dinamico. E ssa caratterizza l‟azio ne di attrito  e quin di di m o difica del p ro filo  in iziale 
della velocità del fluido.  

Se le condizioni iniziali sono tipiche del regime laminare lo strato limite è detto laminare 
altrimenti è detto turbolento. Si osserva, però, che anche se lo strato limite è turbolento si ha sempre, 
nelle immediate vicinanze della parete, uno strato limite detto sublaminare n el quale è fo rte l‟azio n e di 
attrito della parete e in esso il regime di moto è tipicamente laminare. 

Lo spessore, , dello strato limite dinamico per il caso dello strato piano si dimostra essere 
proporzionale alla distanza dal bordo di attacco e inversamente proporzionale al numero di Reynolds 
secondo la relazione: 

4.92
Re
x    [30] 

Il valore limite caratteristico per il passaggio dal regime laminare a quello turbolento è Re=5 .105, 
pertanto per valori inferiori ad esso si ha il regime laminare mentre per valori superiori si ha il regime 
turbolento.  

U n  fen o m en o  an alo go  si h a n el m o to  all‟in tern o  d ei condotti. In questo caso il moto è confinato 
superiormente dalle pareti del condotto e quindi lo spessore non può crescere indefinitamente perché 
si h a il co n giun gim en to  sull‟asse degli strati lim iti gen erati da p areti o p p o ste. 
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w

w w w

Lunghezza di imbocco

Zona  laminare Zona turbolenta

 
Figura 6: Lunghezza di imbocco nei condotti. 

In Figura 6 si ha una presentazione schematica del fenomeno. Come si vede a partire da un certo 
p un to  lo  strato  lim ite din am ico  raggiun ge l‟asse del co ndotto.  

A partire da questo punto il profilo di velocità si stabilizza. In figura sono anche rappresentate le 
zone laminari e quelle turbolente.  

La lunghezza di imbocco può essere stimata pari a 70 diametri. Per condotti inferiori o 
comparabili con questa lunghezza (tubi corti) si hanno notevoli perdite per attrito (vedi §1.1.11) e quindi 
è opportuno evitarli.  

Il regime di moto è laminare, nei condotti circolari o ad essi assimilabili, per Re<2300. Diviene 
turbolento per Re>2900.  

N ell‟in tervallo  2300 <  R e <  2900 il m o to  si dice di transizione e, come già accennato, è opportuno 
evitarlo perché fortemente dissipativo. 

6.3. LEGGI FONDAMENTALI DELLA FLUIDODINAMICA 

Scriviamo subito alcune equazioni valide in generale per il moto di qualunque fluido. Si è già 
parlato di questo argomento in Termodinamica Applicata ma si vuole qui presentare in forma 
o rgan ica l‟ap p arato  m atem atico -fisico che interessa le applicazioni delle quali si parlerà in seguito. 

1.1.9. E Q U A Z IO N E  D E L L ’E N E R G IA PER I SISTEMI APERTI STAZIONARI 
A b b iam o  già scritto  l‟equazio n e dell‟en ergia in  regim e stazio n ario  p er i sistem i ap erti ch e qui si 

ripete per comodità: 

 
2 2
2 1

2 1 2 12
w w g z z h h q l

        [31] 

Possiamo scrivere ancora la stessa equazione nella forma: 
2 2
2 1

2 2 1 12 2
w wh gz h gz q l         [32] 
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Pertanto la metalpia4 nella sezione di uscita 2 è pari alla somma della metalpia nella sezione di 
ingresso 1 più la somma algebrica (riferita alla convenzione dei segni per la Termodinamica) della quantità 
di calore e di lavoro scambiati per kg di fluido fra le due sezioni.  

Ciò, evidentemente, esprime in parole diverse il Primo Principio della Termodinamica o di 
C on servazion e dell’en ergia . Qualora si desideri riferire la [31] ad una portata m si ha, per estensione diretta: 

 
2 2
2 1

2 1 2 1 ( )
2

w wm g z z h h m q l Q L
 

        
 

    [33] 

ove è: 
 mq Q    il flusso termico totale scambiato, [W]; 
 ml L    il lavoro totale effettuato, positivo se fatto dal fluido, [W]. 

L ‟equazio n e [33] è ancora il Primo Principio scritto in forma globale (regime stazionario). 

1.1.10. EQUAZIONE DI BERNOULLI PER I SISTEMI APERTI STAZIONARI 
L ‟equazio n e dell‟energia [33] si può scrivere in una nuova forma che utilizza solamente termini 

m eccan ici e detta equazion e di B ern o ulli. In fatti se si rico rda ch e vale l‟equazio n e: 
2

1
q h vdp    [34] 

allora la [32] diviene: 

 

 

2 2 22 1
2 1 2 1 2 1 1

2 2 22 1
2 1 1

2
da cui:

0
2

w w g z z h h h h vdp l

w w g z z vdp l


       


    





  [35] 

Il lavoro l può ancora essere espresso, per comodità di calcolo, come somma del lavoro motore e del 
lavoro resistente: 

m rl l l    [36] 

e pertanto si ha: 

 
2 2 22 1

2 1 1
0

2 m r
w w g z z vdp l l

        [37] 

In questa equazione il lavoro motore è quello effettuato nel tratti 1-2 del condotto considerato ed 
analogamente lr è il lavoro resistivo (sempre presente) nello stesso tratto di condotto.  

P er fluidi in co m p ressib ili (quali l‟acqua o  an ch e gli aeriformi a velocità piccole rispetto alla celerità 
del suono5 e in gran parte delle applicazioni si è certamente in queste condizioni) la precedente 
relazio n e si p uò scrivere in  fo rm a p iù diretta, riso lven do  l‟in tegrale ch e dipen de dalla trasfo rm azio n e 
che qui si suppone a v = costante: 

                                                 

4 Si definisce metalpia la somma dei termini energetici h w gz 
2

2
. Nel caso di condotto isolato che non scambia 

lavoro e calore essa rimane costante. 
5 Si dimostra (vedi volume sui fluidi comprimibili) che la celerità del suono è data dalla relazione 

c p kRT
s

 

FH IK   per i gas a comportamento ideale. Se un gas si muove a velocità elevate (>0.1c) gli effetti della 

variazione di pressione comportano anche sensibili effetti nella variazione della densità  (o del volume specifico v) che non 
possono essere trascurati. 
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 
2 2
2 1

2 1 2 1( ) 0
2 m r

w w g z z v p p l l
        [38] 

L ‟equazio n e [38] diviene: 
2 2
2 1

2 2 2 1 1 12 2 m r
w wp v gz p v gz l l         [39] 

In Idraulica si definisce piezometrica la somma 
2

2
wpv gz  ; quest‟ultim a, sempre a condotto 

isolato, si mantiene invariata passando dalla sezione 1 alla sezione 2 per un fluido ideale (resistenze 
interne nulle) mentre per un fluido reale viene diminuita del lavoro complessivamente svolto nel tratto 
d i co n do tto . L ‟ap p licazio ne delle precedenti equazioni [38] e [39] richiede che ci si riferisca ad un tubo di 
flusso di sezione molto piccola in modo che si possa parlare, senza co m m ettere erro re, di un ‟un ica 
velocità, un unico volume specifico, di una sola quota e proprietà termofisiche costanti nella sezione di 
condotto considerata. Se, invece, la sezione del condotto è molto grande allora le variazioni dei 
parametri sono significative ed occorre riscrivere le precedenti equazioni in forma differenziale e poi 
in tegrate all‟in tera sezio n e. In  fo rm a differen ziale si h a, p er l‟equazio n e dell‟energia: 

wdw gdz dh dq dl      [40] 

e ancora: 
0m rwdw gdz vdp dl dl       [41] 

Si vuole qui osservare che le due equazioni [40] e [1.3] sono solo apparentemente diverse: in 
realtà esse esprimono sempre il principio di C on servazion e dell’en ergia  già citato.  

N ell‟equazio n e dell‟en ergia [40] si h an n o  fo rm e en ergetich e anch e term ich e m en tre n ell‟equazio n e 
di Bernoulli [1.3] si h an n o  so lo  fo rm e en ergetich e m eccan ich e. M a l‟equazio ne [34] lega le due forme di 
energia e pertanto solo apparentemente nella [35] si hanno termini meccanici poiché nel lavoro è anche 
presente il calore scambiato (anche per attrito visto che lr  degrada in calore e si trasforma internamente 
al fluido in energia interna). In  alcun i casi p uò  essere utile vedere l‟equazio ne di Bernoulli [38] in modo 
diverso  p er esaltarn e alcun e caratteristich e fisich e. A d esem p io  se dividiam o  p er l‟accelerazio ne di 
gravità g tutti i term in i dell‟equazio ne [37] si ottiene: 

 
2 2 22 1

2 1 1
0

2
m rlw w v lz z dp

g g g g


        [42] 

Si osservi che ogni termine della [42] esp resso  n el S.I. è o m o gen eo  a ad un ‟altezza e quin di si 
esprime in metri . Si tenga ancora presente che nella [42] si ha: 

1 1v
g g 
    [43] 

ove  è il peso specifico del fluido (N/m³). 
Per la loro caratteristica unità di misura la precedente equazione è detta equazione delle altezze e i 

singoli termini sono detti: 
 z2-z1  altezza geometrica; 

 
2 2
2 1

2
w w

g
   altezza dinamica; 

 
2

1

v dp
g   altezza di pressione 

 r
r

l z
g
   altezza di perdita di carico per attrito. 

Q ualch e vo lta è an che com o do  scrivere l‟equazio ne di B ern o ulli [38] in termini di pressione: 
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2 2
2 1

2 2 1 12 2 m r
w wp g z p g z l l              [44] 

In questo caso ogni termine della [44] è omogeneo ad una pressione e quindi si esprime in 
termini di Pascal ([Pa]=[N/m²]). Dalla [44] si p uò anco ra ricavare un ‟in teressan te esp ressio n e m o lto  utile 
nelle applicazioni future: 

2 2
1 2

2 1 1 2( )
2 m r

w wp p g z z p p 
        [45] 

Quindi la differenza di pressione ( primo membro) è dovuta alla somma di tre effetti: la caduta 
cinetica più la caduta gravimetrica più la caduta per lavoro (motore e resistivo).  

D ata l‟arb itrarietà n ello  scegliere le sezio n i 1 e 2 si può fare in modo che il lavoro motore non sia 
presente nel bilancio [44] e pertanto possiamo scrivere che la caduta di pressione in un tratto di 
condotto è data dalla relazione: 

2 2
2 1

1 2 2 1( )
2 r

w wp p g z z p 
       [46] 

6.4. LE PERDITE DI PRESSIONE PER ATTRITO 

Le perdite per attrito sono dovute essenzialmente a due cause: le perdite per attrito distribuito 
(do vute all‟in terazio n e fra fluido  e p areti) e p erdite p er attrito  co n centrato  (do vute a b rusch i 
cambiamenti di direzione o per la presenza di ostruzioni lungo tratti molto piccoli di condotto). 

1.1.11. PERDITE PER ATTRITO DISTRIBUITO 

Per calcolare pr per attrito distribuito occorre utilizzare la relazione di Weissbach - Darcy: 
2

2a
l wp
d

      [47] 

ove  è detto fattore di attrito distribuito. La [47] ci dice che le perdite distribuite sono direttamente 
p ro p o rzio n ali alla lun gh ezza del co n do tto  e all‟en ergia cin etica p er un ità di vo lum e e sono inversamente 
proporzionali al diametro del condotto. Il fattore di attrito è funzione dai seguenti parametri: 

 , , , ,w d e      [48] 

ove: 
   è la densità del fluido, [kg/m³];
 w è la velocità del fluido, [m/s];
 d  è il diametro del condotto, [m];
   è la viscosità dinamica del fluido, [kg.s/m²];
 e  è la scabrezza assoluta, [m].

L a scab rezza asso luta è l‟altezza delle sin go le asp erità sup erficiali presenti nel condotto.  
Esse sono sempre presenti, qualunque sia il grado di finitura superficiale del condotto; in alcuni 

casi, tubi per impiantistica in genere, si hanno valori assoluti molto piccoli tanto da far ritenere questi 
condotti come lisci, cioè privi di asperità.  

E ‟ co m un que un a sem p lificazio n e di calco lo .  
Applicando il Teorema di Buckingam alla [48], assumendo come unità fondamentali [M,L,T] e 

ipotizzando una funzione monomia6 del tipo: 
a b c f gC w d e      [49] 

                                                 
6 Si ricordi che la dipendenza di tipo monomiale non è necessaria ma viene qui ipotizzata per semplificare la 

trattazione. 
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con le dimensioni: 
=[ML-3] 

[w]=[LT-1]; 

[d]=[L]; 

[e]=[L] 

[]=[ML-1T-1] 

]=[1] 

si perviene alla seguente equazione di omogeneità dimensionale 

    3 1 1 11
a b fc gC ML LT L ML T L                 [50] 

da cui deriva il sistema: 
0                                   per    M
0 3              per    L
0                                 per    T

a f
a b c f g

b f

 
     
  

 

Si hanno 5 incognite e 3 equazioni indipendenti (minore caratteristico pari a 3) e quindi si 
possono avere infinito elevato a 5-3=2 soluzioni. Scelte due variabili indipendenti e risolvendo il 
sistema si trova che la [49] diviene: 

m nwd eC
d




         
  [51] 

I gruppi dimensionali sono, quindi: 

Re wd wd
 

    Numero di Reynolds; 

e
d

      scabrezza relativa. 

Possiamo scrivere la [51] nella forma: 
Rem nC      [52] 

Una relazione che rispetta il legame funzionale della [52] è la relazione esplicita di Haaland: 
1.111 6.91.8log

3.7 Red




     
   

  [53] 

Per tubi lisci si può utilizzare la relazione di Weissbach: 
0.20.184 Re     [54] 

valida per 4 52 10 Re 3 10    . U n ‟altra relazio n e valida per tub i lisci è quella di Blasius: 
0.250.316Re    [55] 

valida per 4 510 Re 5 10   . 
Il calcolo del fattore di attrito  p uò  agevo lm en te essere effettuato  utilizzan do  l‟ab aco  di Moody 

riportato nella Figura 7. In esso abbiamo in ascissa il numero di Reynolds (Re), in coordinate 
logaritmiche, e in ordinate il fattore di attrito .  

Nella zona relativa al regime laminare (Re<2300) si dimostra essere (regime di Poiselle): 
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64
Re

    [56] 

e p ertan to  il fatto re d‟attrito  n o n  dip en de dalla scabrezza relativa . Nella zona relativa al regime 
turbolento (Re>2900) è ben visibile la dipendenza, oltre da Re, da .  

Tuttavia osservando le curve al variare di  si può notare che  non varia più con Re a partire da 
una certa ascissa per ogni valore della scabrezza relativa. In effetti una curva trasversale ben indicata 
nella Figura 7 individua due zone: nella prima (a sinistra)  varia sia con Re che con  mentre nella 
seconda (a destra, detta anche regione di turbolenza completa)  varia solo con . Dalla [47] si può ancora 
ricavare il lavoro perduto per attrito distribuito dato da: 

2

2rd
l wl
d

   [57] 

le cui unità sono [J/kg] essendo sempre omogeneo ad un lavoro specifico. 

 
Figura 7: Abaco di Moody 

La scabrezza relativa indicata in Figura 7 dipende dal tipo di tubazione.  

Materiale costituente la tubazione Scabrezza  
Vetro 0,001÷0,002 
PVC, PEAD, PP 0,002÷0,004 
Rame, Ottone 0,004÷0,01 
Alluminio 0,015÷0,05 
Acciaio zincato 0,02÷0,03 
Acciaio saldato nuovo 0,04÷0,1 
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Acciaio trafilato nuovo 0,2÷0,5 
Acciaio incrostato e corroso 0,2÷1,0 
Acciaio trafilato in uso 0,6÷1,2 
Ghisa nuova 0,6÷1,2 
Ghisa in uso 2÷4 
Ghisa centrifugata in uso 2÷4 
Ghisa in uso da vari anni 3,5÷6 
Ghisa incrostata 6÷10 

Tabella 2: Valori medi del coefficiente di scabrezza relativa 
Ai fini delle applicazioni impiantistich e si fa sp esso  l‟ip o tesi ch e i tub i in  ferro  m an n esm an n , i tub i 

zincati o in rame siano lisci e che pertanto valgano le relazioni ridotte di Weissbach [54] e di Blasius [55] 
sopra descritte per il calcolo del fattore di attrito in regime turbolento. Per gli altri casi si utilizzano le 
relazioni più complete e complesse quali la [53] di Haaland o quella di Colebrook: 

1 2.512
3.71Re

Log
d


 

 
  

  
  [58] 

Questa relazione è data in forma implicita (cioè  è funzione di sé stessa) e richiede una 
risoluzione numerica iterativa, contrariamente a quella di Haaland che è esplicita ma che fornisce un 
errore inferiore al 3% (accettabilissimo nelle applicazioni pratiche). 

La relazione di Colebrook può essere utilizzata anche per tubi lisci (=0) per regimi turbolenti 
con Re oltre 105÷106 (relazioni di Weissbach e Blasius). In questo caso la relazione, ancora implicita, 
diviene (Prandtl –  Von Karmann –  Nikuradze): 

1 2.512
Re

Log
 

 
   

 
  [59] 

Nella zona di regime di transizione (cioè fra 2300 < Re < 2900) si applica ancora la relazione 
implicita di Colebrook:  

1 2.512
3.71Re

Log
d


 

 
  

  
 

Qualora il regime di moto sia puramente turbolento, detto anche regime idraulico sviluppato, cioè quando 
risulta: 

200Re

d

  

allora si può porre: 
1 2

3.71
Log

d



   [60] 

e pertanto in questo regime il fattore di attrito dipende solo dalla scabrezza relativa  e non da Re. 

1.1.12. PERDITE PER ATTRITO CONCENTRATO 
Le perdite per attrito concentrato (dette anche perdite localizzate) sono espresse dalla relazione di 

Darcy per il lavoro resistivo: 
2

2rc
wl c   [61] 

e per le perdite di pressione: 
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2

2c
wp c     [62] 

Il fattore c è detto di Darcy e varia in funzione del tipo di perdita localizzata esaminata. 
Spesso si utilizza un modo diverso per esprimere lc o pc ricorrendo al concetto di lunghezza 

equivalente  Si suppone, infatti, di avere un tratto di condotto lungo l’ in modo da avere perdite 
distribuite pari alla perdita localizzata che si desidera eguagliare, cioè si pone: 

2 2'
2 2

l w wc
d

   

dalla quale deriva: 

' dl c


   [63] 

e quindi la lunghezza equivalente è funzione del fattore di Darcy, del diametro del condotto e del 
fattore di attrito. Nei manuali si hanno tabelle o nomogrammi che consentono di avere sia il fattore di 
Darcy che la lunghezza equivalente.  

Nella Figura 8 si hanno alcune perdite per il fitting (raccorderia) per le tubazioni utilizzate negli 
impianti idro-termo-sanitari.  

Nella Figura 9 si hanno i fattori di perdita per alcuni tipi di valvolame utilizzato nello stesso tipo 
di impianti tecnici civili.  

Nella Figura 10 si hanno i fattori di Darcy e le lunghezze equivalenti per alcuni componenti di 
im p ian ti tecn ici edili. N elle seguen ti tab elle si h an n o  i valo ri p iù rico rren ti p er l‟im p ian tistica di 
riscaldamento e condizionamento. 

DIRAMAZIONI 
Lungo il tronco che si dirama a T 1.5 
Idem ma con angolo a 90° 0.75 
Lungo il tronco che confluisce a T 1.0 
Idem ma con angolo a 90° 0.5 
Lungo i due tronchi con una doppia diramazione a T 3.0 
Idem ma con curve di raccordo 2.0 
Lungo i due tronchi con una doppia confluenza a T 3.0 
Idem ma con curve di raccordo 2.0 
Lungo la linea principale che non cambia sezione 0.0 
Lungo la linea principale che cambia sezione 0.5 
  
VARIAZIONI DI DIAMETRO 
Restringimento brusco 0.5 
Restringimento raccordato (valore medio) 0.35 
Allargamento brusco 1.0 
Allargamento raccordato (valore medio) 0.75 
  
COMPONENTI 
Radiatore 3.0 
Caldaia 3.0 
Piastra 4.5 

Tabella 3: Valori sperimentali del fattore di Darcy per alcune perdite localizza te 
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RACCORDERIA E VALVOLAME D 
8÷16 mm 

D 
18÷28 mm 

D 
> 28 mm 

Gomito a 90° 2.0 1.5 1.0 
Curva a 90° normale 1.5 1.0 0.5 
Curva a 90 ° larga 1.0 0.5 0.3 
Doppio gomito a 180 ° 3.0 2.0 1.5 
Curva a 180° normale 2.0 1.5 1.0 
Saracinesca a passaggio pieno 0.2 0.2 0.1 
Saracinesca a passaggio ridotto 1.2 1.0 0.8 
Valvola inclinata a Y 4.5 4.0 3.5 
Valvola a sfera a passaggio pieno 0.2 0.2 0.1 
Valvola sfera a passaggio ridotto 1.5 1.0 0.8 
Valvola a d angolo 4.0 4.0 3.0 
Valvola di ritegno a Clapet 3.0 2.0 1.0 
Valvola a farfalla 3.0 2.0 1.5 
Valvola a tre vie 10.0 10.0 8.0 
Valvola a quattro vie 6.0 6.0 4.0 

Tabella 4: Valori del fattore di Darcy per la raccorderia e Valvolame 
L ‟A llievo  p uò  o sservare co m e tali fatto ri dip en do n o  an ch e dal diametro della tubazioni in cui tale 

resistenze concentrate sono inserite. Di questo fatto si dovrà tener conto allorquando parleremo dei 
criteri p er il dim en sio n am en to  delle reti idrich e per l‟im p ian tistica. 

A n alo gh e tab elle si han n o  p er il m o to dell‟aria nei canali di distribuzione. Nella Figura 11 si 
h an n o  le p erdite lo calizzate p er un a curva di un  can ale d‟aria a sezio n e rettan golare.  

Analogamente nella Figura 12 si hanno le perdite localizzate per una curva in canali a sezione 
circolare. Nella Figura 13 e nella Figura 14 si hanno i fattori di perdita localizzata per varie tipologie 
(curve, racco rdi, sep arazio n i, un io n i, … .) p er can ali d‟aria. Si o sservi come in alcuni casi si ha solamente 
i fattore di Darcy e in altri la sola lunghezza equivalente (magari espressa in numero di diametri o di 
altra grandezza geometrica caratteristica del canale) o in altri ancora entrambi i parametri. 

1.1.13. TEOREMA DI BORDA – CARNOT 
Fra le perdite concentrate rivestono particolare importanza le perdite di imbocco nel condotto e di 

sbocco dal condotto. Si dimostra per allargamenti o restringimenti bruschi (teorema di Borda –  Carnot) la 
perdita di pressione vale: 

 22 1

2b

w w
p 


    [64] 

e quindi la perdita è data dalla variazione cinetica corrispondente alla variazione di sezione 
considerata. Se il fluido è fermo in un recipiente allora w1 =0 e quindi risulta: 

2

2imbocco
wp     [65] 

Analogamente se il fluido sbocca in un grande recipiente nel quale la velocità finale è nulla. 

1.1.14. DIAMETRO EQUIVALENTE AI FINI DELLA PORTATA 
Le relazioni finora riportate utilizzano il diametro del condotto quale elemento geometrico di 

riferimento. Spesso, però, occorre utilizzare sezioni aventi geometria diversa e/o più complessa di 
quella circolare.  
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A d esem p io  so n o  m o lto  utilizzate le sezio n i rettan go lari p er i canali d‟aria o  si p o sso n o  
configurare geometrie più complesse negli scambiatori di calore7 (ad esempio a sezione esagonale per 
meglio riempire una sezione di passaggio).  

Ci chiediamo allora se è possibile definire una grandezza di riferimento per qualsivoglia geometria 
in modo da potere continuare ad utilizzare le relazioni precedenti senza dover ricorrere a nuove 
riscritture e parzializzazioni.  

In effetti se ricordiamo l‟equazio n e di co n tin uità (o  di Leonardo) a regime stazionario per fluidi 
non compressibili: 

m w S     [66] 

possiamo dire che una equivalenza fra geo m etrie si h a sulla b ase del valo re dell‟area della 
superficie della sezione di passaggio S. Per la sezione circolare (supposta tutta bagnata dal fluido di 
passaggio) è possibile scrivere: 

4 4
d PS d d

    [67] 

dalla quale si può ricavare: 
4 Sd
P


    [68] 

La [68] consente, allora, di esprimere il diametro equivalente di una qualsivoglia sezione nella forma: 
4 _

_equivalente
Sezione Passaggiod

Contorno Bagnato


   [69] 

E ‟ b ene che l‟A llievo ricordi questa defin izio ne e si ab itui ad usarla n el m o do  in dicato . F acciam o 
qualche esempio. Se utilizziamo una sezione rettangolare di dimensioni a e b tutta bagnata dal fluido 
allora il diametro equivalente è dato dalla relazione: 

 
 

 
 

4
2

2e
a b a b

d
a b a b
  

 
  

   [70] 

Se l‟altezza a è piccola rispetto a b  allora la [70] diviene: 
 
 

2 2e
a b

d a
a b


  


  [71] 

Pertanto il diametro equivalente è dato dalla somma delle due lati di dimensioni minori e le 
perdite di pressione, per la [71], so n o  tan to  m aggio ri quan to  m in o re è l‟altezza a. Segue da quanto detto 
che utilizzare i canali a sezione rettangolare8 non è sempre del tutto equivalente risp etto  all‟uso  dei can ali 
circolari. 

                                                 
7 Uno scambiatore di calore è una macchina termica in grado di trasferire energia termica da un corpo (solitamente un 

fluido) ad un altro. Questi dispositivi sono alla base di tutte le applicazioni civili ed industriali e non solamente nel campo 
della Termotecnica. Essi sono utilizzati, ad esempio, nelle autovetture (i radiatori sono scambiatori di calore), nei computer, 
negli aerei, negli impianti di riscaldamento (un radiatore è uno scambiatore di calore) e di condizionamento. La lista della 
possibili applicazioni è lunghissima per cui si ritengono sufficienti gli esempi sopra riportati. Lo studio degli scambiatori di 
calore è parte fondamentale della Termotecnica e a questa d iscip lin a si rim an d an o  gli allievi in teressati all‟argo m en to . 

8 I canali circolari sono quelli che hanno perdite di pressione minore, a parità di portata, rispetto a qualsivoglia altra 
geometria. Purtroppo non è agevole sistem a questi can ali all‟in tern o  d elle ab itazio n i p o ich é si verreb b e ad  ab b assare 
n o tevo lm en te l‟altezza utile d ei van i o ve questi can ali p assan o . Si utilizzan o , quin d i, le sezio n i rettan go lari ch e p resen tan o il 
grosso vantaggio di potere fissare liberam en te l‟altezza e quin d i d i rid urre l‟in co n ven ien te so p ra in d icato . A d  esem p io  u n a 
sezio n e rettan go lare d i 300x1200 m m  equivale ad un a sezio n e circo lare d i 480 m m : si ved e ben e co m e l‟ab b assam en to  d i un  
eventuale controsoffitto ponga minori problemi con il canale rettangolare che non con quello circolare. 
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1.1.15. DIAMETRO EQUIVALENTE AI FINI DELLA PERDITA DI PRESSIONE 
Un concetto diverso si ha quando ci pone il problema di determinare il diametro equivalente non più 

solamente a pari portata di fluido bensì anche a pari perdita di pressione.  
Lo sviluppo analitico è più complesso di quanto visto nel paragrafo precedente. Con riferimento 

alle geometrie circolari e rettangolari si perviene alla seguente relazione analitica: 

 
 

0.625
'

0.2501.3e
a b

d
a b





  [72] 

con dimensioni tute espresse, come si è soliti fare nelle applicazioni impiantistiche, in mm. Si fa 
osservare che, a parità di portata e di perdita di pressione, anche in conseguenza della [47], la velocità 
nel canale rettangolare è inferiore rispetto a quella che avrebbe nel canale a sezione circolare e quindi la 
sezione del canale rettangolare equivalente deve essere maggiore di quella del canale circolare. Nei 
manuali specializzati è possibile avere la [72] anche sotto forma tabellare, come riportato nella Tabella 5 
e nella Figura 28. 

 
Figura 8: Perdite localizzate per la raccorderia delle tubazioni 
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Figura 9: Perdite localizzate per alcuni tipi di valvole per tubazioni 

 
Figura 10: Perdite localizzate in alcuni componenti di impianto 



FISICA TECNICA INDUSTRIALE –  VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 76 

 
Figura 11: Perdite localizzate per una curva a sezione rettangolare 

 
Figura 12: Perdite localizzate per una curva a sezione circolare  
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Figura 13: P erd ite loca liz z a te p er i ra ccord i d ei ca n a li d ’a ria  
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Figura 14: perdite localizzate per varia z ion e d i sez ion e d ei ca n a li d ’a ria  
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7.  DIMENSIONAMENTO DELLE RETI DI CONDOTTI 
Q uan to  sin  qui esam in ato co n sen te di affro n tare il p ro b lem a di p ro gettare le reti di co n do tti. E ‟ 

questo  un  p ro b lem a im p o rtan te sia p er l‟im p ian tistica term o tecn ica (riscaldam en to  e condizionamento) 
che per quella idrica (sia per acqua fredda che calda di consumo) e antincendio. Progettare una rete vuol 
dire, sostanzialmente, determinare i diametri dei condotti che la compongono visto che le loro lunghezze 
sono, quasi sempre, un problema geometrico imposto dalla configurazione di impianto. Il problema 
presenta aspetti diversi a seconda che si abbiano circuiti aperti o circuiti chiusi. 

7.1. COLLEGAMENTO IN SERIE DEI CONDOTTI 

Si ha un collegamento in serie quando la portata di fluido che attraversa i condotti è sempre la 
stessa, come indicato in Figura 15. Ciascuno dei condotti ha suoi parametri: diametro, velocità e fattori 
di attrito (distribuito e localizzato).  

d1,w1,

l1

d2,w2,

l2

 
Figura 15: Collegamento in serie di condotti 

Se indichiamo con lt1 ed lt2 le lunghezze totali somma di quelle reali (responsabili delle perdite per 
attrito distribuito) e quelle equivalenti di tutte le resistenze localizzate presenti in ciascun condotto, 
allora possiamo applicare la [57] e scrivere9: 

2 2
1 21 2

1 2 1 2
1 22 2

t t
totale t t

l lw wp p p
d d

  
 

     
 

  [73] 

Possiamo scrivere diversamente la [73] esprimendo la velocità in funzione della portata mediante 
l‟equazio ne di co n tin uità [66]. Infatti si ha: 

2

4
dm w S w      [74] 

da cui deriva: 

2 2

4 mw m k
d d

 
   [75] 

ove k indica un valore costante 4
  caratteristico del fluido che scorre nel condotto. Tenendo 

conto della [75] la [73] diviene: 

21 2
1 2 1 24 4

21 21

1 1
22

t t
totale t t

l lp p p k m
d d dd

  
 

       
 

  

che possiamo ancora ordinare nella forma: 
2

1 2( )totalep R R k m       [76] 

avendo indicata con resistenza totale fluidodinamica di ciascun  tratto  l‟esp ressio n e: 
                                                 
9 Si ricordi che l=p.ve pertanto risulta p=l. 
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5
tlR K

d
   [77] 

dipendente solamente dai parametri fluidodinamici del tratto di condotto considerato. In K sono 
inglobati tutti i valori costanti numerici. Si conclude che per condotti in serie di sommano le resistenze 
fluidodinamiche di ciascun tratto. 

7.2. COLLEGAMENTO IN PARALLELO DEI CONDOTTI 

Si ha un collegamento in parallelo quando i vari rami partono e arrivano tutti negli stessi punti e 
pertanto quando la caduta di pressione ai loro estremi è costante, come indicato in Figura 16. Adesso la 
portata entrante in A si divide in due: 1m  ed 2m . L ‟elem en to  co m un e ai due tro n ch i è la differen za di 
pressione pA-pB .Sempre applicando la [66] e la [47] si può scrivere: 

2
2

2 5

l m lp k K m
d d d

      
 

   [78] 

Allora la portata totale diviene: 

 
5 5

1 2
1 2 1 2 1 2

1 2

d dm m m p Y Y p A A
l l

 
        
 
 

     [79] 

 
Tabella 5: Diametri equivalenti per sezioni rettangolari 
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A B

l1,d1,w1,

l2,d2,w12  
Figura 16: Collegamento in parallelo dei circuiti 

ove nella [79] si sono indicate con A le aperture equivalenti dei singoli tronchi: 
5dA Y

l
   [80] 

Possiamo dire, per la [79], che per i circuiti in parallelo si sommano le aperture equivalenti di ogni 
ramo collegato. 

7.3. DISPOSITIVI PER LA CIRCOLAZIONE DEI FLUIDI 

Prima di procedere alle problematiche del dimensionamento delle reti occorre fare un breve 
cenno alle macchine che consentono ai fluidi di circolare: le pompe per i liquidi e le soffianti per gli 
aeriformi. 

1.1.16. LE POMPE DI CIRCOLAZIONE 
Le pompe di circo lazio n e so n o  di vario  tip o  a seco n da dell‟esigen za im p ian tistica da so ddisfare.  
Non affronteremo in questa sede lo studio di questi componenti di impianti in senso 

macchinistico ma vedremo solamente gli elementi necessari alla loro utilizzazione in sede progettuale e 
impiantistica. Gli elementi che le caratterizzano sono: 
 La portata volumetrica qv [m³/s] o la portata massica m [kg/s]; 
 La prevalenza in termini di altezza di colonna di fluido, z [m], (equazione [42]) o di pressione, p 

[Pa], (equazione [45]); 
 La potenza impressa al fluido, Pi [W]; 
 La potenza elettrica impegnata nel motore di alimentazione, [W]; 
 Il rendimento espresso come rapporto fra la potenza ceduta al fluido e la potenza elettrica 

impegnata nel motore di alimentazione: iP
P

  ; 

 L ‟NPSH, altezza positiva netta di aspirazione, [m]. 
 La velocità di rotazione n (giri al secondo, [s-1]. 

In Figura 18 si ha una rappresentazione tipica delle caratteristiche di una pompa di circolazione 
per una data velocità di rotazione (pompa centrifuga).  

In ascissa è indicata la portata volumetrica ma è anche possibile avere la portata massica10. La 
potenza elettrica impegnata è data da: 

v vP m g z q g z m v p q p                     P  [81] 

Per pompe di tipo centrifugo (quali sono le pompe alle quali ci riferiremo nel prosieguo) al 
variare del numero di giri della girante si hanno le seguenti relazioni: 

                                                 
10 La portata volumetrica è qv = wS mentre la portata ponderale è m wS qv   . 
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v

v

q n
q n

z p n
z p n



  
     

  [82] 

per le quali si può supporre, con buona approssimazione, 1=2. 

 
Figura 17: Esempio di circolatori per acqua fredda e/o calda in versione singola o gemellata  

 
Figura 18: Curve caratteristiche di una pompa di circolazione 

Queste relazioni risultano comode sia per costruire le curve caratteristiche al variare del numero 
di giri della girante, come rappresentato in Figura 19 che per modificare i dati di impianto in sede di 
bilanciamento11 della rete. 

I Costruttori di circolatori sono soliti presentare una famiglia di componenti con caratteristiche tali 
da ricoprire aree di lavoro diverse. Le curve caratteristiche complessive formano una diagramma a zone (o 
anche a conchiglia) come indicato in Figura 20. 

Come si può osservare, al variare della portata volumetrica e della differenza di pressione generata 
si hanno famiglie, indicate con numeri, di curve in gradi di soddisfare le varie esigenze di impianto. 

                                                 
11 Si vedrà in seguito cosa si intende per bilanciamento di una rete. A d esso  b asti sap ere ch e è u n ‟o p erazio n e co m p lessa 

con la quale si cerca di equilibrare le portate nei vari rami di un circuito. 
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Figura 19: Curve caratteristiche al variare del numero di giri  

A ll‟in tern o  di o gn i zo n a num erata si h an n o  p iù curve caratteristich e del tip o  in dicate in Figura 19 
al variare del numero di giri: questi vengono variati mediante un reostato elettrico con tre o quattro 
posizioni (numeri di giri) possibili. 

 
Figura 20: Diagramma a zone per le pompe di circolazione 

In Figura 21 si hanno le curve caratteristiche reali dei circolatori di Figura 17 sia installati 
singolarmente che in parallelo. 
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1.1.17. LE SOFFIANTI 
Per muovere i fluidi aeriformi si utilizzano le soffianti (dette anche ventilatori).  
Esse sono macchine dotate di palette in  grado di im p rim ere all‟aria (o  al gas in  gen erale) che 

l‟attraversa en ergia cin etica sufficien te a vin cere le p erdite di p ressio n e della rete (o  can alizzazio n e) 
seguente.  

In  co n seguen za dell‟in crem en to  della velo cità si h a un  in crem en to  della pressione dinamica ( 2

2
w ) 

che si aggiunge alla pressione statica prodotta.  
La somma della pressione statica e della pressione dinamica è detta pressione totale della soffiante. 

Le curve caratteristiche di queste macchine sono del tipo indicato in Figura 22. Vi sono due tipologie di 
soffianti: a pale in avanti e a pale indietro.  

Esse si diversificano per la pressione totale che riescono a creare sul fluido. Le soffianti a pale in 
avanti sono utilizzate quando si richiedono elevate prevalenze.  

In Figura 23 si h a una fo to grafia di un  ven tilato re reale in serito  all‟in terno  di un  co n ten ito re 
in so n o rizzato  p er ridurre la rum o ro sità trasm essa n ei can ali d‟aria che da esso  si dip arto n o . 

 
Figura 21: Curve caratteristiche reali di circolatori singoli e in parallelo  
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Ventilatori centrifughi con pale in avanti 

Questo tipo di ventilatore trova applicazione nelle Unità di Trattamento Aria costruite in serie e 
nelle quali la pressione statica prodotta non supera 1200 Pa (120 mm. c.a.). Questi ventilatori hanno una 
curva caratteristica p iatta e quin di co n  rido tto  in crem en to  di p ressio n e co n  p o rtate d‟aria in ferio ri.  

Hanno anche un ingombro ridotto e costo inferiore alle altre tipologie. Per contro questi 
ventilatori presentano un rendimento inferiore rispetto agli altri tipi, la potenza assorbita dal motore 
aum en ta p ro p o rzio n alm en te alla p o rtata d‟aria trattata e p ertan to  il m o to re deve essere n ecessariam en te 
dimensionato per la portata massima e protetto dai sovraccarichi. 

Inoltre questi ventilatori non sono in genere adatti in impianti con elevate perdite di carico e 
quan do  si rich iede un a fo rte rego lazio ne della p o rtata d‟aria trattata. 

 
Figura 22: Curve caratteristiche di una soffiante del tipo a pale in avanti 

 
Figura 23: Ventilatore nel suo contenitore insonorizzato 
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Ventilatori assiali 

Questi ventilatori hanno pale a passo variabile e vengono impiegati negli impianti con portate 
d ‟aria m o lto  elevate co n  p ressio n i statich e fin i a 2000 P a. P resen tan o  un  b uo n  ren dim en to  ed un a 
b uo n a cap acità di adattam en to  ai carich i grazie all‟o rien tab ilità delle p ale. 

Per contro la loro curva caratteristica presenta una pendenza notevole. La loro convenienza si ha 
nei modelli che consentono la variazione del passo con giranti in moto.  

Hanno un costo elevato e pertanto non sono convenienti per unità di trattamento aria di tipo 
standard. 

 
Figura 24: Curve caratteristiche di un ventilatore a pale in avanti 

Ventilatori centrifughi con pale rovesce 

Questo tipo di ventilatore viene impiegato nel caso si richiedano grandi portate e con pressioni 
statiche superiori a 1200 Pa. In alcuni casi (con portate elevate e quindi con grandi dimensioni frontali) 
le pale rovesce sono sostituite da pale con profilo alare. 

Questi ventilatori hanno buoni rendimenti ed una curva caratteristica non soggetta a 
sovraccarichi: la potenza elettrica assorbita dal motore raggiunge un valore massimo per poi diminuire. 
Inoltre presentano buone capacità di adattamento alle condizioni di carico desiderate. Per contro la 
curva caratteristica presenta una notevole pendenza e quindi generano un aumento rilevante della 
p ressio n e quan do  la p o rtata d‟aria varia. In genere la configurazione a pale rovesce necessita di un 
maggiore ingombro ed ha un maggior costo rispetto alle altre tipologie. 
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1.1.18. COLLEGAMENTI DI POMPE IN PARALLELO E IN SERIE 
Spesso occorre collegare fra loro due o più pompe per modificare in modo opportuno le 

caratteristiche complessive. Se colleghiamo in parallelo due pompe della stessa famiglia si ottiene un 
gruppo che, operando a pari p perché in parallelo, consentono di avere portate doppie, come indicato 
in Figura 26. Se si collegano due pompe in serie (stessa portata di fluido) le curve caratteristiche si 
modificano come indicato in Figura 27: a pari portata si ha un raddoppio della differenza di pressione 
p generata. 

 
Figura 25: Curve caratteristiche di un ventilatore a pale rovesce  

Pertanto il collegamento in serie o in parallelo può fornire curve caratteristiche complessive che 
meglio si adattano alle esigenze impiantistiche nei casi in cui non siano disponibili a listino circolatori 
che rispondono direttamente a queste esigenze perché si hanno portate volumetriche troppo grandi o 
differenze di pressioni troppo elevate. 
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Figura 26: Collegamento di pompe in parallelo 

 

 
Figura 27: Collegamento di pompe in serie 

Quanto detto per le pompe di circolazione si può applicare anche al collegamento in serie e in 
parallelo delle soffianti.  

Naturalmente sono da considerare con attenzione le problematiche sui collegamenti delle 
soffianti. 
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7.4. DIMENSIONAMENTO DEI CIRCUITI APERTI 

In questo caso il fluido è spostato da punto ad un altro del circuito, come rappresentato in Figura 
29: esso si porta dalla sezione 1 alla sezione 2 che può anche essere a quota diversa.  

Per il dimensionamento del condotto occorre utilizzare la [38] con la quale è possibile risolvere 
risp etto  ad un a in co gn ita. N aturalm en te p er questo  co n do tto  vale l‟equazio n e di co n tin uità [66].  

I parametri in gioco sono: 
 La portata di massa del fluido, m, [kg/s]; 
 La sezione di passaggio, S [m²], ovvero anche il diametro, d [m], essendo S=0.25d2; 
 La caduta di pressione, p1-p2, [Pa]; 
 La velocità, w, del fluido [m/s]. 

Si suppongono note le quote, z1e z2, delle due sezioni 1 e 2. In base alla [38] occorre conoscere le 
perdite per attrito (distribuito più localizzato) che a loro volta dipendono dal diametro (vedi [47] e [62]), 
ancora incognito, del condotto.  

Avendo due equazioni (la [38] e la [66]) si possono risolvere solo due incognite e pertanto le altre 
grandezze presente nelle due relazioni debbono essere note a priori o anche imposte mediante opportuni 
criteri progettuali. 

Di solito, se è nota la portata di massa, si fissa la velocità massima che il fluido può avere nel 
condotto. Ciò per diverse ragioni fra le quali si ricorda la necessità di ridurre il lavoro di pompaggio 
(che dipende dal quadrato della velocità del fluido) e il rumore prodotto dal passaggio. 

I valori massimi consigliati sono di 1 m/s nel caso di condotti inseriti in ambienti sensibili nei 
quali non si desidera immettere rumorosità generata dal fluido, di 2÷4 m/s  nel caso di condotte 
principali lontane da luoghi sensibili.  

Naturalmente fissare la velocità massima non significa avere esattamente questa velocità per il 
fluido : del resto  l‟equazio n e di co n tin uità riso lve co m p letam en te il p ro b lem a del dim en sio n am en to  
poiché si ha: 

max

4 md
w 



 


  [83] 

In realtà così facendo dalla [38] si può trovare p2 se si conosce p1. Se invece la caduta di pressione 
p è imposta allora la [38] co n sen te di calco lare, unitam en te all‟equazio ne d co n tin uità, il diam etro  e la 
velocità congruenti con i dati imposti. 

Il problema risolutivo si ha nella [38] poiché le perdite di pressione per attrito, pa, dipendono 
esse stesse dal diametro del condotto e quindi non essendo esplicitabili direttamente rappresentano esse 
stesse un ‟altra in co gn ita del p ro b lem a o quan to  m en o  si h a un ‟equazio ne im p licita ch e rich iede p iù 
iterazioni di calcolo. Per facilitare il calcolo si suole scrivere la [38] in una forma più comoda per gli 
sviluppi futuri. Infatti si ha: 

2 2

2
p w wH
l d d

  
     [84] 

ove   è detta perdita specifica di pressione ([Pa/m] nel SI e [mm.ca/m] nel ST). Per la [66] si ha anche: 
2 2 2

5 52
p w m mk N
l d d d

   
   

 
  [85] 

ed N indica un fattore ingloba i valori costanti della [85].  
Se si prendono i logaritmi di ambo i membri della [85] e della [84] si hanno le equazioni: 

log 2log log log
log 2log 5log log

w d H
m d N



  
  

  [86] 

Queste due relazioni risultano comode per costruire un abaco del tipo riportato in Figura 30.  
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Di questi abachi se ne hanno diversi a seconda del tipo di tubazioni o di fluido considerato.  
In Figura 31 si hanno le perdite specifiche di pressione per aria in canali circolari. In ciascuno di 

questi abachi si hanno portate, perdite specifiche  , velocità e diametri dei condotti. Fissati due 
qualunque di questi parametri si possono determinare gli altri due.  

Il problema del dimensionamento del circuito aperto si risolve se, scelta la velocità massima e 
imposta la caduta di pressione per perdite distribuite12, si trova, nota la lunghezza geometrica reale l del 
ramo, la perdita specifica =pd/l. 

D all‟ab aco  co rrisp o n den te al caso  in  esam e si determ in a il diam etro  (co m m erciale o  equivalen te) 
corrispondente.  

Poiché quasi mai il punto di selezione nell‟ab aco  corrisp o n de ad un  diam etro co m m erciale allo ra 
occorre scegliere o il diametro inferiore o quello superiore.  

Nel primo caso si avranno velocità e perdite specifiche maggiori di quella inizialmente imposta e 
n el seco n do  caso  si h a l‟op p o sto . 

Fissato il diametro commerciale desiderato si può adesso calcolare la caduta di pressione per le 
resistenze concentrate e verificare che sia: 

d cp p p     [87] 

 
Figura 28: Abaco per la selezione dei diametri equivalenti dei canali rettangolari  

                                                 
12 Poiché sussiste il problema implicito delle perdite localizzate funzioni del diametro, si può in una prima fase 

assegnare un ‟aliquo ta d ella caduta d i p ressio n e alle p erd ite d istrib uite ch e sap p iam o  d ip en d o n o  d alla lun gh ezza reale del 
circuito. Ad esempio si può, inizialmente, assegnare il 40% della p alle sole perdite distribuite e quindi la   diviene 
immediatamente nota. 
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1

2

 
Figura 29: Circuito aperto 

 
Figura 30: Perdite specifiche in tubi in acciaio con acqua a 80 °C 
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Figura 31: P erd ite d i p ression e in  ca n a li d ’a ria  
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Qualora questa condizione non sia rispettata occorre ripetere il calcolo con nuovi valori di 
tentativo per pc fino a quando la [87] è verificata. Spesso i circuiti aperti collegano ambienti a quote 
diverse, come riportato in Figura 32, allora si può riportare in diagramma (vedi grafico in basso di 
Figura 32) in funzione della portata sia la caduta di pressione (espressa in metri co m e n ell‟equazio ne [42]
) che la variazione di quota. Poiché le perdite di pressione sono proporzionali (vedi [47]) al quadrato 
della portata ne segue che tale curva è una parabola che parte dalla quota gravimetrica z0 iniziale (vedi 
ancora Figura 32). 

 
Figura 32: Circuiti aperti fra ambienti a diversa quota 

7.5. DIMENSIONAMENTO DEI CIRCUITI CHIUSI 

Un circuito si dice chiuso quando i punti iniziali e finali coincidono, come rappresentato in Figura 
33. In essa con P si indica la pompa e V la valvola di intercettazione. 

H

L

P

V

1

2

 
Figura 33: Circuito chiuso 

L ‟equazio n e di B ern o ulli [38] porta ad avere  (essendo 1 e 2 coincidenti): 
0m rl l     [88] 

e quindi il lavoro motore (effettuato dalla pompa) deve bilanciare il lavoro resistente (generato dagli 
attriti e dalle perdite localizzate). L e variazio n i di quo te e di velo cità all‟in tern o  dl circuito  n o n  
influenzano questo bilancio.  
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Per la valutazione del lavoro resistivo occorre utilizzare le relazioni di Weissbach e Darcy. Vale 
ancora quanto detto a proposito dei circuiti aperti e sulle problematiche che si hanno nel 
dimensionamento dei circuiti.  

Anche in questo caso occorre rispettare diversi vincoli quali, la velocità massima, il lavoro fatto 
dalla pompa e, negli impianti termici, i bilanci energetici13 relativi agli im p ian ti, … . 

1.1.19. DIMENSIONAMENTO DI RETI TECNOLOGICHE PER ACQUA 
Spesso occorre progettare non un solo circuiti ma una rete complessa composta di più circuiti 

chiusi, caso tipico negli impianti di riscaldamento o di raffrescamento ad acqua. In Figura 34 si ha un 
semplice esempio schematico14 di rete di distruzione composta da due circuiti, ciascuno che alimenta di 
due radiatori. 

P

C

A

B

C

D

E

F G

H

1 2

Circuito 1 Circuito 2

R1

R2

R3

R4

Q1

Q2

Q3

Q4

 
Figura 34: Rete di distribuzione 

La pompa di circolazione, P, è unica  e pertanto la differenza di pressione che essa può generare 
è unica. Ne deriva che entrambi i circuiti debbono avere la stessa caduta di pressione, cioè il fluido 
partendo dalla bocca premente, 1, e ritornando nella bocca aspirante, 2, deve subire sempre la stessa 
caduta di pressione. I percorsi qui possibili sono ben quattro: 
 Circuito 1:  1-A-B-R1-F-H-2- P 
 Circuito 1:  1-A-C-R2-F-H-2- P 
 Circuito 2:  1-A-D-R3-G-H-2- P 
 Circuito 2:  1-A-E-R4-G-H-2- P 

A differenza di quanto avviene perle reti idriche nelle quali la portata è imposta dai fabbisogni 
richiesti nei punti di utenza, le reti tecnologiche debbono trasportare energia mediante il fluido di 
lavoro.  

                                                 
13 N egli im p ian ti term ici p er il riscald am en to  p er l‟ed ilizia si h an n o  tre d istin te fasi d a realizzare: gen erare il calo re 

necessario a riscaldare gli ambienti, trasportarlo in modo che ogni ambiente abbia la quantità necessaria e infine cederlo agli 
am b ien ti. O gn i fase, ap p aren tem en te d istin ta d alle altre, co n d izio n a il co rretto  fun zio n am en to  d egli im p ian ti. E ‟ 
perfettamente inutile generare più calore se non si è in grado di trasportarlo agli ambienti perché la rete di distribuzione è 
sottodimensionata. Così pure è inutile trasportare più energia di quanto i terminali (ad esempio i radiatori) non riescono a 
cedere agli ambienti. Nei circuiti idrici questi problemi non si hanno perché le reti di distribuzione debbono solamente 
trasportare quanto necessario per i fabbisogni nei singoli ambienti. 

14 L ‟A llievo  ten ga p resen te ch e n ella figura m an can o  m o lti co m p o n en ti circuitali ch e p er sem p licità n o n  so n o  stati 
aggiunti, quali, ad esempio, il vaso  d i esp an sio n e, le valvo le d i rego lazio n e e d i in tercettazio n e, … .. 
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Se, seguen do  l‟esem p io  di un a rete p er riscaldam en to  do m estico  di Figura 34, si utilizza acqua 
calda, allo ra l‟energia che essa trasp o rta è data dalla relazio n e: 

pQ c m T    [89] 

ove vale il solito simbolismo e con T si indica la differenza di temperatura del fluido fra la 
mandata e il ritorno.  

La [89] ci dice che se vogliamo fornire ad ogni radiatore la potenza richiesta (Q1, Q2,Q3,Q4) 
o cco rre ch e la p o rtata d‟acqua, per determinato T che qui supponiamo costante15 per semplicità, sia 
quello  ch e l‟ap p licazio n e della [89] comporta.  

Si deve, in definitiva, fornire a ciascun radiatore la portata necessaria: 

p

Qm
c T




   [90] 

e quindi avremo le portate termodinamiche 1 2 3 4, , ,m m m m    . Sei radiatori ricevono portate diverse 
essi non potranno fornire ali ambienti le quantità di calore richieste e quindi non si raggiungeranno le 
condizioni di comfort desiderate.  

In pratica se si dimensiona male la rete si avrà anche un impianto di riscaldamento non 
funzionante secondo le specifiche di progetto. 

Calcolate le portate necessarie nei rami finali (cioè quelli che alimentano i radiatori) si possono 
determinare, applicando semplicissime regole di congruenza, le portate nei singoli rami dei due circuiti: 
ad esempio per il caso esaminato si hanno le portate riportate nella seguente Tabella 6. 

RAMO PORTATA 
1-A m ‟‟1+ m ‟‟2+ m ‟‟3+ m ‟‟4 
A-D m ‟‟3+ m ‟‟4 
D-R3 m ‟‟3 

R3-G m ‟‟3 
G-H m ‟‟3+ m ‟‟4 
H-2 m ‟‟1+ m ‟‟2+ m ‟‟3+ m ‟‟4 
2-P m ‟‟1+ m ‟‟2+ m ‟‟3+ m ‟‟4 
D-E m ‟‟4 
E-R4 m ‟‟4 
R4-G m ‟‟4 
A-B m ‟‟1+ m ‟‟2 
B-R1 m ‟‟1 
R1-F m ‟‟1 
F-H m ‟‟1+ m ‟‟2 
B-C m ‟‟2 
C-R2 m ‟‟2 
R2-F m ‟‟2 

Tabella 6: Calcolo delle portate nei singoli rami 
Adesso il problema del progetto della rete è quello di determinare i diametri dei singoli condotti 

in modo che si abbiano le portate desiderate nei singoli rami.  

                                                 
15Nella realtà occorre tenere conto del raffreddamento per dispersioni termiche del fluido nel passaggio dalla caldaia 

al radiatore considerato. Se le tubazioni sono ben coibentate allora in una prima fase di calcolo si può trascurare questo 
disperdimento e considerare che la temperatura di ingresso in ogni radiatore sia costante e pari a quella di uscita dalla caldaia. 
La Legge 10/91 e il DPR 412/93 impongono le modalità di isolamento e tengono conto dei disperdimenti mediante un 
rendimento di distribuzione (si rim an d a allo  stud io  d ella L . 10/ 91 p er l‟ap p ro fo n d im en to  d i questo  argo m en to ). 
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Si hanno due criteri principali che possono essere adottati e che qui brevemente si illustrano. 

Criterio a velocità costante 

In questo caso si fissa la velocità massima che si desidera avere in ogni ramo, così come indicato 
nel §7.4, e allo ra si p uò  utilizzare l‟abaco  delle p erdite sp ecifich e di Figura 30: la portata è nota e 
p ertan to  im p o n en do  la velo cità si determ in a il p un to  in tern o  all‟ab aco  cui corrisponde un diametro 
(non è detto che sia quello commerciale!) e la perdita specifica di pressione corrispondente.  

In Figura 35 si ha un esempio di applicazione del metodo esposto: si può osservare come, 
scegliendo un diametro commerciale minore di quello teorico si ha una perdita specifica maggiore e 
viceversa con la scelta del diametro commerciale maggiore.  

Anche la velocità nel condotto varia con la scelta del diametro commerciale in modo concorde 
alla perdita specifica.  

Di solito è opportuno scegliere i diametri maggiori per i tratti di circuito che portano maggiori 
portate (ad esempio nei rami 1A, A-D, G-H, H-2) mentre è conveniente scegliere i diametri minori nei 
rami terminali (compatibilmente con le esigenze di rumorosità ambientale).  

Ripetendo lo stesso procedimento per tutti i rami dei due circuiti si ottiene una nuova tabella 
contenente i diametri selezionati, le velocità e le perdite specifiche effettive.  

Adesso è possibile valutare le perdite localizzate di ciascun ramo (curve, gomiti, derivazioni, 
valvo le, radiato ri, caldaie, … ..) seco n do  quan to  in dicato  n ella Figura 10.  

Alla fine siamo in grado di conoscere le perdite totali (distribuite più localizzate) di ciascun ramo: 

 '
. iramo distrramo idel ramo

p L p L l          [91] 

Sommando le perdite totali di ogni ramo di ciascun percorso dei due circuiti si ottengono le 
perdite di pressione calcolate secondo lo schema seguente: 
 Circuito 1:  1-A-B-R1-F-H-2- P: 1 1 1 ticircuito percorso

p p
  

    

 Circuito 1:  1-A-C-R2-F-H-2- P 2 1 2 ticircuito percorso
p p

  
    

 Circuito 2:  1-A-D-R3-G-H-2- P 3 2 1 ticircuito percorso
p p

  
    

 Circuito 2:  1-A-E-R4-G-H-2- P 4 2 2 ticircuito percorso
p p

  
    

Ben difficilmente si ottengono p eguali (co m e rich iesto  dall‟un icità della p o m p a). D i so lito  i 
circuiti più corti hanno perdite distribuite minori per la [91] e quindi (assumendo che ogni ramo 
terminale serva un radiatore e quindi il numero e tipologie d resistenze localizzate sia sostanzialmente 
equivalente) le perdite di pressione totali dei percorsi più brevi sono inevitabilmente minori di quelle 
relative ai circuiti di maggior lunghezza. 

Il risultato di questa incongruenza è facilmente prevedibile: si tratta, come si può osservare nella 
Figura 34, di circuiti in parallelo ai capi della pompa (che è quella che crea la differenza di pressione 
positiva) e quindi se p è unica il circuito che offre minore resistenza totale avrà una portata maggiore 
degli altri circuiti (in generale si hanno più circuiti) secondo quanto visto nel §7.2. Di conseguenza la 
distribuzione delle portate non è più quella di progetto indicata nella Tabella 6 ma una nuova (e 
soprattutto diversa) che comporta uno squilibro nel funzionamento dei radiatori (per quanto detto in 
precedenza). Nasce quindi la necessità di equilibrare la rete di distribuzione cioè di fare in modo che 
le cadute totali di pressione in tutti i percorsi dei vari circuiti siano eguali e pari a quelle di progetto. 

Per fare ciò si utilizzano opportune valvole dette di taratura che provocano perdite di pressione 
localizzate note in funzione di una ghiera tarata (vedi §7.9). Pertanto è bene inserire (anche in fase di 
progetto) questo tipo di valvole nei vari rami dei circuiti in modo da potere poi effettuare correttamente 
l‟equ ilibratura della rete. Si badi bene che non è necessario misurare le portate per effettuare 
l‟equilib ratura della rete. Se si fa in  m o do  ch e n egli am b ien ti si ab b ia la tem p eratura desiderata (di 
progetto) allora vuol dire che i radiatori stanno fornendo il calore necessario per soddisfare il carico 
termico e quindi, poiché deve essere pQ mc t  , che la portata di acqua calda ricevuta è quella giusta.  
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D all‟ab aco  co rrisp o n den te al caso  in  esam e si determ in a il diam etro  (co m m erciale o  equivalente) 
corrispondente.  

P o ich é quasi m ai il p un to di selezio ne n ell‟ab aco  corrisp o n de ad un  diam etro co m m erciale allo ra 
occorre scegliere o il diametro inferiore o quello superiore. Nel primo caso si avranno velocità e perdite 
specifiche maggiori di quella in izialm en te im p o sta e n el seco n do  caso  si h a l‟op p o sto . 

Fissato il diametro commerciale desiderato si può adesso calcolare la caduta di pressione per le 
resistenze concentrate e verificare che sia: 

d cp p p     [92] 

 
Figura 35: E sem p io d ’u so d ell’a b a co d elle p erd ite sp ecifich e con  velocità  costa n te im p osta  
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In genere è meglio scegliere prima il circolatore e poi fare in modo che la rete sia soddisfatta dal 
p generato, come vedremo con il metodo a perdita specifica costante. 

Metodo a perdita specifica di pressione costante 

Questo metodo è certamente più equilibrato del precedente anche se leggermente più laborioso.  
Se scegliam o  p rim a il circo lato re, in  b ase all‟esperien za di p ro gettazio n e e alla tip o lo gia di 

im p ian to , allo ra si deve o tten ere l‟eguaglianza: 

d cp p p     [93] 

In questa equazione non è possibile conoscere le perdite concentrate pc  perché esse dipendono 
dal diametro delle tubazioni (vedi §1.1.12) mentre le perdite distribuite, pd, possono essere calcolate 
mediante la relazione: 

1

RamiCircuito

d i i
i

p L


     [94] 

Si osserva immediatamente che, se conoscessimo a priori pd potremmo scrivere, per ogni 
circuito: 

1

d
media RamiCircuito

i
i

p

L








  [95] 

La sommatoria a denominatore è la lunghezza geometrica complessiva del circuito esaminato e 
quin di un  dato  di p ro getto  p o ich é la dim en sio n e della rete dipen de dall‟architettura dell‟edificio  ch e è 
nota a priori . La perdita distribuita totale possiamo stimarla, inizialmente, supponendo che essa sia 
un ‟aliquo ta della p erdita di p ressio n e to tale p, ad esempio si può supporre che sia il 50% della perdita 
totale. Allora, essendo pd noto16, avendo scelto già la pompa (e quindi le sue curve caratteristiche sono 
note), ne segue che la [95] definisce univocamente la media del circuito.  

L ‟ab aco  delle perdite sp ecifich e di p ressio n e di Figura 30 consente di calcolare, note le portate e 
la media, sia il diametro teorico che la velocità del fluido. In realtà si ha sempre la necessità di dovere 
scegliere un diametro commerciale che solo poche volte coincide con quello teorico.  

Pertanto si procede come già detto con il precedente metodo: si sceglie il diametro maggiore nei 
tratti che hanno maggiore portata e il diametro minore per quelli terminali. 

In Figura 36 si ha la schematizzazione esemplificativa del metodo. Si è tracciata una linea verticale 
corrispondente alla media calcolata con la [95]. Per varie portate si sono individuati i punti di 
intersezione con questa retta: ogni punto individua un diametro teorico e per uno di essi si sono 
indicate le possibili scelte di diam etri m aggio re e m in o re co n  l‟eviden ziazio n e delle p erdite sp ecifich e e 
delle velocità reali corrispondenti.  

Eseguite queste operazioni per tutti i rami dei circuiti si possono calcolare le perdite concentrati 
reali e quindi le perdite di pressione totali sia dei rami che dei circuiti mediante le equazioni del tipo [95] 
e quindi si avranno i pi di tutti i percorsi della rete.  

Anche in questo caso, a seguito della discretizzazione dei diametri commerciali, si hanno in 
genere valori non coincidenti con il p scelto della pompa ma gli scostamenti sono di gran lunga 
inferiori rispetto al metodo a velocità costante per effetto della scelta della media iniziale che porta ad avere 
valori sensibilmente vicini a quanto indicato dalla [95]. I vantaggi del metodo sono evidenti nel 
momento in cui lo si applica veramente e i risultati ottenuti portano quasi sempre ad un minor lavoro di 
equilibratura della rete di distribuzione. La scelta iniziale della pompa, inoltre, garantisce da eventuali 
eccessi di potenza di pompaggio richiesta. 

                                                 
16 Si ricordi che noto il p della pompa e fissata la percentuale presunta per le perdite distribuite, ad esempio il 40%, 

si determina univocamente pd disponibile. 

ZEqnNum602602
ZEqnNum577639
ZEqnNum577639
ZEqnNum577639


FISICA TECNICA INDUSTRIALE –  VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 99 

 
Figura 36: E sem p io d ’u so d ell’a b a co con  il m etod o d ella  p erd ita  sp ecifica  costa n te 

I collettori complanari 

D a qualch e decen n io  si è im p o sta un a tecn ica im p ian tistica p er la distrib uzio n e dell‟acqua calda e 
fredda negli impianti sia termici che sanitari che utilizza i collettori complanari. Questi sono grossi tratti di 
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co n do tti di diam etro  grande dai quali si dip arto n o  (o  arrivan o , n el caso  del rito rn o  dell‟acqua in  circuiti 
ch iusi) i co n do tti ch e alim en tan o  i radiato ri, fan  co ils, … , vedi in  Figura 37. 

 
Figura 37: Distributore a collettore complanare 

La rete di distribuzione risulta maggiormente semplificata e più razionalmente disposta risposta 
ad altri tipi. Il primo vantaggio è che un collettore complanare può avere da 2 a 8 uscite e pertanto si 
può centralizzare la distribuzione di un appartamento, vedi Figura 38. 

 
      







      

    
   

    
   

 
Figura 38: E sem p io d i d istrib u z ion e d ell’a cq u a  ca lda con collettore complanare 

La rete di distribuzione principale, pertanto, si occupa di alimentare i collettori complanari (uno o 
più) dei singoli appartamenti e da questi, solitamente con tubazioni in rame  (facilmente flessibile e 
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quindi comodo per la posa in opera) o in plastica opportunamente irrigidita (Wirsbopex o similare), si 
alimentano i terminali. 

I collettori complanari hanno solitamente una valvola di chiusura a monte che consente la 
m an uten zio n e dell‟im p ianto  in  m o do  agevo le. 

Nel caso di impianti di riscaldamento si hanno coppie di collettori, uno per la mandata ed uno 
p er il rito rn o  dell‟acqua calda. P er gli im p ian ti idrici e san itari (acqua di con sum o ) si h an n o  co lletto ri 
sin go li p er l‟acqua fredda e p er l‟acqua calda, a m eno  ch e n o n  si p reveda il sistema di distribuzione ad 
anello e quindi con doppio collettore. 

1.1.20. DIMENSIONAMENTO DELLE RETI DI DISTRIBUZIO N E  D E L L ’A R IA  
L e reti di distrib uzio n e p er l‟aria, detti can alizzazio ni, p o sso n o  essere dim en sio n ati an alogam en te 

a quanto visto per le reti ad acqua. In questo caso, però, occorre tenere conto che la distribuzione 
dell‟aria tro va i term in ali alla stessa p ressio n e, quella am b ien tale. P ertan to  tutti i term in ali si tro van o  ad 
una pressione esterna praticamente identica.  

I circuiti da considerare partono dalla soffiante e terminano, ciascuno, in corrispondenza di un 
ambiente, vedi Figura 41. 

I metodi di progetto sono essenzialmente tre: 
 Metodo a velocità costante; 
 Metodo a perdita specifica di pressione costante; 
 Metodo a recupero di pressione. 

M etod o a velocità costan te p er i can ali d ’aria 

N el p rim o  caso  si p ro cede so stan zialm en te co m e già in dicato  p er le tub azio n e dell‟acqua. L a 
portata da immettere in ogni ambiente tramite i terminali (bocchette di mandata o diffusori) è calcolata 
in  p ro p o rzio n e al carico  term ico  dell‟am b ien te risp etto  a quello  to tale. 

0
0

i
i

Qm m
Q

     [96] 

con Qi carico totale dell‟am b ien te i.esimo, Q0 carico  to tale dell‟edificio, 0m  portata massica totale 
d ell‟edificio  dell‟aria, im  p o rtata m assica dell‟aria n ell‟am b ien te i.esimo. 

Note le portate nei tronchi terminali17 si calcolano le portate nei tronchi principali. Si impone la 
velocità in ogni tronco avendo cura di scegliere il valore più opportuno contemperando le esigenze di 
eco n o m icità della rete co n quelle dell‟efficienza e della silen zio sità. 

I valori consigliati, per edifici civili, sono i seguenti: 

 Velocità minima (m/s) Velocità massima (m/s) 
Tronchi principali 4 8 
Tronchi secondari e terminali 2 4 
Tronco in partenza dalla soffiante 4 16 

Tabella 7: V a lori con siglia ti d elle velocità  d ell’a ria  n ei canali 

U tilizzan do  l‟ab aco  di Figura 31 p er l‟aria si determ in a, n o te le co p p ie ( im , wi) il diametro 
equivalente, Deq, e la perdita specifica di pressione  i di ogni ramo. 

Noto il diametro equivalente si determinano le dimensioni a e b della sezione rettangolare 
equivalente (ai fini della portata) mediante la relazione: 

2
eq

a bD
a b
 




  [97] 

ove una delle dimensioni deve essere fissata a priori.  
                                                 
17 C io è quelli ch e p o rtan o  l‟aria ai d iffuso ri n egli am b ien ti. 
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D i so lito  si im p o n e l‟altezza a del canale per motivi di ingombro (controsoffitto) e quindi la 
precedente relazione consente di calcolare b. I Valori usuali delle dimensioni dei canali variano a 
modulo di 50 mm. Pertanto determinata la sezione rettangolare finale occorre ricalcolare il Deq mediante 
la [97] e p o i, tram ite l‟ab aco  p er l‟aria, rio tten ere i valo ri finali della velocità e della perdita specifica di 
pressione. Fatti i calcoli per ogni circuito occorre poi calcolare le effettive pressioni a monte delle 
bocchette di mandata ed inserire delle serrande di regolazione in modo che ogni bocchetta (o 
anemostato) abbia la differenza di pressione necessaria per il lancio e la velocità di uscita desiderati. 

La soffiante dovrà fornire, per la portata totale, un p capace di far fronte alle perdite nei canali di 
distribuzione e nelle apparecchiature interne alla centrale di trattamento aria. Queste cadute di pressione 
(p er le b atterie calde e/o  fredde, p er l‟um idificato re, il sep arato re di go cce, filtri, … ) so n o  fo rn ite dai 
costruttori delle stesso apparecchiature e sono riportate in abachi specialistici nei manuali tecnici. 

M etod o a p erd ita specifica costan te p er i can ali d ’aria 

Anche in questo caso occorre tenere presente la formazione della rete dei canali. Il metodo a 
=costante si ap p lica co n  qualch e leggera variazio ne risp etto  ai co n do tti d‟acqua.  

Di solito la velocità di uscita dalla soffiante viene imposta sia per ottenere dimensioni minime dei 
can ali d‟aria, p ro p rio  p er il tro n co  p rin cip ale che co n vo glia l‟in tera portata massica della rete, sia per 
motivi tecnici relativi alla selezione della soffiante. 

Pertanto si fissa la velocità del primo tronco secondo quanto indicato nella Tabella 7 e si procede 
a w =costante come indicato nel precedente paragrafo e si impone la perdita specifica di pressione,  0, 
così ottenuta a tutti gli altri tronchi a valle. 

 
      







      

    
   

    
   

 
Figura 39: E sem p io d i in sta lla z ion e d i ca n a li d ’a ria  

A  p artire dal seco n do  tro n co , quin di, si o pera utilizzan do  l‟ab aco  di Figura 31 con le coppie 
iniziali di dati ( 0, im). Si rilevan o  dall‟abaco  i valo ri della velo cità e del diam etro  equivalen te.  
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Adesso per calcolare le dimensioni della sezione rettangolare equivalente occorre utilizzare la [72]. 
C o m e al so lito  si fissa l‟altezza della sezio ne, a, e si calcola la larghezza b mediante la suddetta relazione 
o mediante la Tabella 5.  

Fissate le dimensioni reali commerciali si ricalcola il Deq e tram ite l‟ab aco  si o tten go n o  le effettive 
velocità e perdite specifiche di pressione. 

Completati i calcoli per tutti i rami si procede al bilanciamento della rete. In questo caso, però, si 
potrebbe utilizzare il metodo a perdita specifica costante calcolando la pressione effettiva al nodo di 
attacco di ogni tronco terminale e, note le dimensioni geometriche e le tipologie delle perdite 
localizzate, calcolare la   da imporre per avere la stessa pressione finale.  

In questo modo si ha una rete certamente più bilanciata rispetto al metodo a velocità costante. 
In Figura 39 si ha un esempio di rete di canali: è possibile osservare la particolare disposizione dei 

canali che consente un  even tuale m asch eram en to  co n  fin te travi e/o  fin ti p ilastri. Si o sservi l‟in go m b ro  
della rete ad aria rispetto a quella ad acqua (vedi Figura 38). 

Metodo a recupero di pressione 

Q uesto  m eto do  si ap p lica so lo  ai can ali per l‟aria negli impianti di climatizzazione.  
L a velo cità dell‟aria n el can ale vien e rido tta in co rrisp o n den za ad ogn i diram azio n e (do ve si h a 

una variazione di portata di massa o volumetrica) in modo che la caduta di pressione nel tratto 
susseguente alla diramazione sia bilanciata dalla conversione di pressione dinamica in pressione statica. 

I rami a valle del primo (di solito quello susseguente alla soffiante) sono dimensionati, quindi, 
facendo recuperare pressione statica (che diminuisce con le perdite di pressione) mediante la 
conversione di pressione dinamica consente alla variazione della sezione del canale a valle.  

In questo modo la pressione statica dei canali rimane costante e la rete è bilanciata. Si supponga 
di avere una semplice rete di canali come illustrato in Figura 41. Pertanto dal punto di intersezione si 
determinano la velocità a valle, w2, e la variazione della pressione statica che dovrà bilanciare le perdite 
totali del ramo. Il primo tratto (L1) viene dimensionato con uno dei due precedenti criteri (ad esempio a 
w = costante, cioè alla velocità imposta dal ventilatore). Il tratto a valle (L2) si dimensiona in modo che 
la sua velocità, w2, produca una variazione di pressione dinamica recuperata per il 75% (ipotesi di 
partenza) e data dalla relazione: 

2 2
1 20.75

1dinamica
w wp 
 

   
 

  [98] 

con velocità w espresse in [m/s]. 
La metodologia di calcolo CARRIER (che qui non si dimostra) prevede il calcolo del parametro: 

0.61

Lj
Q

   [99] 

ove Q indica la portata volumetrica (m³/h) del tratto a valle (   3600mQ   ). Noto il parametri 

j si utilizza l‟abaco  della Figura 41 nel quale sono noti: 
 la velocità del tratto a monte, w1 (m/s); 
 il parametro j. 

A ssum en do  l‟ip o tesi data dalla [98] sul recupero della pressione si può utilizzare anche un metodo 
iterativo che può facilmente essere implementato su computer o su CAD matematici18.  

In fatti l‟ip o tesi del recup ero  del 75%  di p ressio n e dinamica per vincere le perdite statiche porta a 
risolvere la seguente equazione: 

 
2 2 2.49
1 2 2

0.64
2

0.75 0.175
2 Ramo equivalente

w w wL L
Q

 
      [100] 

                                                 
18 Ad esempio Mathematica®, Maple®, MathCad®, Matlab®, Derive®. 
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ove vale il seguente simbolismo: 
 w1 velocità a monte del tratto, m/s; 
 w2 velocità a valle del tratto, m/s, (incognita del problema); 
 LRamo lunghezza geometrica del ramo a vallo, m; 
 Lequivalente  lunghezza equivalente delle resistenze localizzate del tratto in progetto, m; 
 Q2 portata d‟aria n el tratto  a valle, m³/h. 

L ‟equazio n e p receden te deve essere riso lta iterativam en te, essen do  w2 in entrambi i membri.  

 
Figura 40: Abaco per il calcolo del recupero della pressione statica 
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w1,m1 w2,m2 w3,m3

L1 L2 L3

 
Figura 41: C a n a li d ’a ria  p er il recu p ero d i p ression e 

D eterm in ata a velo cità a valle si calco la l‟area della sezio n e di p assaggio  m edian te la relazio ne: 
2

23600
QA

w



  [101] 

e poi si calcola il diametro del canale: 
4Ad


  

Si dimensiona il canale scegliendo b e a in modo che abbiano la stessa perdita specifica di 
pressione mediante la [72]. Poiché la scelta delle due dimensioni reali comporta sempre uno 
scostamento rispetto al diametro ideale occorre ricalcolare la velocità reale a valle. Infatti note le 
dimensioni b ed a si ha anche la velocità reale a valle: 

 
2

2 3600reale
Qw

b a


 
 

e pertanto la [100], questa volta con w2reale nota, fornisce la nuova percentuale del recupero: 

 
2.49
2
0.64
2

2 2
1 2

0.175
P 100

2

reale

reale

Ramo equivalente

recupero

w
L L

Q
w w



  
 


  [102] 

7.6. USO DI PROGRAMMI DI CALCOLO 

Oggi non è difficile utilizzare programmi di calcolo, vedi Figura 42, Figura 43 e Figura 44, che 
facilitano il progetto delle reti di distribuzione secondo uno dei due metodi di calcolo anzidetti.  

Si possono anche utilizzare semplici fogli elettronici nei quali si impostano le fasi di calcolo prima 
descritte. 
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Figura 42: Esempio di calcolo delle reti ad acqua 

 
Figura 43: Risoluzione del circuito di figura precedente 

 
Figura 44: Esempio di risoluzione di una rete tecnologica con CAD 



FISICA TECNICA INDUSTRIALE –  VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 
107 

Reti di distribuzione in acciaio 

Per le reti ad acqua calda con tubazioni in acciaio si può immaginare un algoritmo di progettazione a 
=costante schematizzato nelle seguenti fasi (che riepilogano quanto sopra fatto). 
 Numerare i nodi della rete in modo da individuare, per ciascun circuito, i singoli tratti; 
 Calcolare la portata di acqua calda per ciascun tratto terminale di circuito mediante la [90]; 
 Calcolare la portata totale dei vari rami applicando il criterio di congruenza; 
 Scegliere da catalogo una pompa di circolazione con prevalenza giudicata sufficiente per il tipo di 

impianto e per la portata totale sopra calcolata; 
 Fissare la percentuale di perdite distribuite da utilizzare per il calcolo della media di ogni circuito 

mediante la [95] nella quale la lunghezza totale è nota; 
 Calcolare per ciascun tratto il diametro teorico mediante abachi o utilizzando la relazione: 

0.36

0.23.84 md





 

ove le unità di misura sono: d [mm], m [kg/h],   [mm. c.a.]; 
 Scegliere il diametro commerciale più vicino (in difetto o in eccesso) a quello teorico sopra 

calcolato; 
 Calcolare la perdita specifica di pressione reale conseguente al diametro commerciale selezionato 

mediante abaco o con la relazione: 
1.8

58183reale
m
d

 


 

con d [mm], m [kg/h],   [mm. c.a.]; 
 Calcolare la velocità effettiva del fluido corrispondente al diametro commerciale selezionato 

mediante abaco o mediante la relazione: 
0.556 0.7780.00858w d    

con d [mm], w [m/s],   [mm. c.a.]; 
 calcolare le perdite distribuite del ramo, di i ip L  , e le perdite concentrate e quindi le perdite 

totale del ramo; 
 ripetere le fasi precedenti per tutti i rami e quindi calcolare le perdite totali di ogni circuito 

mediante la relazione circuito iRami
p p   ; 

 ripetere il calcolo per tutti circuiti tenendo conto che i tratti comuni sono già dimensionati 
(partendo dai circuiti più lunghi) e che di questi si conoscono le perdite specifiche vere e quindi 
nel calcolo della media si deve tenere conto solamente dei rami ancora da dimensionare e della p 
che hanno disponibile; 

 Confrontare le cadute di pressione di tutti i circuiti e provvedere al calcolo delle resistenze di 
compensazione (rispetto alla caduta di pressione maggiore) de circuiti più favoriti; 

 Verificare la scelta della pompa di circolazione. 

Reti di distribuzione in Rame 

Per tubi a bassa rugosità, quali sono le tubazioni in rame, si deve tenere conto delle minori 
perdite per attrito. Usando ancora la relazione di Blasius, [55], si può calcolare: 

1.75
0.25

4.750.214 ( / )m Pa m
d

  


  [103] 

ovvero: 
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1.75
0.25

4.7514.68 ( . . / )m mmc a m
d

  


  [104] 

con d in (mm),  in (m2/s),  in (kg/m3) e portata in (kg/s) per il S.I. e (litri/ora) nel S.T. 
Si rico rdi ch e p er l‟acqua sia  che  variano con la temperatura. Ad esempio si hanno: 

Temperatura  (°C) Viscosità cinematica m2/s) Densità (kg/m3) 
10 1.30 10-6 999.6 
80 0.39 10-6 971.1 

Tabella 8: Parametri termofisici p er l’a cq u a  

Relazione di Hazen Williams 

Per calcolare la perdita di pressione specifica si può usare la relazione di Hazen Williams 
seguente: 

1.85 9

1.85 4.87

6.05 10m
C d

 


 

Con: 
 m portata del fluido, [l/m]; 
  Perdita specifica di pressione, [mm.ca/m];
 d  diametro della tubazione, [mm];
 C costante funzione del tipo di tubazione:
   C=100  tubi in ghisa
   C=120  tubi in acciaio
   C=140  tubi in rame
   C=150  tubi in plastica.

Dalla stessa relazione, nota si può calcolare il diametro della tubazione con la relazione: 
0.2051.85 9

1.85

6.05 10md
C 

 
 
 


 

Queste due relazioni possono essere utilizzate in sostituzione delle precedenti. 

Verifiche di funzionalità 

Quanto sopra esposto si riferisce al puro calcolo delle reti di distribuzioni dell‟acqua calda e/o 
fredda. N ulla si è detto  circa la verifica di fun zio n alità dell‟im p ian to  di distrib uzio n e. 

Il calcolo della portata di fluido è effettuata con la relazione 

p

Qm
c T




  

ove  T  è la differen za di tem p eratura del fluido  fra l‟an data e il rito rn o : 

m rT T T    

R ico rdan do  che il term in ale cede calo re all‟am b ien te m edian te la relazio n e: 
mlQ K S T F     

con: 

1 2

1 2
f

1

2

   con:  =t
ln

ml fT t  



    
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Figura 45: Schema di collegamento di un terminale 

ed F  o p p o rtun o  fatto re geo m etrico  di scam b io  si h a ch e la trasm issio n e di calo re all‟am b ien te 
dipende dalla differenza di temperatura media logaritmica e dalla forma del corpo scaldante. Di solito si 
pone lo scambio termico nella forma: 

n
CS cs ambQ C T    

ove si ha: 
- cs ambT   differenza di temperatura fra la Tmedia d el co rp o  scaldan te e l‟aria am b ien te; 
- C  coefficiente di scambio termico; 
- n  esponente che dipende dal corpo scaldante. 
L ‟esp o n en te n è fornito dai Costruttori dei corpi scaldanti con riferimento ad uno scambio 

nominale (EN 442) di 50 °C fra corpo scaldante ed ambiente. 
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Tabella 9: Dati di libreria di radiatori commerciali 

 
Tabella 10: Dati di libreria di fan coil commerciali 

Nella Tabella 9 e nella Tabella 10 si hanno i dati funzionali di radiatori e fan coil commerciali con 
l‟in dicazio ne dell‟esp o n en te n dianzi accennato. 

Modello Resa T=50 
EN442  [W] n Cont. acqua 

[L] Prof. Alt. Inter. Lungh.   attacco 
[pollici]

Massa       
[kg] 

TEMA 2-558 55 1,288 0,53 60 558 500 60 1 3,40 
TEMA 2-681 69 1,287 0,60 60 681 623 60 1 3,90 
TEMA 2-871 82 1,3 0,77 60 871 813 60 1 5,00 
TEMA 3-400 55 1,295 0,51 94 400 342 60 1 3,70 
TEMA 3-558 13 1,295 0,73 94 558 500 60 1 4,80 
TEMA 3-640 84 1,3 0,75 94 640 581 60 1 5,30 
TEMA 3-681 88 1,3 0,85 94 681 623 60 1 5,8 
TEMA 3-790 102 1,305 0,9 94 790 731 60 1 6,5 
TEMA 3-871 109 1,315 1 94 871 813 60 1 6,80 
TEMA 4-558 93 1,299 0,84 128 558 500 60 1 5,80 
TEMA 4-681 111 1,276 1,07 128 681 623 60 1 7,90 
TEMA 4-871 137 1,331 1,34 128 871 813 60 1 8,60 
TEMA 5-558 114 1,312 1,01 162 558 500 60 1 7,30 
TEMA 5-681 136 1,322 1,23 162 681 623 60 1 9,00 
TEMA 5-871 166 1,324 1,7 162 871 813 60 1 11,00 
TEMA 8-300 103 1,326 1,18 267 300 242 60 1 6,70 

NEOCLASSIC 4-571 80 1,295 0,68 141 576 500 55 1 4,65 
NEOCLASSIC 4-665 92 1,309 0,74 141 669 595 55 1 5,25 
NEOCLASSIC 4-871 112 1,345 0,86 141 871 800 55 1 6,89 
NEOCLASSIC 6-665 134 1,3 0,96 222 665 595 55 1 1/4 8,30 
NEOCLASSIC 6-871 169 1,32 1,5 222 871 800 55 1 1/4 10,80 

Tabella 11: Esempio di dati per radiatori commerciali 



FISICA TECNICA INDUSTRIALE –  VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 
111 

Se, ad esempio, si ha una temperatura di mandata di 80 °C e di ritorno di 60 °C si ha una 
temperatura media del corpo scaldante di Tmedia= (80+60)/2= 70 °C. Pertanto la differenza di 
tem p eratura fra il co rp o  riscaldan te e l‟am b ien te (sup p o sto  a 20 °C ) è p ari a  T=70 –  20 = 50 °C. 

In queste condizioni la potenza ceduto dal corpo scaldante è quella nominale (vedi Tabella 9). 
Nel caso in cui si abbia un  T fra corpo scaldante ed ambiente diversa da 50 °C (valore nominale) allora 
occorre apportare la correzione seguente: 

50
n

Nom Eff
reale

Q Q
T

 
     

p er calcolare l‟effettiva potenza ceduta dal corpo scaldante. Così, ad esempio, se si alimenta un 
radiatore a 70 °C e la temperatura di ritorno è 60 °C risulta la  Tmedia= 65 °C e quindi la  TCS-amb= 65-
20 = 45 °C. In base al dati, ad esempio, della Tabella 11, si avrebbe per il TEMA 2-558 (prima riga)  n= 
1.288 ed una variazione di potenza ceduta pari a: 

1.28850 1.145
45

Nom

Eff

Q
Q

   
 

 

E quindi QEff=QNom/1.145. In  defin itiva l‟avere rido tto  il  T fra radiatore e ambiente comporta 
una perdita del 14,5% di potenza termica ceduta. Ciò significa anche che occorre selezionare un corpo 
scaldante di maggiori dimensioni per ottenere la potenza nominale di 55 W/elemento (con riferimento 
all’esem pio relativo al primo rigo della Tabella 11). 

Oltre al comportamento del corpo scaldante occorre anche verificare che la portata che ad esso 
perviene sia quella di progetto e cioè che sia verificata la relazione: 

 
2

m r
p m r cs amb amb

T TQ mc T T C T C T
       

 
  

Ne consegue che non basta indicare, nel calcolo della rete di distribuzione,  la sola  T fra 

mandata e ritorno del fluido per avere la suddetta congruenza ma occorre anche verificare che  Tcs-amb 
sia quello desiderato (50 °C nel caso di valore nominale) o che si sia scelto il corpo scaldante con superfice 
corretta per i valori effettivi di scambio. 

C an ali p er la d istrib u zion e d ell’aria 

R elazio n i an alo ghe p o sso n o  essere tro vate p er i can ali d‟aria. I p assi di calco lo  so n o  in  tutto  sim ili 
a quan to  detto  in  p receden za p er le reti p er l‟acqua. O cco rre ten ere p resenti che tutti i terminali 
(d iffuso ri e b o cch ette p er l‟aria) so n o  alla stessa p ressio n e atm o sferica e quin di un a rete di distrib uzio n e 
p er l‟aria è fatta di circuiti ap erti. 
 Il primo tratto, quello principale uscente dalla soffiante di mandata, si dimensiona fissando la 

velocità di uscita variabile fra 4 ÷ 8 m/s. Si calcolano le grandezze relative,  , w, Deq. La perdita 
specifica di pressione così ottenuta si attribuisce, costante, agli altri tronchi del circuito mediante 
la procedura iterativa seguente. 

 Il diametro equivalente è legato alla perdita specifica dalla relazione: 
0.36

0.215eq
mD





   [105] 

ove le unità di misura sono: Deq [mm], m [m³/h],   [mm. c.a.]; 
 Dato il diametro equivalente occorre scegliere una dimensione (nel caso di canali rettangolari) e 

calcolare la seconda mediante la relazione: 
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 
 

0.625

0.251.3eq

a b
D

a b





  [106] 

ove, si ricordi, si suppone che si mantengano costanti le perdite di pressione. Di solito le 
dimensioni pratiche di a e di b variano a passi di 50 mm e pertanto scelte le dimensioni effettive si 
ricalcala, tramite la stessa [106] il Deq. 
 Calcolare la perdita specifica di pressione reale conseguente al diametro equivalente reale 

calcolato mediante abaco o con la relazione: 
1.8

5787500reale
eq

m
D

 


 

con d [mm], m [m³/h],   [mm. c.a.]; 
 Calcolare la velocità effettiva del fluido corrispondente al diametro equivalente selezionato 

mediante abaco o mediante la relazione: 
0.556 0.7780.21w d    

con d [mm], w [m/s],   [mm. c.a.]; 
 calcolare le perdite distribuite del ramo, di i ip L  , e le perdite concentrate e quindi le perdite 

totale del ramo; 
 ripetere le fasi precedenti per tutti i rami e quindi calcolare le perdite totali di ogni circuito 

mediante la relazione circuito iRami
p p   ; 

 ripetere il calcolo per tutti circuiti tenendo conto che i tratti comuni sono già dimensionati 
(partendo dai circuiti più lunghi) e che di questi si conoscono le perdite specifiche vere e quindi 
nel calcolo della media si deve tenere conto solamente dei rami ancora da dimensionare e della p 
che hanno disponibile; 

 Confrontare le cadute di pressione di tutti i circuiti e provvedere al calcolo delle resistenze di 
compensazione (rispetto alla caduta di pressione maggiore) de circuiti più favoriti; 

 V erificare la scelta della so ffian te di m an data ed, even tualm en te, dell‟aria di ripresa. 
P er la distrib uzio n e dell‟aria o cco rre sem p re p revedere le serran de di rego lazio n e sia n ei canali 

principali che a monte dei diffusori e delle bocchette di immissione per ottenere le effettive condizioni 
di lavoro di ciascun componente. 

Verifiche di funzionalità 

A n ch e p er le reti di distrib uzio n e dell‟aria o cco rre verificare ch e i term in ali (bocchette, diffu sori, … ) 
lavorino effettivamente secondo le loro caratteristiche funzionali.  

Così come i radiatori forniscono potenza diversa quando sono alimentati con  T=CS-amb <> 
50 °C (valore nominale) anche i diffusori hanno bisogno di avere la giusta differenza di pressione fra 
monte e valle per fornire il corretto valore di portata. 

Ne segue che, effettuato il calcolo della rete di canali, occorre verificare che il  p per ciascun 
diffusore sia quello di progetto e, nel caso risulti maggiore, inserire la coretta serranda di regolazione. 

7.7. PUNTO DI LAVORO DI UNA POMPA DI CIRCOLAZIONE 

Il p un to  di lavo ro  di un a p o m p a è dato  dall‟in tersezio n e fra la sua curva caratteristica e la curva di 
carico della rete alimentata.  

In pratica se teniamo conto del fatto che le perdite di pressione (sia distribuite che localizzate, 
come già visto in precedenza) sono proporzionali al quadrato della velocità e quindi anche della portata 

ZEqnNum930274
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allora si può riportare sopra il diagramma della curva caratteristica della pompa la parabola relativa alla 
curva di carico come indicato nella Figura 46.  

 
Figura 46: Punto di lavoro per circuiti chiusi 

Al variare della portata cambia il punto di lavoro della pompa. E ‟ sem p re b ene fare in  m o do  ch e il 
punto di lavoro della pompa corrisponda sempre al maggior rendimento, secondo quanto indicato in 
Figura 18. Se, ad esem p io , la p o rtata è gran de il p un to  di lavo ro  si sp o sta verso  l‟asse delle ascisse co n  
valori del rendimento troppo bassi. In questi casi occorre cambiare modello di circolatore tramite il 
diagramma a zone (vedi Figura 20) ovvero costruire accoppiamenti in parallelo di pompe. 

Per i circuiti aperti si ha una situazione analoga rappresentata in Figura 47 e nella quale si osserva 
ch e la curva di carico  n o n  p arte dall‟o rigin e, co sì com e si è o sservato  n el §7.4. 

 
Figura 47: Punto di lavoro per circuiti aperti 
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7.8. PUNTO DI LAVORO DI UNA SOFFIANTE 

Quanto detto per i circuiti ad acqua vale anche per i canali ad aria. Il punto di lavoro di una 
soffiante è il punto di intersezione della curva caratteristica con la curva di carico della rete, come 
indicato nella Figura 48. In essa si ha anch e l‟in dicazio n e della variazio n e del p un to  di lavo ro  della 
soffiante al variare della curva di carico. 

 
Figura 48: Punto di lavoro di una soffiante 

7.9. BILANCIAMENTO DELLE PORTATE 

Metodo delle portate nominali 

Quando si bilancia una rete di distribuzione variando le portate occorre variare la prevalenza 
19applicata mediante la relazione: 

0.525

1
1

pm m
p

 
   

    [107] 

ove si ha: 
 1m  portata di bilanciamento (nuovo valore da assegnare), (kg/s) o (L/h); 
 m portata del circuito da bilanciare, ), (kg/s) o (L/h); 
 p1 nuova prevalenza, (Pa) o (mm c.a)
 p prevalenza del circuito da bilanciare, (Pa) o (mm c.a)

La [107] si b asa sull‟ip o tesi ch e le perdite di carico  to tali risultan o  dipendenti dalla portata di 
fluido con potenza di valore 1.9. Questa relazione vale abbastanza bene per tubazioni (in acciaio o in 
rame) per acqua. 

Il rapporto fra le portate: 

                                                 
19 Con questo termine si indica anche la p creata dalla pompa. Nel S.T. si suole indicarla in (mm. c.a) mentre nel S.I. 

è espressa in (Pa). 
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1mk
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



  [108] 

determina anche la variazione da applicare, per ogni derivazione o corpo scaldante della rete di 
distribuzione, dopo il bilanciamento. 

Modalità operative del bilanciamento 

Se due circuiti aventi portate e prevalenze assegnate debbono confluire in un nodo essi debbono 
presentare la stessa caduta di pressione al nodo.  

Allora se si conoscono le portate di ciascun circuito e le loro cadute di pressione si possono 
bilanciare secondo tre criteri: 
 Bilan ciam en to  alla p revalen za m aggio re: in  questo  caso  si varia la p o rtata dell‟altro  circuito 

mediante la [107] e poi si determinano le portate nei radiatori secondo il fattore [108]. Questo 
metodo garantisce una buona resa dei corpi scaldanti in quanto accresce la portata del circuito a 
prevalenza minore; in compenso crescono anche le velocità e quindi si può avere maggior 
rumorosità 

 Bilanciamento alla prevalenza minore: in questo caso si applicano le due relazioni precedenti al 
circuito che ha maggiore caduta di pressione. In questo caso decresce la portata nei corpi 
scaldanti del circuito che prima aveva prevalenza maggiore. In compenso non crescono le 
velocità e quindi si riducono i rischi di rumorosità. 

 Bilanciamento alla prevalenza media: si calcola il valore medio delle due cadute di pressione e si 
applicano la [107] e la [108] ad entrambi i circuiti. Questo metodo raggiunge un compromesso fra 
i due precedenti. 

Bilanciamento con valvole di taratura 

Oltre che agendo sulle portate si può agire sulle perdite di pressione provocate da opportune 
valvole tarate. In questo modo si fa in modo da avere la stessa p per tutti i circuiti. 

O cco rre avere l‟avvertenza di in serire in  o gn i circuito e nei rami principali queste valvole che 
so n o  caratterizzate dall‟avere un  co llare graduato  in  m o do  ch e ad o gn i giro  o  an che p arte di esso  si 
abbia una caduta di pressione calibrata e prevedibile, vedi Figura 49.  

I costrutto ri n e fo rn isco n o  diversi m o delli (valvo le diritte, a squadra, … ) e p er ciascun  m o dello , 
in funzione anche del diametro nominale, forniscono le curve di taratura del tipo di quelle riportate in 
Figura 50. 

 
Figura 49: Foto di una valvola tarata per bilanciamento 
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Figura 50: Curve di tarature per le valvole di regolazione delle perdite di pressione  

Esempio di equilibratura delle reti 

L e reti a rito rn o  diretto  p resen tan o  l‟in co n veniente di avere lunghezze dei percorsi dei vari circuiti 
diverse a seconda della distanza dalla pompa di circolazione. 

 
Figura 51: Esempio di rete a ritorno diretto con equilibratura dei circuiti  
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In Figura 52 si ha un esempio di calcolo delle cadute di pressione per i vari circuiti della rete di 
distribuzione di acqua da un refrigeratori a 6 fan coil: si può osservare come il circuito relativo al fan 
coil più lontano abbia una caduta di pressione di 20 kPa mentre quello più vicino ha una caduta di 10 
kPa. Pertanto una rete a ritorno inverso può spesso essere squilibrata. 

   
Figura 52: Cadute di pressione nei vari circuiti della rete a ritorno diretto  

Nella stessa Figura 52 si ha l‟in dicazio n e di un a valvo la di taratura ch e deve p ro vo care un a caduta 
di pressione pari alla differenza fra la caduta massima e quella del circuito in elaborazione. 

8.  CIRCOLAZIONE DEI FLUIDI BIFASE 
Un fluido si dice bifase quando è costituito da due fasi fisiche distinti una liquida ed una gassosa. 

Una miscela di acqua ed aria, ad esempio, costituisce una miscela bifase, come pure una miscela di 
acqua e vap o re d‟acqua in  equilib rio  co n  essa. L ‟in teresse scien tifico  e tecn ico  p er queste miscele è 
grandissimo per le notevoli applicazioni che si possono avere. Si pensi, ad esempio, agli impianti 
nucleari20, agli impianti solari21, agli impianti termotecnici civili ed industriali (si pensi alle caldaie e ai 
generatori di vapore). Il moto delle miscele bifase pone diversi problemi di calcolo fluidodinamico per 
le diverse azioni inerziali che esercitano la fase liquida e la fase gassosa. 

In  gen erale un o  studio  an alitico  co m p leto  rich iede l‟ap p licazio n e delle equazio n i di N avier Sto kes 
e dell‟energia (vedi Convezione termica) sia per la fase liquida che per quella gassosa.  

                                                 
20 Nei reattori ad acqua bollente si ha una circolazione di acqua con piccole percentuali di  vapore in equilibrio 

termico. Questo fluido assolve sia alle funzioni di refrigerazione che di moderazione neutronica. 
21 Le centrali eliotermiche di potenza utilizzano sia miscele acqua-vapore (centrali tipo Francia) che di metalli liquidi 

(Sodio fuso o leghe NaK o similari). Anche i collettori a vetro usano una miscela bifasica costituita da freon liquido e 
aeriforme. 
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Inoltre, a causa dei diversi regimi di moto che si possono instaurare nel moto bifase (vedi dopo), 
si ha la doppia necessità di scrivere ed integrare le suddette equazioni di equilibrio sia nel dominio dello 
spazio (cioè in zone omogenee) che del tempo (condizioni tempo varianti). 

Se il moto dei fluidi bifase è associato anche ad uno scambio energetico (ad esempio in un tubo 
bollitore di una caldaia o di un impianto nucleare) allora si hanno, contemporaneamente ai fenomeni 
fluidodinamici, fenomeni di cambiamento di fase (ebollizione e/o condensazione) che complicano non 
p o co  le equazio n i di b ilan cio . C o sì, ad esem p io , perdite di p ressio n e n ell‟eb o llizio n e so tto raffreddata 
sono più elevate di quelle in  eb o llizio n e o rdin aria e p ur tuttavia l‟in crem en to  n o n  è eccessivo . 

Le perdite di pressione bifase sono sempre maggiori di quelle monofasi e pertanto occorre 
sempre stimarle correttamente per evitare problemi di sottodimensionamento delle pompe di 
circo lazio ne. L ‟equazio n e dell‟en ergia già vista all‟in izio  del co rso  so tto  fo rm a di equazio n e di B ern o ulli 
generalizzata può essere scritta in forma differenziale nella forma: 

2

2
mdLwdw dl wdp gdz

v d v v
       

R ico rdan do  l‟equazio n e di co n tin uità m wS  l‟equazio ne di B ern o ulli gen eralizzata si p uò  
ancora scrivere nella forma: 

2 2

2 2

1
2

mdLm mdp dv dz vdl
S d S v

     
 

 A) 

ove si ha il seguente simbolismo: 
   peso specifico del fluido, kg/m³;
   densità del fluido, kg/m³;
 v  volume specifico del fluido, m³/kg;
 w velocità del fluido, m/s;
 Lm lavoro motore sul fluido, J/kg; 
   fatto re d‟attrito  del co n do tto ;
 d  diametro (o diametro equivalente) del condotto, m;
 l  lunghezza del condotto, m;
 p pressione nel fluido, Pa;
 m portata di massa del fluido, kg/s.
 g  accelerazione di gravità, m²/s. 

Si osservi che qualora ci riferisce alla velocità media del fluido nella sezione di passaggio del 
condotto occorre tenere conto, nelle precedenti relazioni, di un fattore pari a 1.2 per moto turbolento e 
1.8 per moto laminare, cioè occorre scrivere w al posto della sola velocità. 

A  questa equazio n e si asso cia l‟equazio n e dell‟energia p er sistem i ap erti stazio n ari: 
2

1 2 2
wq l gz h

 
    

 
 

ove si è indicato con: 
 h  l‟en talp ia del fluido , J/kg; 
 q  il calo re fo rn ito  all‟un ità di m assa di fluido , J/kg; 
 l=lm+lr il lavo ro  to tale fo rn ito  all‟un ità di m assa di fluido , J/kg. 

D ata l‟arb itrarietà n ella scelta delle sezio n i di in tegrazio n e si fa in  m o do  da no n  avere, all‟in tern o  
del condotto in esame, alcun organo motore e pertanto possiamo annullare il lavoro motore presente 
nelle precedenti equazioni. 

In tegran do  l‟equazio n e di B ern o ulli generalizzata fra due sezioni 1 e 2 prive di organi motori si 
ottiene la seguente espressione: 
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 


2 22 2

1 2 2 12 21 1

1
2

GravimetricheSlip Attrito

m dz mp p v v vdl
S v S d

     
 

      
  B) 

Questa equazione dice chiaramente che la differenza di pressione fra la sezione iniziale e finale 
nel condotto esaminato è somm a dei tre term in i a seco n do  m em b ro  ch e esp rim o n o , n ell‟o rdin e: 
 le perdite di pressione per effetto della variazione di energia cinetica (perdite di slip); 
 p er p erdite p er alleggerim en to  term ico  do vute all‟azio n e della gravità; 
 le perdite di attrito totali dovute alla viscosità del fluido. 

Nel caso di moto bifase le perdite di slip debbono tenere conto anche delle diverse velocità delle 
d ue fasi e quin di dell‟attrito  virtuale ch e si vien e a determ in are n el m o to  relativo  (sco rrim en to  o  slip) 
della fase più veloce rispetto a quella più lenta. Questo termine presenta notevoli difficoltà di calcolo 
anche in considerazione del tipo di moto che si instaura nel condotto. Le perdite gravimetriche sono 
certamente le più semplici da valutare, come si vedrà nel prosieguo. Le perdite di attrito sono 
n uo vam en te co m p lesse da determ in are p ro p rio  p er l‟etero gen eità del fluido  b ifase e del tip o  di m o to  n el 
condotto. 

8.1. TIPI DI MOTO BIFASE 

Per condotti verticali si è avuto modo di esaminare i regimi di flusso che si instaurano durante 
l‟eb o llizio n e din am ica in  un  tub o  b o llito re, co m e illustrato  dalla Figura 53. I regimi possono essere: 
 Moto a bolle: il vapore si muove sotto forma di bolle sparse in una matrice di liquido; 
 Moto a tappi: il vapore è presente in quantità elevate e tali da creare, per coalescenza fra bolle 

vicine, dei veri e propri tappi interni al condotto; 
 Moto anulare: il liquido si muove in aderenza alle pareti e il vapore nel cuore interno della 

sezione del condotto; 
 Moto a nebbia:  il liquido è quasi del tutto evaporato ed occupa tutto il volume disponibile 

mentre il liquido, in quantità residuali, si muove sotto forma di minute goccioline sparse nella 
matrice di vapore. 

CONVEZIONE MONOFASE

MOTO A BOLLE

MOTO A TAPPI

MOTO ANULARE

MOTO A NEBBIA

LIQUIDO

 
Figura 53: R egim i d i m oto in  con d otto vertica le d u ra n te l’eb olliz ion e 
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Ciascuna di queste tipologie di flusso richiede un tipo di analisi particolare per la necessità, come 
so p ra accen nato , di do vere in tegrare le equazio n i di N avier Sto kes e dell‟en ergia in zo n e di spazio 
spesso determinate casualmente e quindi senza alcuna possibilità pratica di previsione analitica. 

D el resto  an ch e l‟istaurarsi del regim e di m o to  n o n  è facile da p revedere anche se esisto n o  alcun e 
mappe sperimentali che delimitano, certamente non in modo preciso, i campi di esistenza dei vari 
regimi di flusso. 

Oltre ai regimi visti in precedenza si ha il moto stratificato nel quale la fase liquida si mantiene, per 
gravità, in basso e la frazione aeriforme nella parte superiore sotto forma di bolle. L‟in staurarsi di un 
regime di moto piuttosto che un altro dipende fortemente dai rapporti delle portate della fase liquida e 
della fase aeriforme. I profili di velocità nel moto bifase non hanno una definizione ben precisa, come 
del resto si può intuire, e spesso si ricorre a rappresentazioni fittizie di tipo polinomiali determinate con 
esperienze mirate per particolari regimi di moto. 

In Figura 54 si h a un  esem p io  di regim i di flusso  p er l‟eb o llizio n e in  co n do tti o rizzo n tali. 

MOTO A BOLLE

MOTO A TAPPI

MOTO ANULARE

MOTO STRATIFICATO

 
Figura 54: R egim i d i m oto in  con d otto oriz z on ta le d u ra n te l’eb olliz ion e 

8.2. CALCOLO DELLE PERDITE DI PRESSIONE IN REGIME BIFASE 

In calcolo delle perdite di pressione nel moto bifase è stato oggetto di studi da diversi decenni.  
Inizialmente in mancanza di sperimentazioni pratiche si è cercato di proporre metodi analitici 

basati su ipotesi di moto semplificati e in particolare immaginando che il fluido complessivo bifase 
fosse determinato dalle caratteristiche medie di un fluido omogeneo opportunamente definito. 

N egli an n i „settanta si sono avute le prime sperimentazioni di Martinelli e Nelson che hanno 
portato alla definizione di metodi semiempirici ritenuti più affidabili di quelli solamente teorici. 

Negli an n i „novanta le esperienze di Thom hanno fornito una metodologia semiempirica completa 
oggi ritenuta fondamentale per il calcolo delle perdite di pressione in regimi bifasi. 

1.1.21. METODO DI HANFORD 
E ‟ un o  dei p rim i m eto di di calco lo  an alitico  delle perdite di p ressione e si base su alcune ipotesi 

semplificative che qui riportiamo: 
 Si suppone il condotto orizzontale e quindi si trascurano le perdite gravitazionali; 
 Il fluido si suppone omogeneo avente volume specifico dato dalla relazione: 

1 2

2m
v vv 

  
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ove, per miscele sature, si ha, come si ricorda dalla Termodinamica:  l v lv v x v v    con vl 
volume specifico del liquido, vv volume specifico del vapore ed x titolo della miscela. Inoltre il punto 1 
in dica l„in gresso  del co n do tto  e 2 l‟uscita. La velocità media del fluido è data dalla relazione inversa di 
Leonardo: mw S  . Si definisce, inoltre, la fluidità (inverso della viscosità newtoniana) data dalla 

relazione: 
1 1

l v

x x
  


   

con la solita convenzione sui pedici. La fluidità media del fluido omogeneo è data, analogamente 
a quanto visto per volume specifico medio, dalla relazione: 

1 2

2m
  

  

essendo 1 e 2 l‟in gresso  e l‟uscita del co n do tto  con siderato . Nel caso di un tubo bollitore o in 
ogni caso  co n  scam b i term ici co n  l‟estern o  l‟ip o tesi di un  fluido o m o gen eo p er lun gh i co n do tti ap p are 
poco realistica e in ogni caso fortemente dipendente, per via dei volumi specifici e delle viscosità, dalle 
pressioni locali nelle sezioni di condotto. Pertanto si può suddividere il condotti in tratti di piccola 
lun gh ezza all‟in tern o  dei quali le ip o tesi di o m ogen eità ap p aio n o  m aggiorm en te valide. P er o gn i 
co n do tto  si p uò  scrivere, co n  l‟ip o tesi dz=0, l‟equazio n e di B ern o ulli: 

 ( ) ( )
2 2

( ) ( ) ( ) ( ) ( )
1 2 2 12 2

1
2

i i i i i i i
m

m mp p v v v l
S S d

   
 

 

ove co n  l‟ap ice (i) si intende il generico tratto del condotto.  
In pratica partendo dal primo tratto,  nel quale è nota la pressione (1)

1p , si determina la pressione 
di uscita (1)

2p  che è poi la pressione di ingresso del secondo tratto, cioè si ha (2) (1)
1 2p p  e così via per 

gli altri tronchi fino ad arrivare alla p2  d‟uscita dell‟ultim o  tro n co  ch e co in cide co n  la p ressio n e fin ale 
all‟uscita del co n do tto . 

In definitiva la somma delle equazioni parziali dei sin go li tratti p o rta all‟equazio n e to tale: 

 
2 22 2

( ) ( ) ( ) ( ) ( )
1 2 2 12 2

1 1

1
2

i i i i i
m

m mp p v v v l
S S d

     
 

Il coefficiente di attrito  può essere calcolato con la classica relazione di Weissbach valida per 
tubi lisci: 

-0.2x=0.184 Re  
p er cui p er o gn i sin go lo  tratto  si p uò  scrivere l‟equazio n e di b ilancio 22: 

 ( ) ( )
1.8 1.2 0.22

( )( ) ( ) ( ) ( )
1 2 2 12 0.184

2
i i ii i i i

m

dm mp p v v v l
S S


      
 

 
 

Per calcolare il volume specifico medio, vm, occorre conoscere come varia il titolo in funzione 
della lun gh ezza e della p ressio n e p arziale del tratto co n siderato . L ‟equazio n e dell‟en ergia p er il sin go lo 
tratto (sempre supposto orizzontale) diviene: 

2
( ) ( )

2
i i

e
wq h

 
   

 
 

                                                 
22 Si ricordi che è Re wd wd dm S         e quindi è 

   
0.2 0.2

0.20.184Re 0.184 d m
S 


   . 
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L ‟en talp ia della m iscela bifase in una generica sezione (i) è dato da: 
lh h xr   

ove r è il calore latente di vaporizzazione alla pressione parziale nel tratto. Fra le sezioni 1  e 2  di 
ciascun tratto si ha: 

1,2 2 2 1 1lh r x r x     

ove r2 ed r1 sono i calori latenti di vaporizzazione alle pressioni p2 e p1 ed è: 

2 1l l lh h h    

la variazione delle entalpie specifiche del liquido alle pressioni suddette. Combinando le 
p receden ti equazio n i si h a, p er la velo cità m edia, l‟esp ressio n e: 

 l v l
m mw v v x v v
S S

     
 

 

Pertanto si ha: 

   1 2 1 1

2 2 2 2

2 12 122 2 l v l l v l
w m v x v v v x v v

S
            


 

ove vl e vv sono note una volta conosciute le pressioni p2 e p1.  
Si osservi che i volumi specifici del liquido, non appena il titolo x supera qualche centesimo, 

divengono trascurabili di fronte ai volumi specifici del vapore, per cui la precedente diviene: 

2 1

2 2
2 2 2 2
2 122 2 v v

w m x v x v
S
    


 

Con gli sviluppi sopra esposti si può applicare il metodo di Hanford per approssimazioni 
successive. Nota la pressione iniziale del prima tratto si stima la pressione di uscita dello stesso tratto e 
si calcola la x2 dello  stesso  tratto  (even tualm en te riso lven do  l‟equazio n e di 2° grado  so p ra in dicata).  

A questo scopo, trascurando il termine cinetico (di solito piccolo rispetto ai termini termici) si 
può scrivere: 

(1) (1) (1) (1) (1) (1)
1 1 1 2 2eq h r x r x    

Il calore fornito (1)
eq  può essere calcolato dalla relazione: 

(1)
(1)

1

1 l

eq qbdz
m

   

con b perimetro del condotto. nota (1)
2x  si ricava (1)

2v  dalla relazione: 

 2 2 2

(1) (1) (1) (1) (1)
2 2l v lv v x v v    

e quindi: 
(1) (1)

(1) 1 2

2m
v vv 

  

Si calcola poi: 
(1) (1)

(1) 1 2

2m
  

  

Ora si ricava il valore della pressione di uscita (1)
2p  che di solito differisce da quella inizialmente 

stimata. Se la differen za è m in o re dell‟erro re m assim o  to llerab ile allo ra si p ro cede co n  il tratto  
successivo reiterando le operazioni appena descritte.  
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N el caso  di differen za m aggio re dell‟erro re am m issib ile allo ra si assum e la (1)
2p  appena calcolata e 

si riparte per una nuova iterazione fino a quando la differenza fra il valore di calcolo attuale e quello del 
ciclo  p receden te è m in o re dell‟erro re am m issib ile. 

La caduta di pressione totale è quindi data da: 

 ( ) ( )
1,2 1 2

1

i N
i i

i
p p p





    

Osservazioni sul metodo di Hanford. 

L ‟ip o tesi di m o dello  o m o gen eo , alla b ase del m eto do  di H an fo rd, p resup p o n e ch e la fase 
aeriforme sia in percentuale piccolissima (o che si abbia moto a nebbia) o che la pressione media sia 
elevata e vicina alla pressione critica del fluido.  

Si ricordi, infatti, che alla pressione critica non si ha differenza fra la fase liquida e quella 
aerifo rm e. In  queste co n dizio n i la p recisio n e del m eto do  è dell‟o rdin e del 30%  ch e, in  m ancan za di altri 
dati sperimentali, è da considerarsi buona per le applicazioni impiantistiche. 

Nelle situazioni diverse da quelle sopra indicate il metodo di Hanford commette errori non 
trascurabili. E va utilizzato con molta cautela. 

1.1.22. CONDOTTI VERTICALI - CALCOLO DELLE PERDITE GRAVIMETRICHE 
Nel caso di condotti verticali occorre valutare anche il termine gravimetrico (prima del tutto 

trascurato), cioè il termine: 
2

. 1grav
dzp
v

   

Vediamo adesso una semplice metodologia per effettuare questo calcolo. Si supponga di avere un 
flusso termico uniforme lungo la lunghezza del condotto e che il salto di pressione sia piccolo23.  

Allora si può scrivere: 
edq rdx  

ovvero: 

e
qbdq dz rdx
m

 


 

con z lun gh ezza del co n do tto  a p artire dall‟in gresso , b il perimetro e q il flusso termico specifico 
(J/m²). Questa relazione ci dice che la variazione del titolo è proporzionale alla lunghezza progressiva, 
per cui, supponendo che sia x1=0, si ha: 

    2
1l v l l v l

xv v x v v v z z v v
l

        

So stituen do  n ell‟esp ressio n e di pgrav si ha (per i=z2 –  z1) : 

 
 2 22 1

. 1
2

ln v v l
grav

v l l

v x v vdz z zp
v x v v v

 
  

  

Questa perdita va sommata alle perdite per slip e per attrito. 

1.1.23. METODO DI MARTINELLI E NELSON 
N egli an n i „settan ta, data la co m p lessità an alitica del p ro b lem a, si effettuaro n o  n um ero se 

esperienze per determinare le cadute di pressione in miscele bifasiche di acqua ed aria.  

                                                 
23 Il salto di pressione p è pari alla caduta di pressione totale e pertanto questo deve essere comunque limitato nelle 

applicazioni impiantistiche onde evitare eccessive potenze di pompaggio. 
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Inizialmente Lochkart e Martinelli definirono un moltiplicatore, Xtt, definito come radice quadrata 
del rapporto fra la caduta di pressione nella fase liquida e la caduta di pressione nella fase aeriforme ed è 
dato a sua volta dalla relazione: 

0.5 0.10.91l v l
tt

v l v

p xX
p x

 
 
                 

 

con x titolo del vapore e con il solito significato per gli altri simboli. In Figura 55 si ha 
l‟an dam en to  delle curve sp erim en tali che fo rniscono il moltiplicatore di Martinelli, Xtt, al variare della 
pressione e del titolo della miscela.  

Si osservi, però, che il titolo della miscela non è costante lungo il condotto per cui sarebbe 
necessario conoscere la legge di variazione di x e procedere a successive integrazioni. 

Successivamente sono state elaborate altre curve sperimentali alla base del metodo di calcolo 
semiempirico detto di Martinelli e Nelson. 

Se si suppone, almeno inizialmente, che il titolo vari linearmente fra ingresso e uscita (con x=0 in 
ingresso del condotto) e che vi sia somministrazione uniforme di calore allora Martinelli e Nelson 
definiscono il rapporto: 

2

1

Fa

Fla

pM
p





 

ove si ha il seguente simbolismo: 
 p2Fa caduta di pressione per attrito per moto bifase, Pa;
 p1Fla caduta di pressione per attrito per portata totale pensata di solo liquido, Pa.

In definitiva M (sempre >1) è il rapporto fra le cadute di pressione per attrito nelle reali 
condizioni di moto bifase rispetto a quelle che si avrebbero, sempre per attrito, se la portata totale fosse 
di solo liquido.  

Queste ultime sono calcolabili facilmente con i metodi della Fluidodinamica monofase visti nei 
precedenti capitoli e pertanto se si conosce M di possono calcolare le perdite di attrito bifase mediante 
la relazione: 

2 1Fa Flap M p    

M artin elli e N elso n  h an no  determ in ato  l‟an dam en to  sp erim en tale di M partendo dalle curve di 
Lochkart –  M artin elli, com e rap p resen tato  n ell‟ab aco  di Figura 56.  

L ‟ab aco  fo rn isce M al variare della pressione nel condotto per assegnato titolo, x2, in uscita.  
Si osservi come sia sempre M>1 (quindi le perdite bifase sono sempre maggiori di quelle 

m o n o fase) e co m e le curve ten dan o  a co ngiun gersi p er la p ressio n e critica dell‟acqua (222 b ar) laddo ve 
non si ha più alcuna differenza fra la fase liquida e il vapore. 

Se il titolo in ingresso è x1,0 allora si può procedere in questo modo, vedi Figura 57: 
 si calcola la M1 corrispondente alla caduta di pressione fittizia di un condotto avente titolo in 

ingresso nullo e in uscita pari ad x1; 
 Si calcola M2  per un condotto fittizio nelle condizioni di titolo in ingresso 0 e in uscita x2; 
 Si calcola il fattore M per condotto con titolo in ingresso x1 e in uscita x2 dalla differenza: 

1 2M M M   

pertanto le perdite di pressione sono date da: 
 2 2 1 1Fa Flap M M p     
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Figura 55: Diagramma del moltiplicatore X tt di Martinelli 
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Figura 56: Abaco di Martinelli e Nelson per M 

Ricordando quanto detto per le cadute totali di pressione: 
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  tot
Slip Gravimetrico Attrito

p p p p       

il metodo di Martinelli e Nelson consente di calcolare le cadute di pressione per attrito. 

x=0 x=x1 x=x2

L1 L2

M1

R1

M2

R2

 
Figura 57: Condizioni iniziali con titolo non nullo 

Il termine relativo alle cadute di pressione per slip può essere calcolato, sempre 
sperimentalmente, ponendo: 

 
2 2

2 12 2slip
m mp v v R
S S

   
 

 

con R (ove è, per quanto detto in precedenza, 2 1R v v  ) coefficien te dato  dall‟abaco  di Figura 
58. 
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Figura 58: Abaco di Martinelli e Nelson per R 
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Nel caso in cui le condizioni iniziali del titolo siano x10 allora, in analogia a quanto detto per il 
calcolo di M e con riferimento alla Figura 57, si procede così: 
 Si calcola R1 per il tratto fittizio con titolo variabile da 0 a x1; 
 Si calcola R2 per il condotto fittizio con titolo variabile da 0 a x2; 
 Si calcola il valore reale: R=R2 –  R1. 

Se nel condotto si hanno anche perdite concentrate allora queste debbono essere valutate per la 
sola fase liquida per una portata di liquido equivalente a quella totale. Le perdite di attrito p1Fla sono 
date da: 

   1 1 1Fla Fla Fladistribuite concentratep p p      

e le perdite bifase totali corrispondenti si calcolano moltiplicando le precedenti per il coefficiente 
R calcolato come sopra specificato. 

Osservazioni sul Metodo di Martinelli e Nelson 

Questo metodo ha come ip o tesi di b ase l‟esisten za di due fasi distin te e quin di è in  n etta 
contrapposizione con il modello omogeneo di Hanford. Il modello di riferimento è, quindi, quello del 
moto anulare o del moto stratificato o anche del moto a nebbia. 

I risultati ottenuti con questo metodo vanno bene fino a titoli elevati in uscita (anche x2=1). Esso 
è tutt‟o ggi quello  p iù utilizzato  p er p o rtate sp ecifiche (m S ) elevate. 

I risultati sperimentali, ottenuta da Muscettola del CISE24, mostrano una sopravvalutazione di 
circa il 20% delle perdite di pressione. Ciò è ritenuto dai progettisti una garanzia di maggior sicurezza 
sia p er le in evitab ili incertezze p ro gettuali che p er ten ere co n to  dell‟in vecch iam en to  del co n do tto  e 
quin di dell‟aum en to  delle p erdite localizzate25. Il metodo di Martinelli e Nelson non fornisce metodi di 
calcolo del termine gravimetrico e quindi occorre effettuare separatamente questo calcolo, ad esempio 
come illustrato in precedenza (§1.1.22). 

1.1.24. METODO DI THOM 
Le ipotesi di base sono quindi analoghe a quelle di Martinelli e Nelson e pertanto si ha un 

modello a fasi separate. Le ipotesi di base sono quindi analoghe a quelle di Martinelli e Nelson e 
pertanto si ha un modello a fasi separate. 

E ‟ il m eto do  sem iem p irico più recente e si basa su una serie di esperienze effettuate negli USA 
negli anni cinquanta  su miscele di acqua e vapore con pressioni variabili da 1 a 210 bar e titolo in uscita 
variabile da 3 al 100%.  

Il flusso termico è stato mantenuto uniforme (ipotesi fondamentale) lungo la superficie laterale 
del condotto. Il titolo iniziale è sempre pari a zero. 

Il metodo di Thom permette di calcolare tutti e tre i termini (slip, gravimetrico e attrito) per la 
caduta totale di pressione mediante abachi sperimentali. 

Analogamente a quanto visto in precedenza si ha ancora la definizione del fattore M: 
2

1

Fa

Fla

pM
p





 

anche se le curve sono diverse da quelle di Figura 56. Le nuove curve sono riportate in Figura 59. 
Le curve hanno andamento simile e convergono in corrispondenza della pressione critica 

d ell‟acqua. Si o sservi an co ra ch e T h o m  tiene co nto  dell‟in fluen za dello  sco rrim en to  fra le due fase 
mentre Martinelli e Nelson non ne tenevano conto. 

Le perdite di slip si definiscono mediante la relazione: 
                                                 
24 Il CISE (Centro Italiano Studi Elettricità) si è occupato di impianti nucleari proponendo, negli anni sessanta, un tipo di 

reattore prova elementi combustibili denominato CIRENE (CIse REattore Nebbia) caratterizzato dal moto a nebbia 
all‟in tern o  d ei can ali d i refrigerazio n e. 

25 L ‟in vecch iam en to  d el co n d o tto  p o rta al d ep o sito  d i m ateriali (in cro stazio n i) e all‟in crem en to  d elle asp erità in tern e. 
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2

2'slip l
mp R v
S

 


 

e quindi la formulazione è diversa da quella di Martinelli e Nelson anche per la presenza del 
volume specifico del liquido, vl. Il coefficiente R ’ è rip o rtato  n ell‟ab aco  di Figura 60 per vari titoli di 
uscita e per varie pressioni di ingresso. 

Infine le perdite gravimetriche sono calcolate mediante la relazione: 
.

.
.

1usc

ing

v

grav v
l

dzp L
v v

    

Il coefficiente  è dato  dall‟ab aco  di Figura 61 per titoli di uscita e pressione di ingresso variabili. 
La perdita totale di pressione nel tubo bollitore con titolo iniziale nullo è data da: 

  
2

12'tot l Fla
lSlip Gravimetrico Attrito

m Lp p p p R v M p
S v


         


 

Thom estende il suo metodo semiempirico anche al caso in cui non ci sia somministrazione di 
calore: in questo caso restano le formulazioni precedenti ma il termine di attrito va calcolato utilizzando 
l‟ab aco  di Figura 62 anziché quello di Figura 59.  

Gli altri coefficienti restano invariati. 
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Figura 59: Abaco di Thom per M 
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Per condizioni di ingresso diverse dal titolo nullo, come illustrato in Figura 57, si procede allo 
stesso modo già visto per Martinelli e Nelson utilizzando un condotto fittizio tale che per esso il titolo 
vari da x=0 ad x=x1. 

Osservazioni sul metodo di Thom 

Rispetto al metodo di Martinelli e Nelson questo metodo presenta errori minimi rispetto ai dati 
sperimentali.  

E ‟ ap p ro ssimato in eccesso quando le portate specifiche sono inferiori a 230 g/(cm².s). 
Il metodo è approssimato in difetto per portate specifiche elevate, cioè > 230 g/(cm².s). 
Il metodo di Martinelli e Nelson presenta sempre valori stimati in eccesso rispetto ai dati 

sp erim en tali e l‟erro re si riduce allo rquan do  il tito lo  di uscita si avvicin a al 100% . 
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Figura 60: Abaco di Thom per R 
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Figura 61: Abaco di Thom per 
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Figura 62: Abaco di Thom per M per condotto senza flusso termico 
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1.1.25. METODO DI CHENOVETH, MARTIN, LESTER 
Si tratta ancora di un metodo semiempirico di rapida applicazione per la progettazione di impianti 

in dustriali. L a sua validità si h a p er diam etri dei co n do tti >  2” (quin di tub i b o llito ri di caldaie e/o  
generatori di vapore) con miscela bifasica acqua –  aria o acqua –  vapore. 

Analogamente ai due metodi precedenti, si definisce il fattore M: 
2

1

Fa

Fla

pM
p





 

con M dati in Figura 63, ove le curve sono in funzione del rapporto fra le cadute di pressione per 
attrito nella sola fase vapore rispetto a quelle analoghe della fase liquida: 

1

1

Fva

Fla

p
p

 



 

Nel calcolare questo rapporto si immagina di calcolare le perdite di pressione per attrito prima il 
condotto con solo vapore di portata pari a quella totale e poi di solo liquido con analoga portata totale. 

In ascisse si ha la frazione di sezione occupata dal liquido, 1-, essendo  la frazione di vuoto 
defin ita dal rap p o rto  fra l‟area o ccupata dal vap o re risp etto  all‟area to tale della sezio n e del co n do tto : 

vS
S

   

Questo metodo non è molto indicato per basse pressioni. 
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Figura 63: fattore M per C-M-L 
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9.  STABILITÀ DEI TUBI BOLLITORI 
N egli im p ian ti in dustriali (caldaie, gen erato ri di vap o re, reatto ri ch im ici, … .) riveste gran de 

im p o rtan za la stab ilità e la sicurezza dei tub i b o llito ri all‟in tern o  dei quali si hanno i cambiamenti di 
stato  dell‟acqua (co m e di qualun que altra so stan za). 

I fen o m en i ch e p o sso n o  avven ire all‟in tern o  dei tub i b o llito ri so n o  m o ltep lici in  fun zio n e del 
flusso termico, delle proprietà termofisiche del fluido e della topologia d ell‟im p ian to . 

9.1. TUBO BOLLITORE ORIZZONTALE 

Si supponga inizialmente che il tubo bollitore sia orizzontale e a sezione costante, che sia nota la 
pressione di sbocco, p2, e che sia uniforme e costante il flusso termico lungo le pareti. 

Q uan do  n o n  c‟è eb o llizione a velocità elevate il numero di Reynolds varia poco con il variare 
della portata ponderale poiché alle diminuzioni di portata corrisponde, a parità di flusso termico, un 
incremento di temperatura del fluido secondo la relazione: 

 e
f p

Q c t t
m
 


 

essendo tf la temperatura del fluido e tp la temperatura della parete.  
Pertanto la viscosità diminuisce ed essendo: 

2

4Re m d mK
d  

 
 

 

si può ritenere che il rapporto m   si mantenga sensibilmente costante. Viceversa avviene se la 
portata ponderale cresce poiché si avrebbe una.diminuzione del salto termico ed un incremento della 
viscosità dinamica. 

L a caduta di p ressio n e nel co n do tto , n ell‟ip o tesi di assen za di eb o llizio ne e quin di co n flusso  
monofase, è data dalla solita relazione: 

2

22
L mp v
d S

 


 

ove per la relazione di Weissbach si ha: 
0.20.184Re   

che varia poco essendo Re sensibilmente costante, come sopra illustrato. 
Ne segue che possiamo scrivere, raggruppando i termini: 

2
1 2 1p p p K m      

che, in coordinate (p, 2m ), vedi Figura 64, è una retta p assan te p er l‟o rigin e e co efficien te 
angolare K1.(retta OR). 

Un diagramma più preciso potrebbe essere tracciato per punti calcolando le perdite di pressione 
effettive. La retta OR rappresenta le condizioni di funzionamento fino alla portata Bm  in cui inizia 
l‟eb o llizio n e so tto raffreddata (vedi cap ito lo  dell‟Ebollizione). Al di sotto di questa portata si hanno 
perdite di pressione crescenti (si ricordi che le perdite bifase sono sempre maggiori di quelle monofasi) 
al diminuire della portata di massa anche perché, a pari flusso termico, cresce il titolo di vapore 
presente.Allo sbocco abbiamo: 

2
eQ rx

m



 

ove x2 è il titolo finale della miscela. 
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Figura 64: Andamento delle pressioni al variare della portata 

Si ha, quindi, la curva BH di Figura 64 che si raccorda con continuità con la OR in quanto 
l‟eb o llizio n e n o n  si p resenta co n tem p o ran eam en te e n ella stessa fo rm a in  tutte le sezio n i del co n do tto . 

In corrispondenza ad un titolo x=0250,30 (a seconda dei casi), punto V della figura, si ha il 
massimo della caduta di pressione 1 2v vp p p  . Se la portata decresce ulteriormente allora p1 
diminuisce fino al punto S (dove si ha x=1) dove si ha la scomparsa del liquido allo sbocco.Una 
ulteriore diminuzione della portata comporta il surriscaldamento del vapore (si è quindi in regime 
nuovamente monofase ma di vapore e non più di liquido) con andamento lineare con una nuova K2. In 
realtà giunti nel punto Z si ha la bruciatura (burn out) del tubo bollitore. 

Si osservi che ci si può spingere fino al punto Z solo se il flusso termico specifico (cioè per unità 
di superficie) è basso. Con i valori correnti dei flussi termici si ha la bruciatura molto prima di arrivare 
ad S, più precisamente per x=0.70.8. 

Se il flusso termico è particolarmente elevato si può avere la bruciatura del tubo bollitore già 
d uran te l‟eb o llizio ne so tto raffreddata. 

1.1.26. PUNTO DI LAVORO DEL TUBO BOLLITORE 

Supponiamo di avere la pressione iniziale p1=pR , come indicato in Figura 64, ed introduciamo 
all‟in gresso  del co n do tto  un a resistenza localizzata (ad esempio un ugello) tale che si abbia una caduta di 
pressione data da: 
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2 2
2

2 '
2 2r

r w m vp r r m
v S

   
   

con r’ funzione della resistenza adottata. In figura si ha la rappresentazione della caduta di 
pressione con la retta p1RD formante con la p1RR (orizzontale) un angolo  tale che sia tag()= r’. 

Il significato fisico di queste rette appare evidente se si considera che per ogni valore della portata 
di massa msi hanno segmenti intercetti fra esse che rappresentano le cadute di pressione pr nella 
resistenza localizzata. 

I p un ti M  ed N  rap p resen tan o  p un ti di fun zio n am en to  in  p resen za dell‟ugello quan do  all‟im b o cco 
è applicata una pressione p=1R, co sì co m e i p un ti R , R ‟ rap p resen tan o  p un ti p o ssib ili di fun zio n am en to  
in  assen za dell‟ugello . In  co rrisp o ndenza dei predetti punti, infatti, la somma della caduta di pressione 
n ell‟ugello  pr e nel tubo bollitore eguaglia la caduta di pressione totale p1R – p2. 

I punti come R ed M sono punti di funzionamento stabile: infatti se per ragioni accidentali la 
portata aumenta o diminuisce si ha, rispettivamente, un difetto o un eccesso di pressione motrice che 
tende a ripristinare le condizioni primitive. 

N o n  si p uò  dire lo stesso  di R ‟ ed N ‟: in fatti un aum en to  acciden tale di p o rtata p ro vo ca un  salto 
repentino in R o in M (rispettivamente) mentre una diminuzione di portata tende ad esaltarsi portando 
il condotto alla bruciatura. 

Se si sceglie come pressione di imbocco p1K si può ottenere il funzionamento nel punto R con 
l‟in tro duzio n e di un a resisten za tale ch e sia: 

1 1
2' '

m
K Rp pr tag 

 


 

Per questo valore tracciamo la retta p1KR  tale che sia: 
1 1

2 2

"' '
m

K R

R

R R p ptag r
m

 
  


 

Q uesta retta in co n tra la curva delle p ressio n i, o ltre ch e in  R , an che in  K  e K ‟. D i questi p un ti so lo  
R  e K  so n o  relativi ad un  fun zio n am en to  stab ile m en tre K ‟ è in stab ile e si salta in  R  o  in K . Q uin di co n 
la scelta della pressione p1R per la pressione di imbocco una eventuale instabilità si ferma in K e 
pertanto, se la bruciatura avviene oltre questo punto, si può evitare il danno al tubo bollitore. 

Quando il funzionamento nel punto R è ottenuto con la pressione  p1R si è garantiti contro 
eventuali bruciature per ostruzioni accidentali aventi: 

2

''
R

RDr
m




 

mentre con la pressione p1K  questo valore diviene più elevato, fino a: 

2

" "'
R

R Dr
m




 

La pressione p1K presenta anche il vantaggio che, in caso di ostruzioni che portino il 
funzionamento nella curva VS, si ha ancora un funzionamento stabile e la bruciatura può essere evitata 
con maggiore facilità se si dispone di un apparecchio di allarme acustico. 

L a scelta della p ressio n e p ‟1H sulla tangente da R al punto H, oltre a migliorare le condizioni di 
sicurezza precedentemente citati (con riferimento alle ostruzioni accidentali) permette un ritorno 
auto m atico  delle co n dizion i dell‟arco  Z SH  al p un to R . Q uesto  n o n  è p o ssib ile co n  p ressio n i m in o re di 
p1V; infatti dalla Figura 64 si osserva che se:p1 < p1V p er il rito rn o  dell‟arco  SV  ed R  n o n  b asta rego lare 
la resistenza di imbocco ma occorre ridurre anche la potenza termica fornita in modo da avere una 
diminuzione di p1max (in corrispondenza di V). La scelta di una pressione di imbocco più elevata di p1B 
co n sen te il fun zio n am en to  in  tutte le co n dizio n i m edian te l‟in tro duzio n e di resisten za variab ili 
(saracinesche di regolazione); si possono, infatti, intersecare con la retta di carico tutti i punti della curva 
del tubo bollitore ed avere un funzionamento stabile. 
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In definitiva, la scelta della pressione a monte di un tubo bollitore va fatta oculatamente in base al 
grado di sicurezza che si desidera ottenere. 

Il raggiungimento di condizioni di optimum comporta la necessità di scegliere pressioni piuttosto 
elevate, in tro ducen do  all‟in gresso  del co n do tto  resisten ze co n cen trate (ugelli, saracin esch e, … ). Q ueste 
resistenze proteggono il tubo bollitore (che di solito funziona in parallelo ad altri tubi) dato che 
variazioni accidentali della portata nominale hanno minore peso. 

L ‟in tro duzio n e di ugelli allo  sb o cco  (anzich é all‟im b o cco ) esercita un a p ro tezio n e, nel sen so  che 
fa crescere la p ressio n e a m o n te. In  questo  caso  l‟eb o llizio n e in izia a temperature più elevate e quindi 
per portate minori. 

T uttavia, se l‟eb o llizio n e in izia allo ra le co n dizio n i risultan o  aggravate. L ‟ugello  p o sto  all‟im b o cco  
è sempre attraversato da solo liquido mentre se è posto allo sbocco è attraversato da una miscela di 
liquido e vapore e quindi producendo una resistenza maggiore. La portata, per conseguenza, diminuisce 
rapidamente e la bruciatura del condotto viene facilitata. 

9.2. TUBO BOLLITORE VERTICALE 

Lo studio dei tubi bollitori verticali è più complesso di quello prima mostrato di tubi orizzontali.  
Per questi condotti si possono avere due casi: 

 M o to  del fluido  dal b asso  verso  l‟alto : in  questo  caso  si h an n o  co n dizio n i di stab ilità m aggio ri 
rispetto ai tubi orizzontali; 

 M o to  del fluido  dall‟alto  verso  il b asso : le co n dizioni di sicurezza diminuiscono rispetto al caso di 
condotto orizzontale. 

1.1.27. CALCOLO DELLA PORTATA DI INIZIO E FINE EBOLLIZIONE 
A i fin i dell‟analisi della stab ilità e sicurezza di un  tub o  b o llito re è n ecessario  co n o scere le p o rtate 

di inizio e fine ebollizione. Si abbia, quindi, un condotto sottoposto a flusso termico Qe esterno 
(supposto costante ed uniforme). Il fluido entra alla temperatura ti con entalpia hl1 e ad una pressione p 
ch e p o ssiam o  riten ere co stan te. Il calo re n ecessario  p er avere l‟eb o llizio n e è pari a: 

,2 2 1

0

le l l

x

q h h


   

ove hl2 è l‟en talp ia del fluido  in  eb o llizio n e alla p ressio n e p e qe il flusso specifico (J/kg) da fornire 
al fluido. Noto il flusso totale esterno Qe e la portata totale di massa si calcola: 

,2l

e
e

Qq
m




 

Si può anche scrivere, per la portata totale e il flusso termico totale, la relazione globale di 
bilancio: 

2 1

e
i

l l

Qm
h h




  

essendo im la portata di massa di inizio ebollizione. 
Supponendo costante la pressione26 p del co n do tto , alla fin e dell‟eb o llizio n e l‟en talp ia del vap o re 

saturo vale: 

2 2 2v lh h r   

essendo r2 il calore latente di vaporizzazione alla pressione considerata. Il flusso specifico vale: 

2 2 1 2 12

1

l v l l l

x

q h h h r h


      

                                                 
26 Si ricordi che le cadute di pressione sono sempre mantenute basse per evitare grandi potenze di pompaggio per il 

moto del fluido nel condotto considerato. 
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e deve aversi: 

2 12
e

l l
f

Qh r h
m

  


 

ove fm  è la portata specifica di fine ebollizione. Risulta, pertanto: 

2 12

e
f

l l

Qm
h r h


 

  

Le cadute di pressione per portate di massa inferiori a quella di inizio ebollizione, im , si calcolano 
con le solite relazioni per flusso monofase (Weissbach): 

2 2

22 2
L w L mp v
d v d S

   


 

Per il calcolo di  si utilizza la solita correlazione per tubi lisci 0.20.184Re  . 
A llo rquan do  h a in izio l‟eb o llizio n e la caduta di p ressio n e va calco lata co n un o  dei m eto di p rim a 

esposti per le perdite di pressione in moto bifase, ad esempio con il metodo di Thom. 
Il titolo di vapore in uscita dal tubo bollitore si calcola mediante la già citata equazione 

dell‟en ergia: 

,2

2

1,2 2le
wq h gz

 
   

 
 

Ponendo x1=0 e trascurando il contributo dei termini meccanici (cinetico e gravimetrico) si può 
scrivere: 

1,2 2 2eq r x  

ovvero anche: 

2 2
eQ r x

m



 

Da questa relazione si calcola il titolo in uscita x2 al variare di m. Noto x2 si calcola la caduta 
totale di pressione: 

1 2

2

2

1,2 2 1,2 2FlaFa slip grav l
l

m Lp p p p M p R v
S v


       


 

con M, R e  calcolati con gli abachi di Thom27. 
Va osservato, infine, che la portata allo sbocco non può variare a piacere dovendo essere sempre 

inferiore alla velocità massima (per tubi a sezione costante) pari a quella del suono, come si è visto per il 
moto dei fluidi comprimibili. 

9.3. EFFETTI DELLA VARIAZIONE DI DENSITÀ NEL MOTO DEI 
FLUIDI IN CONDOTTI VERTICALI 

A ll‟in tern o  dei tub i b o llito ri o  dei can ali di refrigerazio n e degli im p ian ti n ucleari o  di reatto ri 
chimici si ha moto di fluido con cambiamento di densità, dovuta alle variazioni di temperatura lungo il 
condotto, che possono produrre problemi di instabilità se non adeguatamente controllati. 

A m b iam o  già tro vato  l‟equazio n e A ) ch e qui si rip ete riscriven do  diversam en te il term in e cin etico : 

                                                 
27 E ‟ o vvio  ch e lo  stesso  d isco rso  vale p er l‟ap p licazio n e d el m eto d o  d i M artin elli e N elso n  o ve, p erò , le p erd ite 

gravimetriche debbono essere stimate separatamente. 
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2

2

1
2

mdLwdw mdp dz vdl
v d S v

     


 

Integrando questa equazione fra le sezioni 1 e 2 (ingresso e uscita) e trascurando il termine 
dovuto al lavoro positivo del circolatore si ha: 

2 2 2

1 2 1 1 1

wdw dRp p dz
v v

       

In questa equazione occorre osservare che, per condotti a sezione costante, la variazione di 
volume specifico è di solito piccola e quindi le variazioni di velocità sono parimenti piccole e pertanto il 
termine cinetico apporta contributi trascurabili. 

Nel termine gravimetrici il peso specifico  varia con la temperatura secondo la legge: 
 1 11 t t       

con  coefficiente di dilatazione cubica (o di espansione isobaro già visto in Termodinamica) e t 
la temperatura corrente. La stessa relazione vale per la variazione della densità con la temperatura. 

Per saldi termici piccoli si può ritenere parimenti piccola la variazione di densità e pertanto si può 
utilizzare il suo valore medio,  , fra le due sezioni considerate e quindi la caduta totale di pressione 
diviene: 

   
2

1 2 1,2 1 2 1 1 11
p p R z z t t dz          

Sempre supponendo piccole variazioni dei parametri termofisici e linearizzando le variazioni con 
l‟altezza, p o ssiam o  an co ra scrivere: 

 
2

2 1
1 2 1 1 2 122 2

eQL m z zp p z z
d S cm

   



    




 

ove si è tenuto conto che è  2 1eQ c m t t  .  
L ‟ultim o  term in e (n egativo ) rap p resen ta l‟alleggerim en to  term ico  (thermal buoyancy) della colonna 

di fluido dovuto al riscaldamento subito ed è quello che determina il movimento del fluido nei casi di 
circolazione naturale28. 

La precedente equazione può essere così schematizzata: 
1.8

1 2                         (movimento verso l'alto)m
Bp p Z Am
m

    


 

1.8
1 2                      (movimento verso il basso)m

Bp p Z Am
m

    


 

ove A e B sono costanti di raggruppamento positive.  
G li in dici 1 e 2 si riferisco n o  sem p re all‟im b o cco  e allo  sb o cco , qualun que sia l‟o rien tam en to  del 

condotto.  
Si è anche supposto, secondo la relazione di Weissbach per tubi lisci, che sia 0.2Km    ed 

inoltre si è supposto /K   indipendente dalla portata e pari al suo valore medio fra le due sezioni 
considerate. 

                                                 
28 La circolazione naturale non è quasi mai utilizzata direttamente per il moto dei fluidi negli impianti ma rappresenta 

sempre un elemento di sicurezza da considerare quando viene meno la potenza motrice della pompa. Se il fluido può ancora 
circolare esso può trasportare calore e quindi mantenere la temperatura del canale sotto controllo. In un impianto nucleare o 
in un reattore chimico o  in  un  gen erato re d i vap o re l‟arresto  d el fluid o  all‟in tern o  d ei can ali p uò  p o rtare facilm en te a sco p p i 
estremamente pericolosi e distruttivi. 
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In Figura 65 si ha la rappresentazione grafica della caduta totale di pressione sia per moto verso 
l‟alto  ch e per m o to  verso  il b asso . In  essa so n o  rip o rtati an ch e gli an dam en ti dei sin go li term in i, 
B
m

, 1.8Am , Z per i due casi, secondo le precedenti equazioni. 

Nella figura la portata mè posta in relazione con p –  Z  p er il m o to  verso  l‟alto  e co n  p + Z 
per il moto verso il basso. Le curve in neretto rappresentano le combinazioni dei termini, come dianzi 
specificato. Al crescere della potenza ceduta al fluido la curva complessiva si sposta verso destra, 
allo n tan an do si da quella segn ata. Si o sservi che le due curve (m o to  verso  l‟alto  e m o to  verso  il b asso ) si 
raccordano, per continuità,  nel modo segnato a tratto punteggiato in figura. 

Quando la potenza cresce il termine 1.8Am  varia poco mentre cambia molto B
m

 essendo B   Qe. 

Le curve reali si arrestano in corrispondenza dei punti X nei quali ha in izio  l‟eb o llizio n e. A  p ien o  
carico, cioè per il massimo valore di Qe, l‟eb o llizio n e in izia, co m e si in tuisce,a valo ri p iù alti della p o rtata 
essen do  l‟aum en to  di tem p eratura dato  (p er quan to  detto  in  p receden za) dalla relazio n e: 

2 1
eQt t

c m
 


 

Pertanto quando ci si trova nelle condizioni di fluido lavorante in caldaia o in un reattore nucleare 
a potenza ridotta occorre fare in modo che il salto di temperatura dello stesso fluido sia il più possibile 
costante e pari al valore di regime precedente.  

Ciò si ottiene riducendo la portata m in modo proporzionale al calore Qe. 
Riducendo la portata mci si porta in corrispondenza del punto M  o del punto N (a seconda del 

verso del fluido) di Figura 65. Il movimento in corrispondenza di questi punti è stabile: infatti, se per 
qualsivoglia ragione la portata m cresce o diminuisce il punto di lavoro si sposta a destra o a sinistra e 
si determina un difetto di pressione motrice che tende a ripristinare le condizioni iniziali. 

Lo stesso succede a sinistra del punto B. A destra di B si ha, invece, instabilità e si tende verso la 
condizione del punto X di inizio ebollizione e quindi verso le condizioni di burn out del condotto. 
Anche per il tratto MB le condizioni operative non sono buone perché un aumento accidentale della 
resistenza può provocare, con relativa facilità, un salto nel tratto BX della curva. 

Tutte le circostanze sopra indicate debbono essere tenute in conto quando si progetta un tubo 
bollitore o un qualunque sistema nel quale il fluido lavorante funga da refrigerante per il sistema. 

In  defin itiva, in  b ase a quan to  detto , il m o to  verso  l‟alto  risulta sem p re stab ile. T uttavia sp esso  si 
preferisce il moto verso il basso per avere di migliori condizioni operative ai fini della protezione in 
caso di incidenti29. 

1.1.28. PROGETTO DEI CONDOTTI 
Si ten ga sem p re p resen te ch e l‟in izio  dell‟eb o llizion e p o rta sem p re ad avere m aggio ri p erdite di 

pressione e quindi aumenti consistenti della resistenza al movimento che facilitano le condizioni di burn 
out del condotto e pertanto occorre intervenire opportunamente per evitare che queste condizioni si 
raggiungano. Quando i tubi bollitori sono posti in parallelo (nei generatori termici e nei reattori nucleari 
si utilizza spesso questa configurazione) allora le condizioni operative divengono più critiche poiché 
l‟aum en to  della resisten za in  un  co n do tto  p o rta ad avere una n uo va ridistrib uzio n e della p o rtata n egli 
altri condotti e quindi si ha una variazione rispetto alle condizioni nominali di lavoro. 

Se si osserva la relazione precedentemente ottenuta: 

 
2

2 1
1 2 1 1 2 122 2

eQL m z zp p z z
d S cm

   



    




 

                                                 
29 N egli im p ian ti n ucleari, ad  esem p io , il m o to  verso  il b asso  co n sen te d i co n ten ere n ella zo n a in ferio re d ell‟im pianto 

il fluido caldo e radioattivo. 
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Figura 65: Caduta totale di pressione 

si può dire che il sistema prima dell‟eb o llizio ne risulta tan to  p iù stab ile quan to  p iù il term in e 

relativo alla variazione della densità, 2 1
1 2

eQz z
cm

  


, risulta piccolo rispetto a quello delle perdite per 

attrito, 
2

22
L m
d S





.  

Cadute di pressione molto maggiori delle variazioni di densità 

Se quest‟ultim o  è relativam en te gran de allo ra la p ro gettazio n e di co n do tti in p arallelo  p uò  essere 
effettuata con i metodi visti in precedenza per i condotti in serie e in parallelo. 
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Cadute di pressione piccole rispetto alle variazioni di densità 

Se il termine di variazione della densità prevale su quelle delle perdite di attrito allora si possono 
avere condizioni di instabilità e si procede iterativamente nella progettazione. 

In pratica si scelgono le pressioni di imbocco, p1, e di sbocco, p2, ed i diametri dei condotti. Si 
calcolano le portate imdei singoli condotti utilizzando la relazione precedente e quindi si calcola la 
portata totale 

1
i

N
m m



   . Se la portata totale mè inferiore a quella desiderata si modificano alcuni 

parametri di progetto e si ripete il calcolo fino al raggiungimento delle condizioni finali volute. 
Si osservi che è sempre necessario verificare, oltre alle condizioni di moto, anche quelle di 

congruenza relative alla trasmissione del calore e cioè che la superficie totale dei condotti sia tale da 
assicurare lo smaltimento del calore Qe e cioè che sia: 

1e i i ii N
Q K S t

 
   

Caso di circolazione naturale 

Spesso si desidera avere una circolazione del fluido di tipo naturale30 allora la driving force è proprio 
dovuta alla variazione di densità che è in diretta proporzione al calore ricevuto. Pertanto la velocità di 
regime nei condotti cresce se cresce la potenza termica ceduta e ciò provoca una sorta di uniformazione 
delle velocità n ei co n do tti ch e riduce le ten sio n i term ich e fra le varie zo n e dell‟im p ian to . 

La circolazione naturale avviene usualmente con basse perdite di pressione e ciò porta ad avere 
diametri di condotti superiori ai corrispondenti a circolazione forzata, come già visto in precedenza. 

                                                 
30 In  alcun e zo n e d egli im p ian ti n ucleari, ad  esem p io  n egli sch erm i rad io attivi, si p referisce avere m o to  verso  l‟alto  a 

bassa velocità e con piccole cadute di pressione. Si osservi che le condizioni di circolazione naturale sono sempre da 
prendere in considerazione per le condizioni di emergenza. Una fermata delle pompe di circolazione, infatti, non può e non 
d eve co m p o rtare il b lo cco  d el fluid o  all‟in tern o  d ei tub i b o llito ri p erch é ciò  p ro d urreb b e certam en te un  in cid en te: il calore 
fo rn ito  n o n  sareb b e p iù trasp o rtato  via e quin d i si h an n o  sco p p i o  altri d isastri. E ‟ quan to  avven uto , ad  esem p io , n el reatto re 
di Chernobil dove la fermata (forse volontaria) delle pompe di circolazione ha portato alla stagnazione del fluido refrigerante 
con conseguente surriscaldamento del nocciolo del reattore nucleare che è fuso. 
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