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INTRODUZIONE 

 

Le moderne macchine per generazione di potenza meccanica si basano sempre più sulle turbine, 
sia a vapore che a gas. Queste sono organi di notevole complessità progettuale che coinvolge numerosi 
discipline quali la Fisica Tecnica, le Macchine e la Fluidodinamica. 

Quest‟ultima disciplina non è inserita nell‟ordinamento della nostra Facoltà e pertanto resta al di 
fuori dei normali percorsi di studio che gli Allievi Ingegneri Meccanici possono scegliere. 

La Meccanica dei Fluidi è storicamente impostata come Idraulica con nome apparentemente 
cambiato e non copre gli argomenti relativi ai fluidi comprimibili e quindi tipici della Fluidodinamica. 

In questo breve opuscolo si desidera affrontare alcuni dei concetti fondamentali della 
Fluidodinamica necessari per le applicazioni impiantistiche e macchinistiche. 

Si affronteranno, pertanto, i problemi della comprimibilità dei fluidi e dei loro effetti nel moto in 
condotti a sezione variabile (equazioni di Hugoniot) e a sezione costante. 

Sono interessanti i moti di Fanno e di Raileigth e i concetti di parametri di attrito e di lunghezza 
massima nel moto dei fluidi compressibili. 

Si lasciano fuori da questa trattazione tutti gli altri (numerosi) problemi di fluidodinamica che 
interessano altri campi dell‟Ingegneria (quale, ad esempio, aeronautica e/o spaziale). 

Gli argomenti qui selezionati, quindi, sono il minimo indispensabile per la moderna formazione 
di un ingegnere meccanico e trovano immediata applicazione nei corsi di Macchine ed Impianti.. 

Del tutto nuovo è poi il capitolo su fluidi bifase (cioè di liquidi in presenza di una fase aeriforme 
o anche del proprio vapore) che trova applicazioni importanti e fondamentali nel progetto di impianti 
(ad esempio caldaie, generatori di vapore, turbine, …). 

Si osserva subito che gli argomenti trattati richiederebbero da soli interi corsi annuali. Tuttavia, 
data la natura del Corso, si sono sviluppati solamente gli argomenti ritenuti fondamentali rimandando 
l‟approfondimento ai testi in letteratura. 

 

Catania 02/10/2010 

. 
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1.  FLUIDI COMPRIMIBILI - DEFLUSSO MONODIMENSIONALE 

Le grandezze fisiche che caratterizzato il moto di un mezzo fluido variano, in generale, 
tridimensionalmente pertanto elaborare una teoria del moto a tre variabili euleriane risulta di enorme 
complessità anche nell‟ipotesi di regime stazionario. Sovente si fa riferimento allo studio del deflusso 
bidimensionale scegliendo con opportuno criterio la giacitura del piani di riferimento in modo che le 
variazioni del comportamento del fluido lungo la terza dimensione siano trascurabili.  

Frequentemente quanto detto risulta possibile o tutt‟al più si rende necessaria qualche correzione 
da apportare ai risultati lungo la dimensione trascurata; diversamente si può interpretare il fenomeno su 
più piani paralleli interpolando poi i risultati a quote intermedie, così facendo il moto viene a perdere 
una dimensione, e quindi una variabile euleriana, cosicché le variazioni delle grandezze fisiche 
caratterizzanti il moto del fluido vengono considerati solo lungo le linee di corrente e 
perpendicolarmente ad esse. 

Tutte le volte che le variazioni del comportamento del fluido in direzione perpendicolare alle 
linee di corrente non sono rilevanti di può fare riferimento alla teoria monodimensionale del deflusso salvo, 
anche in questo caso, ad apportare opportune correzioni di tipo bidimensionale; è in genere lecito 
ricorrere a questa semplificazione nel moto lungo i condotti, sempre a condizione che le dimensioni 
trasversali siano piuttosto piccole rispetto alla lunghezza del condotto stesso e ciò equivale a supporre 
che lungo le linee di corrente congruenti i fenomeni avvengano identicamente, in tale ipotesi è 
sufficiente studiare quel che avviene lungo la linea mediana dell‟efflusso (spesso coincidente con l‟asse 
del condotto) per poi estrapolare i risultati, eventualmente corretti, a tutte le altre linee di corrente. 

La teoria monodimensionale implica nel regime stazionario una sola variabile euleriana e si 
presenta semplice ed efficace, capace di fornire una visione essenziale dei fenomeni; occorre però dire 
che essa si presenta concettualmente insufficiente in quanto nel moto di un fluido non può essere 
trascurata l‟esistenza degli attriti i quali producono variazioni di quantità di moto che sono causa di 
indesiderate distribuzioni di velocità nella direzione normale a quella del deflusso. D‟altra parte le forze 
d‟attrito, avendo carattere decisamente non conservativo, non sono funzione della sola posizione per 
cui, anche nel regime stazionario, non sono direttamente valutabili alla maniera euleriana ne tanto meno 
a quella lagrangiana ne consegue che entrambi i criteri di analisi cinematica debbano limitarsi in pratica, 
pur mantenendo il loro rigore, al solo studio dei moti ideali. 

Tale limitazione può essere tuttavia superata mediante certi artifici consistenti nel considerare a 
potenziale, lungo la regione interessata al deflusso, anche le forze di attrito valutandone globalmente, e 
sperimentalmente, il lavoro dissipato. Ma se tale criterio può essere accettato ai fini del bilancio 
energetico esso non si presta a definire con semplicità i riflessi degli attriti sulla distribuzione delle 
velocità cosicché l‟artificio rimane valido solo a condizione di limitare il campo di moto ad un esiguo 
tubo di flusso (che al limite degeneri in una linea di corrente) su ogni sezione del quale la velocità possa 
ritenersi costante. 

Questa è probabilmente la ragione che porta a definire “euleriana” la teoria monodimensionale del 
deflusso mentre in realtà il criterio euleriano è di carattere generale in quanto si estende alle tre 
dimensioni dello spazio; in effetti solo in forma monodimensionale il metodo euleriano risulta 
applicabile, quando si tratta di deflusso con attrito, in virtù della predetta possibilità di valutare, sia pure 
per via empirica, il lavoro dissipato in funzione della successione delle velocità nel campo di moto. 

Facendo riferimento al gas perfetto, approssimazione valida per gas a media e bassa densità, viene 
qui preso in esame il moto monodimensionale con e senza attrito nei deflussi interni per i quali le 
variazioni di densità sono della massima importanza per individuare la natura della corrente; questo 
modello fisico anche se, come già detto, sembra piuttosto limitato approssima molto bene la realtà di 
molte correnti fluide.  

L‟ipotesi di monodimensionalità presuppone quindi che tutte le grandezze fisiche interessate 
(pressione, densità, temperatura, velocità, ecc.) abbiano distribuzione uniforme in qualsiasi sezione del 
condotto. 



FISICA TECNICA INDUSTRIALE – VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 2 

1.1. COMPRIMIBILITÀ ED ESPANSIONE 

La variazione volumetrica di un fluido influisce sull‟andamento del moto in maniera alquanto 
complessa ed anche nel deflusso in condotti cilindrici, dove per fluidi a densità costante il moto può 
essere considerato mediamente uniforme, i cambiamenti di densità fanno variare la velocità anche lungo 
la direzione di avanzamento; proprio queste variazioni di densità e velocità sono quelle che 
determinano la necessità di una trattazione di tale deflusso distinta da quella svolta per i fluidi 
incomprimibili in quanto in tale circostanza il campo dinamico e quello termico interagiscono 
mutuamente.  

Lo studio del comportamento di un fluido comprimibile in moto necessita pertanto della 
conoscenza dell‟equazione cinetica di stato e quella del processo termodinamico responsabile della 
variazione volumetrica suddetta.  

Viene qui dedicata particolare attenzione ad deflusso adiabatico, sia nei condotti a sezione 
variabile che in quelli cilindrici, visto che nella gran parte dei problemi tecnici è quello che presenta 
interesse maggiore; viene però anche analizzato il moto isotermo nei condotti cilindrici anche se la 
realizzazione di tale deflusso, come si avrà modo di vedere, può avvenire solo a particolari condizioni.  

E‟ noto dalla Termodinamica che lo stato fisico di una sostanza pura ed omogenea è descritto 
attraverso l‟equazione: 

( , , ) 0f p v T    [1.1] 

oppure in forma esplicita da una delle equazioni: 

  ( , )

 ( , )

( , )

v v p T

p p v T

T T p v







  [1.2] 

le quali differenziate divengono: 
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ovvero in termini di variazione relativa: 
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che possono essere scritte nella forma: 
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nelle quali il termine: 

1  
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v T






 
  

 
  [1.4] 

prende il nome di coefficiente di espansione isobara1 ed esprime la variazione relativa di 
volume specifico al variare della temperatura in un processo a pressione costante; il termine: 

1  

 
T

T

v

v p






 
   

 
  [1.5] 

viene denominato coefficiente di comprimibilità isoterma, esso indica la variazione relativa di volume 
specifico al variare della pressione in un processo a temperatura costante; inoltre: 

1  

 v

p

p T






 
  

 
  [1.6] 

rappresenta il coefficiente di tensione isovolumico ed esprime, in una trasformazione a volume costante, 
l‟effetto della temperatura sulla pressione. Tale coefficiente e quello di espansione isobara sono in 
generale funzioni della pressione e della temperatura. Le [1.3]  costituiscono le equazioni differenziali di 
stato relative ad un fluido qualsiasi allo stato termodinamico monofase. 

I coefficienti termodinamici sopra definiti non sono indipendenti tra loro, infatti tenuto conto 
che per una funzione del tipo (1.1) si può scrivere: 
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ovvero anche: 
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e quindi dalle (1.4), (1.5) e (1.6) si ottiene: 

 T

p


 
   [1.7] 

relazione che consente il calcolo di uno dei coefficienti noti che siano gli altri due. 

Se il fluido in esame è un gas perfetto per i coefficienti espansione e di tensione si scrive: 
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1 Spesso detto anche coefficiente di dilatazione cubica dei materiali. 
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il che equivale a scrivere: 

1

T
     [1.8] 

ossia tali coefficienti sono indipendenti dalla pressione. 

Integrando la prima delle [1.3] lungo un processo isobaro e la seconda lungo un processo 
isovolumico si ottiene rispettivamente: 

0

0

0
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T

T
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T

v v dT
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  




 

si osserva che se l‟intervallo di temperatura non è grande i coefficienti   e  possono ritenersi 
con buona approssimazione costanti pertanto le suddette relazioni divengono: 

 

 

0 0

0 0

  exp   

 exp  

v v T T

p p T T





   

   

  [1.9] 

inoltre sviluppando in serie e trascurando i termini di ordine superiore si può scrivere: 

 

 

0 0

0 0

 1  

 1  

v v T T

p p T T





    

    

  [1.10] 

come temperatura iniziale si può considerare quella del ghiaccio fondente pari a 273,15 K. Per 
grandi intervalli di temperatura le suddette espressioni possono ancora essere ritenute valide a 

condizione che  e  siano da intendere come valori medi lungo tali intervalli. Sempre nel caso di gas 
perfetto per il coefficiente di comprimibiltà isotermo si ha:  

2
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ovvero anche: 

1
T

p
     [1.11] 

esso quindi non dipende dalla temperatura. La comprimibilità di un fluido può anche avvenire 
isoentropicamente, in tal caso dalle equazioni del primo e secondo principio della termodinamica 
risulta: 

   
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 0

 0

s s
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du p dv

dh v dp
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ovvero nella forma equivalente: 
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quindi effettuando il rapporto: 
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e scrivendo nella forma: 
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1   1

  ss

v h

v p u p
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 
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si può definire un altro coefficiente termodinamico di variazione volumetrica dato dalla: 

1  

 
s

s

v

v p






 
   

 
   [1.12] 

denominato coefficiente di comprimibilità isoentropica il quale rappresenta la variazione di volume 
specifico al variare della pressione in un processo ad entropia costante; tale coefficiente, come si avrà 
modo di vedere poco più avanti, è legato alla velocità di propagazione delle onde di pressione in un 
mezzo fluido. Pertanto la relazione: 

 1

 s s

h

u p



 

 
 

 
  [1.13] 

rappresenta l‟equazione differenziale di una trasformazione isoentropica, nota dalla 
termodinamica, ed esprime la variazione delle proprietà calorifiche, entalpia ed energia interna, del 
fluido in funzione delle sue proprietà termiche, pressione e volume specifico, in un processo 
isoentropico. La quantità: 
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h
k

u





  
  
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rappresenta appunto l‟esponente dell‟isoentropica, sicché per un fluido qualsiasi il coefficiente di 
comprimibilità isoentropico assume la forma: 

1
s

k p



   [1.14] 

se il fluido è un gas perfetto risulta: 
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ch dh
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



    
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pertanto la [1.14] diviene: 

1

 
s

k p
    [1.15] 

e dal confronto con la [1.11] ne risulta: 

T

s

k



    [1.16] 

ossia il coefficiente adiabatico k è dato dal rapporto tra i due coefficienti di comprimibilità 
isotermo ed isoentropico, rispettivamente. Si osserva altresì che la suddetta espressione, come si può 
dimostrare, ha validità anche per un fluido qualsiasi. 

I gas hanno la tendenza a comprimersi molto più elevata rispetto a quella dei liquidi, in condizioni 

standard di pressione e temperatura  risulta dell‟ordine di 10-5 m²/N. I liquidi oppongono maggiore 
resistenza alle azioni che tendono a comprimerli. Integrando la prima delle [1.3] per un processo 
isotermo si ottiene: 

0
0  exp   

p

T
p

v v dp  
    

anche qui considerando non eccessivo l‟intervallo di pressione si può scrivere: 

 0 0 exp  Tv v p p       [1.17] 

quindi sviluppando in serie e trascurando i termini di ordine superiore al primo si ha: 
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 0 0 1 Tv v p p       [1.18] 

Per i liquidi più comuni T  è dell‟ordine di  9  210  /m N , in particolare nel caso dell‟acqua, alle 

medesime condizioni di pressione e temperatura, esso vale circa 10 25 10  /m N  ossia ventimila volte 

più piccolo del corrispondente valore che compete al gas, di conseguenza atteso il piccolo valore di T  

dalla [1.18] si deduce che il valore di v è praticamente coincidente con quello di 0v  e ciò consente di 

considerare i liquidi come “fluidi incomprimibili”.  

Tuttavia anche i gas possono essere trattati allo stesso modo dei liquidi tutte le volte che il loro 
movimento non comporta sensibili variazioni di pressione. 

L‟ipotesi di incomprimibilità porta ovviamente ad una fondamentale semplificazione negli 
sviluppi analitici e fornisce al tempo stesso risultati di completa attendibilità per molti problemi pratici.  

Non si deve però dimenticare che il fluido incomprimibile costituisce una semplice astrazione, 
analoga a quella del corpo rigido; in un fluido reale e per processi isotermici ad ogni variazione di 
pressione si associa una variazione dell‟energia potenziale elastica connessa ai corrispondenti 
cambiamenti di volume e tale variazione di energia equivale al lavoro meccanico compiuto dalle 
pressioni esterne sulla superficie di contorno durante la variazione volumetrica.  

L‟ipotesi di incomprimibilità presupporrebbe che la pressione del fluido potesse variare 
indipendentemente da un effettivo lavoro delle pressioni esterne; assume pertanto una certa importanza 
stabilire entro quali limiti è effettivamente lecito ammettere l‟incomprimibilità dei fluidi. 

1.2. VELOCITÀ DEL SUONO E NUMERO DI MACH 

Si consideri un tubo cilindrico nel quale un pistone viene spostato con un improvviso movimento 

x da sinistra verso destra; a seguito di tale spostamento si viene a generare nel fluido immediatamente 
vicino al pistone un aumento di pressione il quale non si manifesta all‟istante in tutti i punti del 
condotto, essendo il fluido dotato di inerzia e di elasticità, bensì si propaga, verso destra, con velocità c; 
tale velocità di propagazione di questa perturbazione provocata nel fluido viene denominata velocità del 
suono. 
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Per potere determinare questa velocità si consideri un riferimento solidale con l‟onda di 
pressione, in tal caso il fluido scorre da destra verso sinistra e passando attraverso il fronte d‟onda la sua 

velocità passa dal valore c al valore c dw . Nell‟ipotesi che il fluido si muove di moto stazionario 
rispetto al riferimento solidale col fronte d‟onda applicando l‟equazione di bilancio di quantità di moto 
in due sezioni immediatamente a monte ed a valle di questo si ha: 

2 2 ( )( )p c p dp d c dw         

e trascurando infinitesimi di ordine superiore si può scrivere: 
2 2   dp c d c dw    

Applicando inoltre l‟equazione di bilancio di massa si scrive: 

 ( )( )c d c dw      

che diviene: 

  c d dw   

e sostituita nella precedente fornisce: 
2 22dp c d c d    

dalla quale si ottiene: 

dp
c

d
   [1.19] 

Se si tiene conto che la velocità di propagazione delle vibrazioni sonore nel mezzo fluido è molto 
grande nessuno scambio di calore, anche se piccolo, riesce a prodursi nelle zone di compressione e di 
depressione dell‟onda da una parte ed il mezzo dall‟altra cosicché le vibrazioni del mezzo dovute alla 
propagazione dell‟onda si possono considerare adiabatiche ed isoentropiche, pertanto la  [1.19] deve 
essere scritta: 

 

 
s

p
c



 

 
  

 
  [1.20] 

nota come equazione di Laplace. L‟ipotesi che ha condotto alla [1.20] è che l‟eccesso di pressione sia 
piccolo, al limite infinitesimo; in realtà si dimostra che non essendo tale incremento infinitesimo la 

velocità di propagazione effettiva 'c  differisce dal valore fornito dalla suddetta espressione, ovvero si 

verifica che 'c c  per incrementi di pressione positivi e viceversa per incrementi negativi. Il valore di c 
calcolato con la [1.20] viene anche denominato velocità del suono di frequenza zero, infatti quando le 
vibrazioni sonore di frequenza sufficientemente alta si propagano in un mezzo fluido l‟ipotesi sulla loro 
natura isoentropica cessa di essere valida, per tali situazioni la velocità del suono dipende anche dalla 
frequenza.  

Tuttavia per un intervallo di frequenze che presentano pratico interesse l‟equazione di Laplace 
fornisce valori di c che, a meno di qualche centesimo di percento, coincidono con i dati sperimentali. 

Esprimendo la [1.20] in termini di volume specifico si ha: 

2  

 s

p
c v

v





 
   

 
 

e tramite la [1.14] si ottiene: 

s

v
c


   [1.21] 

Se il fluido è un gas perfetto, tenuto conto dell‟equazione di stato, la suddetta relazione diviene: 

  c k R T   [1.22] 
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la velocità del suono dipende in tal caso dalla sola temperatura, mentre in un gas reale c è 
funzione anche della pressione. 

Osservando la [1.20] si deduce che ammettere l‟incomprimibilità equivale ad assegnare valore 
infinito alla velocità del suono, ciò significa che ogni piccola variazione di pressione provocata in un 
punto qualsiasi della massa fluida venga istantaneamente risentita in tutti gli altri punti.  

Nell‟esempio citato il fluido è comprimibile per cui esso non si sposta subito alla velocità del 
pistone, come ciò invece avrebbe luogo se al posto del fluido il pistone spingesse un cilindro di metallo. 

Affinché l‟ipotesi di incomprimibilità non dia luogo a contraddizioni troppo evidenti le 
dimensioni della massa fluida devono essere abbastanza limitate in modo tale da potere ritenere 
trascurabile il tempo effettivamente necessario per la trasmissione delle variazioni di pressione fino ai 
punti più lontani, oppure tali variazioni risultino così lente e graduali ed il tempo predetto sia 
brevissimo. 

Nel caso di liquidi sarà allora necessario mettere in conto la comprimibilità nello studio dei 
fenomeni che riguardano l‟inizio e l‟arresto del movimento entro lunghi condotti (colpo d‟ariete) e non 
se ne potrà prescindere nemmeno nel caso di condotti brevi quando l‟avviamento o l‟arresto del moto 
avvengono in un intervallo di tempo estremamente breve. 

La comprimibilità deve soprattutto essere presa in considerazione allorquando il fluido acquista 
velocità che si avvicina al valore di c, ciò si verifica con relativa frequenza nei processi gasdinamici ed 
aerodinamici sia perché la velocità del suono negli aeriformi è assai minore di quella che compete ai 
liquidi (da un quarto ad un quinto, circa, di quella dell‟acqua) e sia perché in seno all‟aria è più facile 
raggiungere velocità di trasporto molto elevate. 

L‟esistenza di questa velocità di propagazione è responsabile di una fondamentale distinzione tra 
il regime subsonico (w < c) ed il regime supersonico (w > c), tale distinzione si rende necessaria in quanto il 
comportamento termodinamico del fluido nei due regimi di moto è assai diverso.  

Si consideri a tal proposito una corrente fluida in moto a sia w la velocità in un punto qualsiasi in 
corrispondenza del quale lo stato termodinamico è caratterizzato dai valori di  p,v,T ; allora il rapporto 
adimensionale: 

w
M

c
   [1.23] 

viene denominato numero di Mach e sta ad indicare il rapporto tra la velocità del fluido in un 
punto, in un dato stato termodinamico, e la velocità del suono nel medesimo punto e allo stesso stato; 
pertanto il regime di deflusso di un fluido, al variare della velocità, viene così classificato: 

M < 1  regime subsonico 

M = 1  regime sonico 

M <<1 regime incomprimibile 

M > 1  regime supersonico 

M >>1 regime ipersonico 

Come visto solo per 1M  (in pratica all‟incirca 0,3M  ) si può ritenere accettabile l‟ipotesi 

di incomprimibilità; per valori elevati della velocità w non si può trascurare lo stato termodinamico del 
fluido il quale sarà sottoposto ad espansioni e compressioni. 

1.3. STATI TERMODINAMICI PARTICOLARI 

E‟ noto che i valori di  p,v,T  individuano lo stato termodinamico di un fluido e questa terna di 
grandezze in un punto qualsiasi, in corrispondenza del quale il fluido è dotato di velocità w, rappresenta 
uno stato termodinamico generico comunemente chiamato stato locale; questo stato non mette in 
evidenza nessun particolare circa il comportamento fisico del fluido. 

Si consideri adesso un deflusso adiabatico senza scambio di lavoro e con variazione di energia 
potenziale trascurabile; applicando l‟equazione di bilancio energetico fra uno stato locale (h,w) ed uno 

stato 0 0(  , 0)h w   risulta: 
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2

0
2

w
h h    [1.24] 

questo stato fisico particolare viene denominato stato di ristagno ovvero anche stato di arresto 

adiabatico ed 0h  rappresenta l’entalpia di ristagno ossia quel valore di entalpia che il fluido avrebbe se a 

partire da condizioni locali fosse portato adiabaticamente fino alla condizione di velocità nulla. 

Se 1 1( , ) h w e 2 2( , )h w  sono due stati locali e se il fluido scambia calore l‟equazione di bilancio 

energetico, tenuto conto della precedente, si può scrivere: 
2 2

2 1
12 2 1 02 01

2 2

w w
q h h h h

   
        
   

  [1.25] 

dalla quale si osserva che l‟entalpia di ristagno rimane costante se non vi è scambio di calore con 
l‟esterno, anche in presenza di fenomeni dissipativi; essa aumenta, o diminuisce, nel caso di 
somministrazione, o sottrazione, di calore al fluido.  

L‟entalpia di ristagno è quindi una grandezza rappresentativa del contenuto energetico del fluido, 
prescindendo dall‟effettiva utilizzazione di tale energia al fine di ottenere lavoro. Nel caso di gas 
perfetto la [1.24] diviene: 

2

0
2 p

w
T T

c
     [1.26] 

che rappresenta la temperatura di ristagno, definita in maniera analoga a quanto fatto per l‟entalpia; 
in tal caso dalla [1.25] si ha: 

 12 02 01pq c T T    [1.27] 

pertanto anche la temperatura di ristagno è rappresentativa del contenuto energetico per un gas 
perfetto e varia solo se vi è scambio di calore con l‟esterno. In un deflusso adiabatico si ha sempre: 

0 0cos .                cos .h t T t   

Scrivendo la [1.26] nella forma: 
2 2

0 1
1 1

2 2p

T w k w

T c T kRT


     

e quindi per le [1.22] e [1.23] risulta: 

20 1
1

2

T k
M

T


    [1.28] 

ossia per un dato gas il rapporto tra la temperatura di ristagno e quella locale è funzione del 
numero di Mach. Inoltre essendo: 

 
1

0 0

k

kT p

T p

 
  
 

 

dalla [1.28] si ottiene: 

 
1

20 1
1

2

k

kp k
M

p

 
  
 

  [1.29] 

che rappresenta la pressione di ristagno, ossia quella pressione che il gas avrebbe se partendo da 
condizioni locali (p,w) fosse portato isoentropicamente fino alla condizione di velocità nulla. 

Facendo riferimento all‟equazione di bilancio energetico in forma meccanica e trascurando 
ancora variazioni di energia potenziale si può scrivere: 
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2 2
2

2 1

1
0

2
R

w w dp
l




    

e supposto che gli estremi di integrazione siano due stati di ristagno tale espressione diviene: 

02
0

01
0

R

dp
l


    [1.30] 

tale eguaglianza è dovuta al fatto che calcolare l‟integrale suddetto nelle condizioni di ristagno 
equivale ad eseguire il calcolo considerando, ad ogni passo di integrazione, pressione e densità nelle 
condizioni di ristagno. 

Nel caso di gas perfetto e se questo non scambia calore la [1.30] si scrive: 

02
0 01

0 0
01

0 02

lnR

dp p
l RT RT

p p
    [1.31] 

dalla quale risulta: 

01 02

0

 exp  Rlp p
RT

 
  

 
  [1.32] 

pertanto nel moto adiabatico la pressione di ristagno non è una costante, lo diviene solo che il 
deflusso avviene isoentropicamente, ovvero: 

01 02 00                  Rl p p p    

sicché la pressione di ristagno è una grandezza rappresentativa del contenuto entropico del gas e 
quindi dalla sua capacità di trasformare in lavoro meccanico l‟energia posseduta. Essendo inoltre: 

 1

0 0

k

T

T







 
  
 

 

ancora dalla (1.28) risulta: 
1

 
1

20 1
1

2

kk
M





 
  
 

  [1.33] 

si ottiene la densità di ristagno, definita allo stesso modo della pressione di ristagno e come tale è 
una costante solo nel deflusso isoentropico. In questo caso sarebbe: 

1  1

01 01 02 02   k kT T    

ed essendo costante la temperatura di ristagno sarà anche: 

01 02 0     

Le equazioni [1.28], [1.29] e [1.33] dimostrano che nel caso di deflussi adiabatici reversibili esiste 
un legame univoco tra il numero di Mach ed i rapporti fra le grandezze termodinamiche locali e quelle di 
ristagno.  

Si può concludere che lo stato di ristagno costituisce uno stato di arresto adiabatico per entalpia e 
temperatura mentre per pressione e densità esso è uno stato di arresto isoentropico. 

Si faccia ancora riferimento alla [1.26] che può essere messa nella forma: 
2

0

2 1 1

kRTw kRT

k k
 

 
 

ovvero anche: 
22 2

0

2 1 1

cw c

k k
 

 
  [1.34] 
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dalla quale si osserva che la velocità locale del gas diminuisce all‟aumentare della velocità del 
suono e viceversa; da qui si deduce che in corrispondenza di un dato punto, caratterizzato da un dato 
stato termodinamico, le due velocità hanno eguale valore sicché: 

cw c w   

in tale stato il numero di Mach diviene unitario ed il valore comune alle due velocità vale: 

0

2

1
cw c

k



  [1.35] 

che prende il nome di velocità critica. 

Essendo noto lo stato di ristagno la temperatura critica si può determinare dalla [1.28], sicché: 

0

2
 

1
cT T

k

 
  

 
 [1.36] 

ed è ovvio che tale valore da solo non è sufficiente a definire uno stato termodinamico, sono 
necessari i valori di pressione e densità per i quali, come si è visto, si rende necessaria la condizione di 
isoentropicità del deflusso; pertanto dalla [1.29] si perviene alla: 

 
1

0

2
 

1

k

k

cp p
k

 
  

 
 [1.37] 

e dalla [1.33] si ha: 
1

 
1

0

2
 

1

k

c
k

 
 

  
 

  [1.38] 

Queste ultime tre equazioni individuano lo stato termodinamico corrispondente alla condizione 

di 1M   che viene così denominato stato critico.  

Partendo da uno stato locale ( , , , )p T w  combinando le suddette relazioni con le [1.28], [1.29]  e 

[1.33] si può scrivere: 

2

 
1

2

1
 

1
2

2 1
   

1 1

2 1
 

1 1

2 1
 

1 1

c

k

k

c

k

c

k
T T M

k k

k
p p M

k k

k
M

k k
 





 
  

  

 
  

  

 
  

  

 [1.39] 

lo stato critico isoentropico è pertanto uno stato termodinamico corrispondente alla condizione 

1M   ottenuto a partire da condizioni locali o di ristagno.  

Essendo il deflusso isoentropico i valori di  , ,c c cT p   sono costanti in ogni punto del campo di 

moto. Questo particolare stato termodinamico è fondamentale nello studio dell‟efflusso dei gas lungo i 
condotti a sezione variabile (ugelli e diffusori) nei quali, come si avrà modo di vedere qui di seguito, sia 
per geometria sia per condizioni di moto l‟entropia si può ritenere costante, almeno in prima 
approssimazione. 

Dalla [1.34] si osserva che nel moto isoentropico la velocità ha un limite superiore che si ottiene 
allorquando la velocità locale del suono diviene nulla, in caso si può scrivere: 

max 0

2
 

1
w c

k



  [1.40] 
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questa velocità in pratica sarebbe realizzata solo allo zero assoluto di temperatura in 
corrispondenza del quale l‟entalpia del gas sarebbe totalmente trasformata in energia cinetica; tale valore 
in condizioni isoentropiche non può quindi essere raggiunto. 

Facendo riferimento alla [1.40] la [1.34] assume la forma: 
2 2

2 2

max 0

1
w c

w c
    [1.41] 

la quale mostra come tutti i possibili regimi di moto sopra descritti per un gas perfetto giacciono 

su un‟ellisse di assi ( , )w c , come è illustrato nella  Figura 2. 

 

 

 

 

 
 
 
 
 

 
 
 
 
 

 
 Figura 2 

1.4. FATTORE DI COMPRIMIBILITÀ 

Si faccia riferimento all‟equazione energetica per un fluido incomprimibile la quale, trascurando 
variazioni di energia potenziale e le resistenze per attrito, si scrive: 

 
 2

0

1
0

2

w
p p


    

essendo 0p  la pressione di ristagno del fluido; scrivendo tale equazione nella forma: 

 2

0

 

2

w
p p


    [1.42] 

si osserva che la pressione dinamica del fluido si identifica come differenza tra la pressione di 
ristagno e quella locale; non si può dire altrettanto nel caso di un fluido comprimibile. Si consideri 
infatti il rapporto: 

0

 2 

2

k

p p
f

w


    [1.43] 

che viene denominato fattore di comprimibilità, da esso si deduce che se il fluido è incomprimibile si 

ha 1kf   mentre se il fluido è comprimibile deve essere 1kf   e pertanto si ha: 

 2

0

 

2

w
p p


    [1.44] 

w  

M 1  

c 

M 1  
M 1  

M 1  

M 1  

maxw  

0c  
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Al fine di valutare la differenza di pressione 0p p  si consideri un gas perfetto che si muove 

isoentropicamente, in tal caso si può scrivere: 
 2

2 
 

2 2

w k
p M


   

di conseguenza la [1.43] diviene: 

0

 2

2
1

 
k

p
f

k M p

 
  

 
 

e quindi per la [1.29] risulta: 

 
1

 2

 2

2 1
1 1

 2

k

k

k

k
f M

k M


 

     
  
 

  [1.45] 

pertanto per un dato gas, ovvero per un assegnato valore di k, il fattore di comprimibilità è 
funzione del solo numero di Mach locale. Sviluppando in serie binomiale il termine in parentesi si può 
scrivere: 

 
1

2 2 4 6 81 (2 )
1 1 ( )

2 2 8 48

k

kk k k k k
M M M M O M

  
      

 
 

e la [1.45] diviene: 
2

4 62
1 ( )

4 24
k

M k
f M O M


      [1.46] 

sicché dalla [1.43] si ottiene la differenza di pressione richiesta, ossia: 
2 2

4 6

0

 2
1 ( )

2 2 24

w M k
p p M O M

  
     

 
  [1.47] 

Se il moto del gas è lontano dal regime sonico, ossia per 1M  , i termini alla seconda ed alla 
quarta potenza delle ultime due relazioni divengono piccolissimi di conseguenza dalla [1.46] risulterebbe 

che 1kf  , ossia il fluido si può considerare incomprimibile, mentre la  si identificherebbe con la [1.42]. 

Tale risultato risulta alquanto significativo, il deflusso adiabatico dei gas attorno ad oggetti e lungo 

i condotti si può ritenere incomprimibile finché il numero di Mach è piccolo, 0,3M   circa, ottenendo 

così nel modello a densità costante una indubbia semplificazione di calcolo. 
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2.  MOTO ADIABATICO NEI CONDOTTI A SEZIONE VARIABILE 

Allorquando i fluidi si comportano come comprimibili si hanno interessanti comportamenti per il 
loro moto all‟interno di condotti a sezione variabile che qui si presentano. 

2.1. MOTO ISOENTROPICO: VELOCITÀ E PORTATA SPECIFICA 

Nello studio dei condotti a sezione variabile il problema che in pratica si pone è quello di 
analizzare la loro conformazione e le condizioni operative necessarie al fine di ottenere mentre il fluido 
scambia lavoro, ed eventualmente calore, che esso subisca determinate trasformazioni; viceversa di 
individuare le trasformazioni che il fluido subisce nell‟attraversare un condotto di forma assegnata ed in 
determinate condizioni.  

I condotti che vengono qui esaminati sono suddivisi in due classi fondamentali dove il fluido 
segue un comportamento totalmente diverso, si definisce infatti:  

 - ugello un condotto che, a prescindere dalla sua forma geometrica, consente di ottenere un 
incremento della velocità a spese di una diminuzione di pressione e densità;  

 - diffusore un condotto che, prescindendo dalla forma geometrica, consente di realizzare una 
diminuzione della velocità a vantaggio di un aumento di pressione e di densità. Si vedrà nel 
prossimo paragrafo che la modalità del deflusso in questi particolari condotti dipende 
esclusivamente dal regime di partenza della corrente fluida pur conservando la stessa geometria. 

Si consideri allora un fluido che viaggia in regime stazionario in un condotto a sezione variabile 
per il quale siano rispettate le seguenti ipotesi: 

 - pareti termicamente isolate, 

 - non vi sia scambio di lavoro meccanico, 

 - le variazioni di energia potenziale dovute al campo gravitazionale siano trascurabili, 

 - deflusso monodimensionale. 

La prima ipotesi è senz‟altro verificata in quanto trattandosi di condotti corti ed avendo a che fare 
con velocità elevate ne risulta che la quantità di calore scambiata attraverso le pareti è molto piccola ed 
in pratica quasi sempre trascurabile, la terza ipotesi si ritiene accettabile appunto perché le alte velocità 
danno luogo a variazioni di energia cinetica molto grandi rispetto e quelle di energia potenziale, anche la 
quarta ipotesi si ritiene valida se il condotto è ad asse rettilineo o comunque poco incurvato di modo 
che i filetti fluidi siano paralleli e diretti secondo l‟asse. La seconda ipotesi non viene per il momento 
presa in considerazione. Sotto le suddette condizioni l‟equazione di bilancio di energia nella forma 
termodinamica si scrive: 

 
2 2

1
1 0

2

w w
h h


    

dalla quale si ricava: 

 2

1 1w w h h     [2.1] 

che consente la determinazione della velocità del fluido in una sezione generica del condotto a 

partire da uno stato locale noto, caratterizzato dai valori 1 1( , )h w , e viene denominata velocità adiabatica; 

mentre l‟equazione di bilancio di energia nella forma meccanica si scrive: 

1

2 2

1 0
2

p

R
p

w w dp
l




    

dalla quale risulta: 

12

1 2 
p

R
p

dp
w w l



 
   

 
   [2.2] 
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che consente di determinare la velocità in una generica sezione del condotto a partire dallo stato 

locale noto caratterizzato dai valori 1 1( , )p w . 

Le equazioni [2.1] e [2.2] sono di carattere generale nel senso che sono valide per qualsiasi fluido, 
anche se per dare forma risolutiva alla seconda sono necessarie la conoscenza del processo 
termodinamico e del lavoro delle forze d‟attrito altrimenti il problema risulta due volte indeterminato. 

Se il condotto, ugello o diffusore, è convenientemente breve e la superficie lambita dal fluido è 

ben levigata la trasformazione si può considerare praticamente reversibile in quanto il termine Rl  

diviene piuttosto piccolo rispetto al valore che assume l‟energia cinetica nella sezione finale e pertanto 
può essere considerato trascurabile, almeno in prima approssimazione, di conseguenza la (2.2) diviene: 

12

1 2
p

p

dp
w w


     [2.3] 

Si può dire pertanto che la [2.1] è valida nel caso di processo reversibile ed irreversibile ma 
necessariamente adiabatico mentre la [2.3] è applicabile a qualunque processo purché necessariamente 
reversibile il quale se è anche adiabatico la suddetta espressione viene denominata velocità isoentropica. 

Facendo riferimento alla [2.1] e se il fluido è un gas perfetto si può scrivere: 

 2

1 12 pw w c T T    

ovvero anche: 

2

1 1

1

2
1

1

k T
w w RT

k T

 
   

  
  

e tenuto conto sia dell‟equazione di stato che l‟equazione di trasformazione in funzione di 
pressione e temperatura si ottiene: 

1

2

1 1

1

2
1

1

k

kk p
w w RT

k p

 
        

  

  [2.4] 

ovvero la velocità isoentropica del gas perfetto; è immediato verificare che alla suddetta 
equazione si può pervenire anche attraverso la [2.3] sostituendo nell‟integrale l‟equazione di 
trasformazione in funzione di pressione e densità. 

La portata di massa specifica si può ottenere dalla relazione: 

 
m

w
A

  

nella quale essendo: 
11

  

1
1

1 1

kkp p p

p RT p
 

  
    

   
 

e tenuto conto della (2.4) si perviene alla relazione: 

1 1
 

21
1 1

1 1 1

2
1

1

k

k km p p k p
w RT

A RT p k p

 
             

  

  [2.5] 

ossia la portata specifica isoentropica di un gas perfetto. Si osserva che qualora la velocità 1w  non sia 

nota si può mettere la [2.4] nella forma: 
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1

2 2

1 1

1

2
1

1

k

kk p
w w RT

k p

 
        

  

  [2.6] 

inoltre potendo scrivere: 
2

2 2 2 1
1 1

w
w w w

w

  
    

   

 

tenuto conto dell‟equazione di bilancio di massa: 

1

1 1

 
w A

w A





   
    
   

 

e dell‟equazione di trasformazione la precedente espressione diviene: 
2

2  

2 2 2

1

1 1

1
kA p

w w w
A p

 
             

  

 

e sostituendo nella [2.6] si ottiene: 

1

1

2
2  

1

1 1

2

1 1

1

k

k

k

k
RT

pkw
p

A p

A p

 
                 

   

  [2.7] 

in tal caso la velocità isoentropica viene messa in relazione con la geometria del condotto; per la 
portata di massa si può allora scrivere: 

2 1
 

1

2
2  

1 11

1 1

2

1

1

k

k k

k

m k p p pk

A R p pT
A p

A p

 
                       

   

  [2.8] 

tale espressione consente anche di risolvere il problema inverso, ossia quello di determinare l‟area 
della sezione di uscita del condotto, nota che sia quella in ingresso, affinché sia garantita una data 
portata di massa di gas compatibile con lo stato termodinamico iniziale e la pressione finale. 

Per semplificare le espressioni suddette si potrebbe considerare una particolare sezione del 
condotto ove vi siano condizioni tali per le quali sia nulla, o quanto meno trascurabile, la velocità del 
fluido; nella maggior parte delle situazioni reali tale sezione non esiste però ad essa si può sempre fare 

riferimento in quanto noto che sia il suo stato termodinamico 1 1 1 1( , , , )p T w  si può sempre 

determinare lo stato di ristagno ad essa associato 0 0 0( , , )p T  attraverso le equazioni [1.28], [1.29] e 

[1.33] sicché la [2.4] 

1

0

0

2
 1

1

k

kk p
w RT

k p

 
       

  

  [2.9] 

mentre per la portata di massa specifica risulta: 
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2 1
 

0

0 00

2

1

k

k kpm k p p

A R k p pT

 
             
  

  [2.10] 

Se si tiene conto della [1.29] per la suddetta equazione si può scrivere: 

2 1
  

0

0 00

0

2
 2

0 1
2

2
           1

1

2 1 1
 1

11
11

1 2
2

k

k k

k

pm k p p

A R k p pT

pk

kR kT Mk
M





 
              

  

 
 

     
   

 

 

e quindi semplificando ed ordinando si ottiene: 

0

1
 

0 2( 1)
21

1
2

k

k

pm k M

A R T k
M







 
 

 

  [2.11] 

la quale esprime la portata specifica in funzione dello stato termodinamico di ristagno e del 
numero di Mach; tale relazione costituisce una forma alternativa alla [2.10] ed ha un‟importanza 
notevole nel campo della termofluidodinamica applicata alle macchine. 

Uno dei problemi fondamentali nello studio del comportamento degli ugelli e diffusori è quello di 
determinare il valore massimo di portata specifica che può defluire nel condotto in esame e più 
precisamente a quale stato termodinamico tale valore corrisponde. 

Con riferimento alla [2.10] si osserva che la portata specifica varia al variare della pressione ed il 
valore massimo si ottiene allorquando risulta massimo il termine in parentesi quadra per il quale, in 

corrispondenza di una data pressione p , deve essere nulla la derivata prima: 

2 1
1 1

0 0 0 0

2 1
 0

  

k

k kp k p

k p p k p p


 

    
    

   
 

dalla quale si ottiene: 

 
1

0

2
 

1

k

k

cp p p
k


  
  

 
 

pertanto la massima portata specifica si raggiunge in corrispondenza dello stato critico sicché 
sostituendo questo valore di pressione nella [2.10] si perviene all‟espressione: 

1
 
2( 1)

0

max 0

2

1

k

k

c

pm m k

A A R kT



   
    

   
  [2.12] 

Dalla [2.10] si osserva che la portata  aumenta al diminuire della pressione fino al valore fornito  

dalla [2.12] per poi decrescere fino ad annullarsi addirittura laddove la velocità assume valore 
massimo, è evidente che questo discorso è inaccettabile; in pratica attraverso l‟osservazione 
sperimentale si è visto che una volta raggiunta la pressione critica la portata conserva costantemente il 
valore massimo sicché l‟andamento della funzione [2.10] è quello riportato nella figura 3 dove il ramo di 
curva tratteggiato ha solo un significato matematico ma non corrisponde ad alcuna situazione reale. 
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                                                                  Figura 3     

Questo fatto pone senz‟altro un limite alla validità della [2.10] in quanto non essendo fisicamente 

giustificabile il secondo ramo della curva suddetta tale equazione è accettabile solo per cp p . 

2.2. TEOREMA DI HUGONIOT 

L‟ipotesi di considerare reversibile il deflusso adiabatico negli ugelli e diffusori costituisce 
ovviamente solo un‟approssimazione anche se abbastanza accettabile visto che, per quanto detto in 
precedenza, si tratta di condotti di caratteristiche geometriche tali che i fenomeni dissipativi non hanno 
ne lo spazio ne il tempo sufficiente per far sentire in modo apprezzabile i loro effetti; nella realtà però 
questa è una semplificazione che viene fatta solo in una prima fase di calcolo, o di verifica, al fine di 
determinare i valori teorici di velocità, portata di massa e le altre grandezze fisiche e successivamente, in 
un seconda fase, vengono messe in conto le irreversibilità, fra l‟altro inevitabili, modificando i valori 
delle suddette grandezze mediante opportuni coefficienti correttivi determinabili solo attraverso 
l‟osservazione sperimentale.  

Considerando in una prima approssimazione il moto isoentropico attraverso le equazioni 
differenziali di bilancio di massa ed energia si può analizzare il comportamento di un fluido 
comprimibile che attraversa un condotto a sezione variabile. Per le condizioni poste inizialmente 
l‟equazione differenziale di bilancio energetico si scrive: 

 0
dp

w dw


     [2.13] 

che si può anche mettere nella forma: 

2

1
0

s

dw dp d

w w d



 

 
  

 
 

ovvero per la [1.20] e la [1.23]. 

2

1
0

dw d

w M




     [2.14] 

inoltre differenziando l‟equazione di continuità: 

  cos .w A t   

risulta: 

0
d dA dw

A w




     [2.15] 

m

A
 

0

p

p

 
0

cp

p

 



max

m

A

F
HG
I
KJ  
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quindi sostituendo nella [2.14] ed ordinando si ha: 

 2 1
dA dw

M
A w
    [2.16] 

quindi sostituendo nella [2.13] si ha: 

 2

2
1

 

dA dp
M

A w
    [2.17] 

sostituendo ancora la [2.15] nella [2.14] si ottiene: 

2

1
1

dA d

A M





 
  
 

  [2.18] 

Le [2.16], [2.17] e [2.18]sono le equazioni di Hugoniot le quali descrivono il moto di un fluido 
comprimibile qualsiasi lungo un condotto a sezione variabile, più precisamente attraverso le suddette 
equazioni è possibile risalire al comportamento totalmente opposto del fluido nei riguardi dei due 
regimi di deflusso.  

Nel caso di deflusso subsonico le variazioni della sezione del condotto causerebbero la variazione 
delle grandezze fisiche nel modo seguente: 

0 0

0      0                   0      0

0 0

dw dw

dA dp dA dp

d d 

    
   

      
       

 

mentre in regime supersonico si avrebbe: 

0 0

0      0                   0      0

0 0

dw dw

dA dp dA dp

d d 

    
   

      
       

 

Da queste condizioni si vede che per poter incrementare la velocità del fluido, a spese di una 
diminuzione di pressione e densità, occorre un condotto convergente in regime subsonico ed un 
divergente in regime supersonico pertanto in un convergente non può essere realizzato il regime 
supersonico, al limite si raggiunge il regime sonico; un condotto che realizza questa condizione di moto 
viene denominato rappresenta ugello e può essere costituito da un solo convergente o da un 
convergente collegato ad un divergente, come è illustrato nella Figura 4a. 

Per decelerare il fluido, con recupero di pressione e densità, occorre un convergente in regime 
supersonico ed un divergente in regime subsonico; un condotto che realizza questo deflusso 
rappresenta un diffusore, illustrato nella Figura 4b. 

Si osserva quindi come la denominazione, ovvero la caratteristica del condotto, non dipende dalla 
forma geometrica bensì dal regime di moto della corrente. 

Da queste considerazioni si può enunciare il teorema di Hugoniot secondo il quale nel moto 
isoentropico in un condotto a sezione variabile il passaggio da moto subsonico a supersonico, e 
viceversa, può avvenire solo in una sezione di area minima che viene chiamata sezione di gola. 

Con riferimento al gas perfetto che fluisce in regime stazionario è possibile ricavare una relazione 
fra il numero di Mach e l‟area della sezione trasversale del condotto; in tal caso si fa riferimento alla 
sezione di gola in corrispondenza della quale si è raggiunta la velocità del suono, ovvero la condizione 

1M  , e che pertanto viene definita sezione critica cA . 

L‟equazione di bilancio di massa tra la sezione suddetta ed una sezione generica consente di 
scrivere: 

   c c cw A w A   

ovvero anche: 
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1/ 2
1

  
cc c c c c

c

kRTw TA

A w M TM kRT

  

  

        
          

        
 

 

Figura 4  

 

Tenuto conto della prima e terza delle [1.39] si ottiene: 
1

 
2( 1)

21 2 1

1 1

k

k

c

A k
M

A M k k



 
  

  
   [2.19] 

questa funzione, rappresentata nella Figura , presenta un minimo per 1M   dove si ha cA A , per 

ogni altro valore del rapporto 1
c

A

A
  si hanno due valori del numero di Mach: uno per il regime 

subsonico 

 1c M

A

A


 
 
 

 ed uno di regime supersonico 

  1c M

A

A


 
 
 

 e quindi per aumentare il numero di 

Mach la sezione trasversale deve diminuire, nel senso del deflusso, a velocità subsoniche ed aumentare a 
velocità supersoniche; viceversa per diminuire il numero di Mach. 

Tutto ciò è in accordo con quanto dedotto dalle equazioni di Hugoniot. I valori del rapporto 
c

A

A
 

sono tabulati ed anche diagrammati per dato numero di Mach ma anche per un dato valore di k il quale, 
come si osserva ancora dal diagramma di  Figura 5, influenza il suddetto rapporto solo per elevati valori 
del numero di Mach e più precisamente nel caso di regimi supersonici. 

 

a 

1M   1M   1M   1M   

   Ugello 

b 

M  1
 

1M 
 

M  1
 

1M 
 

     Diffusore 
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Figura 5 

Nello studio del funzionamento degli ugelli e diffusori risulta conveniente esprime il rapporto 
c

A

A
 

in funzione del rapporto di pressione 
0

p

p
, infatti facendo riferimento alle [2.10] e [2.12] dal loro 

rapporto risulta: 

1
 

1

2 1
 

0 0

1 2
 

2 1

k

k

k

c k k

k

A k

A
p p

p p







  
 

 

   
   

   

  [2.20] 

dalla quale ad ogni valore del rapporto
c

A

A
corrispondono due soluzioni isoentropiche: una di 

moto subsonico 
0 1M

p

p


 
 
 

 ed una di moto supersonico 
0 1M

p

p


 
 
 

; per cA A  si ha la soluzione 
0

cp

p
 . 

Si osserva che per dato condotto, ugello o diffusore, e a seconda del regime di moto, subsonico o 
supersonico, in cui si trova il fluido una delle due soluzioni suddette dovrà necessariamente essere 
scartata in quanto risulterebbe incompatibile con il comportamento caratteristico del condotto in 
esame, più in particolare si possono fare le seguenti considerazioni conclusive per ciascuno dei due 
condotti.  

Nel caso di un ugello si può dire che se il fluido arriva alla sezione di gola con moto subsonico il 
deflusso nel divergente, per il teorema di Hugoniot, prosegue subsonicamente e questa è una 
condizione da non prendere in considerazione in quanto il condotto funzionerebbe come un tubo di 
Venturi, il fluido nella sezione di gola deve necessariamente arrivare con velocità sonica in tal caso nel 
divergente il moto o ritorna subsonico, soluzione da scartare, come può divenire supersonico che 
rappresenta la condizione che si vuole realizzare; questa situazione di moto è schematicamente illustrata 
nella Figura 6. 
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                                                                Figura 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 Figura 7 

Opposto è il comportamento del diffusore in quanto se il fluido perviene alla sezione di gola con 
moto supersonico esso nel divergente procede supersonicamente, condizione da non prendere in 
considerazione, il fluido deve arrivare nella sezione di gola con velocità è sonica allora nel divergente il 
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moto può ritornare supersonico, soluzione da scartare, come può divenire subsonico e questa 
rappresenta la condizione che si vuole realizzare; la situazione di moto è illustrata nella  Figura 7. 

Una particolare equazione di Hugoniot si può ottenere partendo dall‟equazione differenziale di 
bilancio energetico nella forma: 

0wdw dh   

la quale per un gas perfetto diviene: 

0
1

kR
wdw dT

k
 


 

ovvero scrivendo in termini di variazioni relative: 

2

1
0

1

dw kRT dT

w k w T
 


 

ed ordinando si ottiene: 

2(1 )
dT dw

k M
T w

    [2.21] 

tale equazione, a differenza delle tre precedenti, vale per moto adiabatico con attrito ma il fluido 
deve essere un gas perfetto, essa mette in evidenza che nei fenomeni di efflusso la variazione di 
temperatura è sempre opposta in segno alla variazione di velocità e pertanto ad una diminuzione di 
velocità corrisponde un aumento di temperatura, il gas si comprime, così come ad un aumento di 
velocità consegue una diminuzione di temperatura, il gas si espande; si può quindi affermare che, in 
valore assoluto, ad una variazione di velocità segue una variazione di temperatura tanto più rapida 
quanto più è elevato il numero di Mach. 

2.3. CONDIZIONE DI FUNZIONAMENTO DI UN UGELLO 

Si è visto attraverso il teorema di Hugoniot come la trasformazione termodinamica che un fluido 
subisce nell‟attraversare un ugello o un diffusore dipende, ovviamente per un dato fluido, solo dalla 
legge con cui la sezione del condotto varia lungo l‟asse, tale teorema costituisce pertanto la base per 
potere effettuare una analisi qualitativa del comportamento di un ugello, o di un diffusore, di 
caratteristiche geometriche prefissate una volta assegnato lo stato termodinamico del fluido a monte e 
facendo variare la pressione a valle. 

Questo studio viene qui condotto facendo riferimento al moto isoentropico di un gas perfetto 
che si espande in un ugello considerando separatamente i casi in cui esso è costituito da un solo 
convergente o da un convergente -divergente in quanto il funzionamento di quest‟ultimo è leggermente 
più complesso del primo.  

Analoghe considerazioni  ma nel verso opposto, ovvero a diagrammi capovolti, si possono poi 
fare nel caso del diffusore. 

1.1.1. UGELLO CONVERGENTE  

Nella Figura 8 è rappresentato un ugello convergente dove il gas a partire da uno stato 

termodinamico di ristagno a monte fluisce in un ambiente la cui pressione sp  viene fatta decrescere 

con continuità a partire dal valore 0p . Il funzionamento di questo condotto è caratterizzato da quattro 

situazioni fondamentali: 

 a)   Se 0sp p  non si ha deflusso in quanto non si realizza alcun gradiente di pressione in seno al 

fluido ed è quindi nulla la portata di massa; l‟andamento della pressione segue ovviamente la linea 
orizzontale del diagramma di  fig. 2.7. 

 b)   Se 0c sp p p   si viene ad avere un gradiente di pressione in seno al gas ed essendo il moto 

subsonico si ha anche 2sp p  e quindi la velocità nella sezione di uscita vale: 
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mentre la portata di massa specifica è: 

2 1
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un ulteriore abbassamento di pressione ma sempre compreso nell‟intervallo suddetto del 
diagramma, non farebbe altro che aumentare la velocità e la portata ma il regime di moto nella sezione 
di uscita rimane subsonico. 

 c)  Se s cp p  il regime di moto nella sezione di uscita è sonico: 

2   c cw w k R T   

pertanto la portata di massa raggiunge il valore massimo: 
1

 
2( 1)

0

2 0max

2

1

k

kpm k

A R kT



   
   

  
 

 d)  Se s cp p  il gradiente di pressione nel convergente rimane come nella curva c così come 

rimangono inalterate velocità e portata nella sezione di uscita ma il fluido all‟uscita del condotto  

subisce delle onde di espansione e solo più a valle si adegua alla pressione sp  dell‟ambiente.   
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L‟assenza di un divergente a valle di 2A  impedisce pertanto al fluido di raggiungere il regime 

supersonico e ciò è in perfetto accordo con il teorema di Hugoniot.  

1.1.2. UGELLO CONVERGENTE - DIVERGENTE 

Si è detto che il funzionamento di questo condotto è un po‟ più complesso del precedente se non 
altro nel divergente visto che dovendosi qui realizzare il regime supersonico è possibile la formazione di 
onde d‟urto anche se questo fenomeno non verrà qui preso in considerazione.   

Partendo da una pressione a valle uguale a quella a monte, condizione corrispondente al valore di 

portata nulla, la pressione di scarico sp viene al solito ridotta con continuità dal valore di ristagno 01p  a 

valori via via decrescenti e per ogni valore di sp  si calcola un valore di pressione gp  in corrispondenza 

della sezione di gola.  

Finché risulta g cp p  la velocità del fluido il tale sezione è subsonica e pertanto il moto risulta 

subsonico anche nel divergente sicché il condotto si comporta come un tubo di Venturi.  

Allorquando si ha g cp p  la sezione di gola diviene critica e la portata del fluido diviene 

massima a questo punto il moto nel tratto convergente è completamente definito mentre il moto nel 
divergente dipende dalle condizioni imposte a valle.  

Si è visto che in questa situazione le soluzioni nel divergente possono essere due in tal caso la 
(2.20) deve però essere scritta: 

1
 

1

2 1
  

01 01

1 2
 

2 1

k

k

k

c k k

k

A k

A
p p

p p







  
 

 

   
   

   

 

da questa equazione si possono ricavare i due valori di pressione  2 2  1M
p p


   e  2 2 1M

p p


   

nella sezione di uscita del divergente.  

Per cui si può trarre una prima conclusione: 

    a)  per 2 01sp p p    il moto del fluido nel divergente risulta subsonico isoentropico, che 

rappresenta la soluzione da scartare; 

    b)  per  2sp p  si ottiene nel divergente il moto supersonico isoentropico, che sarebbe la 

soluzione ottimale. 

Resta adesso da chiarire che cosa accade al fluido quando si verifica 2 2sp p p    ed ancora 

quando si ha 2sp p . 

Si è detto che se il moto è supersonico è necessario prevenire la formazione di onde d‟urto le 
quali possono aver luogo all‟interno del divergente ed anche nell‟ambiente dove il fluido avrà lo sbocco.  

A causa della formazione di un‟onda d‟urto la pressione di ristagno diminuisce bruscamente dal 

valore a monte 01p , dove si ha 1M  , a quello a valle 02p , dove si verifica 1M  .  

Se il fronte d‟onda può formarsi in una sezione qualsiasi del divergente si supponga che questo 
avvenga nella sezione di uscita e pertanto, senza peraltro entrare nei dettagli di questo argomento, si 
dimostra che: 

2
2

2

2 1

1 1

p k k
M

p k k





 
 

  
 

nella quale 2p   è la pressione che si ha nella sezione 2 prima della formazione dell‟onda mentre 

2p   è la pressione immediatamente a valle del fronte d‟onda, 2 1M    è il numero di Mach a monte del 

fronte d‟onda, non viene considerato quello a valle 2 1M   . 
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                                                                 Figura 9 

 

 

 

 

 

 

Figura 9 

Calcolata la pressione a valle dell‟onda d‟urto con l‟equazione suddetta si possono fare le seguenti 
considerazioni: 

 c)  per 2 2sp p p     il moto non è isoentropico con formazione di un‟onda d‟urto in una 

sezione interna al divergente; 

 per 2sp p   il moto è isoentropico nel divergente con formazione di un‟onda d‟urto in 

corrispondenza della sezione di uscita; 

 e) per 2 2sp p p     il moto è isoentropico nel divergente ma con formazione di onde d‟urto 

esterne di compressione, ovvero il fluido è sopraespanso; 

 f)  per  2sp p  il moto è isoentropico nel divergente ma con formazione di onde d‟urto esterne  

di espansione, ovvero il fluido è sottoespanso. 

La curva discreta tracciata nel divergente rappresenta il luogo dei punti in corrispondenza dei 
quali si manifesta un‟onda d‟urto normale, tutti i punti di tale curva rappresentano pressioni a valle del 
fronte d‟onda. 

1.1.3. OSSERVAZIONI 

In tutto ciò che si è detto, anche sull‟ugello convergente, si osserva che non è stata presa in 
considerazione la lunghezza del condotto pertanto l‟ugello potrebbe teoricamente avere qualunque 
lunghezza, è evidente che se il condotto è molto breve la diminuzione di pressione avviene con forti 
gradienti nella direzione assiale mentre se esso è lungo si avrebbero gradienti di pressione minori; nella 
realtà questa lunghezza viene fissata da diversi criteri di carattere costruttivo. 
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Per lo stato termodinamico a monte è stato convenientemente scelto quello di ristagno al quale, 
come già detto, si può sempre risalire da uno stato locale noto in quanto una velocità nulla all‟inizio 
dell‟espansione significherebbe considerare infinita l‟area della sezione, si può però in pratica tendere a 
questa condizione costruendo le pareti dell‟ugello tangenti alle pareti del serbatoio di monte, come è 
illustrato nella Figura 10, cosicché la velocità risulta piccola e quindi trascurabile e non è necessario poi 
che la parte convergente dell‟ugello abbia un profilo particolare, qualunque forma è accettabile purché 
l‟area decresca gradualmente fino alla sezione di gola; il tronco convergente può avere una lunghezza 
abbastanza breve e questo significa che le perdite per attrito fra fluido e parete sono considerate quasi 
nulle.   

 
 

 

 

 

 

 

 

 

 

 

 

 

                                                                   Figura 10 

Molto più delicato è invece il divergente il quale deve essere realizzato più accuratamente in 
quanto qui il fluido ha superato la barriera del suono, inoltre allorquando il fluido esce dall‟ugello le 
pareti del divergente devono avere curvatura molto graduale fino a divenire parallele in corrispondenza 
della sezione di uscita.  Inoltre se per ridurre gli attriti occorre che il tratto divergente sia breve l‟angolo 
di divergenza non può essere troppo grande altrimenti si avrebbe il distacco della vena fluida dalle 
pareti con formazione di vortici e conseguenti fenomeni dissipativi.  

Nella maggior parte dei casi pratici il profilo di un ugello ha forma tronco-conica con angolo 

convergente fino a circa 45  mentre l‟angolo di apertura nel divergente è in genere compreso tra i 7  e 

i 10 . Da queste considerazioni si può dire che per un ugello convergente - divergente le dimensioni 
fondamentali, cioè quelle da calcolare, si riducono alle aree della sezione di gola ed alla sezione di uscita 
mentre se l‟ugello è costituito da un solo convergente il calcolo riguarda solo l‟area della sezione di 
uscita. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                Figura 11 
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2.4. MOTO ADIABATICO CON ATTRITO 

Il deflusso isoentropico ha una notevole importanza teorica in quanto costituisce un riferimento 
limite mentre il moto adiabatico irreversibile riveste grande importanza pratica in quanto qualunque 
movimento fluido lungo un condotto di qualsivoglia geometria è sempre accompagnato da perdite di 
energia anche in condotti corti e ben profilati come lo sono gli ugelli e i diffusori, principale 
responsabile di tali perdite è l‟attrito dovuto prevalentemente alla viscosità del fluido ed alla rugosità 
delle pareti nonché, con riferimento ai fluidi che qui vengono trattati, all‟effetto della comprimibilità.  

Gli effetti dovuti alla viscosità del fluido si manifestano in due modi: 

 - formazione di uno strato limite in una zona a ridosso delle pareti per cui anche supponendo 
isoentropico il deflusso i valori delle aree introdurre nelle espressioni della portata no sarebbero 
più quelli geometrici;  

 -  per effetto dell‟attrito in seno al fluido e tra fluido e parete si avrà nel caso di un ugello una 
riduzione della velocità di efflusso e di portata rispetto ai corrispondenti valori isoentropici, nel 
caso di un diffusore una parte della variazione di energia cinetica verrà convertita in calore di 
conseguenza a parità di variazione di entalpia e di energia cinetica l‟aumento di pressione risulterà 
minore di quello che si avrebbe nella corrispondente compressione isoentropica. 

Si consideri il deflusso di un fluido in un ugello dove a causa delle perdite per attrito l‟entropia 
cresce nella direzione del moto, inoltre tenuto conto che durante il deflusso, con o senza attrito, il 

fluido si espande sino alla pressione 2p  all‟uscita dell‟ugello il punto 2r  corrispondente allo stato 

termodinamico reale si troverà sulla stessa isobara ma più a destra del punto 2 e poiché le isobare nel 

diagramma h-s hanno pendenza positiva si ha che  2 2rh h  e pertanto durante il deflusso si ha sempre 

1 2 1 2rh h h h    conseguentemente la velocità del gas irrw  all‟uscita dall‟ugello sarà sempre inferiore di 

quella isoentropica. 

Si scriva l‟equazione di bilancio energetico tra uno stato locale generico ed uno stato locale noto 
la quale se il moto è isoentropico allora si scrive: 

 
2 2

1
1 0

2

w w
h h


    

mentre per il moto adiabatico si ha: 

 
2 2

1
 1 0

2

irr
irr

w w
h h


    

il rendimento isoentropico dell‟ugello è dato dall‟espressione: 
2 2

1

1  

2 2

11

2

2

irr

irr
ie

w w
h h

w wh h





 


 

ovvero se la velocità iniziale si ritiene trascurabile, per quanto è stato fatto osservare in 
precedenza, si può ancora scrivere: 

2

2

2

2

irr

ie

w

w
    [2.22] 

in tal caso il rendimento isoentropico di un ugello è dato dal rapporto tra l‟energia cinetica 
adiabatica e quella isoentropica nella sezione di uscita, pertanto risulta: 

irr iew w   

che si può anche scrivere come: 
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irr ww k w   [2.23] 

sicché la velocità adiabatica irrw  si ottiene da quella isoentropica, fornita dalla [2.4], moltiplicando 

questa per il fattore w iek   che viene denominato coefficiente di velocità, è un coefficiente di riduzione 

sperimentale che, nella maggior parte dei casi, è poco discosto dall‟unità e dipende dalla forma e dalla 
rugosità delle pareti.  

Nel caso di ugelli convergenti wk  ha un‟influenza trascurabile sulla velocità in quanto assume 

valori compresi fra 0,97 0,99  ed il moto si considera abbondantemente isoentropico; nel caso di 

ugelli convergenti - divergenti i valori di wk  sono compresi fra 0,94 0,96 e ciò perché il condotto è 

più lungo e sia perché nella parte divergente si realizzano velocità più elevate. 

La perdita di energia per attrito può essere espressa come la differenza tra l‟energia cinetica 
isoentropica nella sezione di uscita dell‟ugello e quella adiabatica irreversibile in corrispondenza della 
stessa sezione, ossia:  

2 2

2

irr
attr

w w
E


    [2.24] 

che attraverso la [2.22] diviene: 

 
2 2

1
2 2

attr ie

w w
E        [2.25] 

nella quale il termine   viene chiamato coefficiente di perdita di energia. 

Se 1 e 2  sono gli stati termodinamici in cui si trova il fluido, rispettivamente, all‟ingresso e 
all‟uscita dell‟ugello la differenza tra la velocità isoentropica in uscita: 

 2 1 22 w h h   

e quella adiabatica nella medesima sezione: 

 2 1  22 irr irrw h h   

la perdita di energia può essere scritta: 

 2 2attr irrE h h     [2.26] 

ed è dunque espressa come differenza tra l‟entalpia adiabatica e quella isoentropica nella sezione 
di uscita dell‟ugello. Inoltre tenuto conto della [2.25] ed utilizzando la velocità isoentropica la suddetta 
relazione assume la forma: 

 1 2 attrE h h     [2.27] 

e quindi eguagliando i secondi membri di queste espressioni si può determinare il valore 
dell‟entalpia adiabatica nella sezione di uscita: 

 2 2 1 2 irrh h h h     [2.28] 

Nel diagramma di  Figura 12 è rappresentato il deflusso adiabatico dell‟ugello, si osserva che 

l‟area sotto la curva 1 2irr  rappresenta il lavoro necessario per vincere le forze d‟attrito che si 

trasforma irreversibilmente in calore assorbito dal fluido sicché la temperatura del gas nella sezione di 

uscita dell‟ugello è maggiore di quella isoentropica; d‟altra lungo l‟adiabatica 1 2irr  risulta: 

2
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                                                                Figura 12 

 

si osserva dal diagramma T s  che l‟area sottesa dalla curva isobarica 2 2irr rappresenta la perdita di 

energia cinetica per attrito attrE ; infatti tenuto conto che per lungo un‟isobara reversibile si ha: 

Tds dh  

allora integrando tra i punti 2 e 2irr  risulta: 

2

2
2 2 

irrT

irr
T

T ds h h    [2.29] 

nella quale il primo membro rappresenta proprio l‟area della curva tratteggiata sopramenzionata, 

dal confronto con l‟area sottesa dalla curva 1 2irr si osserva che la perdita di energia cinetica per attrito 

attrE  rappresenta solo una parte del calore di attrito la rimanente parte, non tratteggiata, viene 

assorbita dal fluido e si trasforma di nuovo in lavoro meccanico.  

Pertanto vale sempre la disuguaglianza: 

2 2irr attrh h q    [2.30] 

ne consegue che la forma della curva 1 2irr , esprimente “convenzionalmente” un adiabatica 

irreversibile, non ha alcuna importanza per l‟analisi del deflusso con attrito. 

Nel caso un deflusso adiabatico con attrito essendo 0estq   risulta: 

 attrdh vdp dq   

quindi integrando: 

2

1
2 1

p

irr attr
p

h h vdp q     [2.31] 

D‟altra parte tenuto conto che per un processo isoentropico si ha: 

2

1
2 1

p

p
h h vdp    

si può affermare che i due integrali delle equazioni suddette non sono affatto identici, infatti 
sottraendo membro a membro si può scrivere più precisamente: 

     2 2

1 1
2 2

p p

irr attr
p p

attr rev

h h vdp vdp q     [2.32] 

e quindi attraverso la (2.30) dalla suddetta espressione si deduce che: 

   2 2

1 1

p p

p p
attr rev

vdp vdp   

T 

s 

2irr  

1 

2 

p p 1  

p p 2  
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pertanto il lavoro utilizzabile in un moto adiabatico con attrito è sempre maggiore di quello 
corrispondente al deflusso isoentropico.  

Tenuto conto della (2.26) la (2.32) assume la forma: 

   2 2

1 1

p p

attr attr
p p

attr rev

vdp vdp q E      [2.33] 

espressione che rispecchia quanto detto in precedenza. 
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3.  MOTO ADIABATICONEI CONDOTTI CILINDRICI 

 

3.1. L’ATTRITO NEI FLUIDI COMPRIMIBILI. TEOREMA DI FANNO 

L‟analisi dimensionale dimostra che nel caso di regimi di moto completamente sviluppati il fattore 

d‟attrito dipende in generale dal numero di Reynolds, dal numero di Mach e dall‟eventuale scabrezza 

relativa, nel caso di condotti con parete a comportamento non liscio; l‟esperienza però conferma che 
per regimi subsonici, o al limite sonici, la dipendenza del fattore di attrito è trascurabile nei riguardi del 
numero di Mach di conseguenza per la determinazione del fattore stesso possono essere utilizzate con 
buona approssimazione le stesse correlazioni che riguardano il moto dei fluidi incomprimibili. 

Diversamente accade nel regime supersonico dove il fattore d‟attrito dipende da altri parametri, 
oltre a quelli sopra citati, e ciò trova spiegazione nel fatto che in tale regime non si può avere un moto 

completamente sviluppato in quanto la condizione M 1  può essere mantenuta per una lunghezza di 
condotto molto limitata oltre la quale vengono a manifestarsi i fenomeni d‟urto, come verrà illustrato 
poco più avanti. In tale circostanza lo spazio attraversato dal fluido rappresenta per intero una “regione 
di ingresso” nella quale il fattore d‟attrito risulta variabile sezione per sezione in quanto dipende dal 

numero di Mach, dal numero di Reynolds locale Re( x ) , dallo spessore iniziale dello strato limite 

nonché dal grado di turbolenza iniziale; conseguentemente verrebbe anche a cedere l‟ipotesi di 
monodimensionalità del moto sicché le equazioni di bilancio precedentemente scritte non sarebbero più 
valide. Il fattore di attrito che viene utilizzato nel deflusso supersonico viene definito come un  fattore 
medio apparente che continua a soddisfare ancora le equazioni di bilancio nel deflusso monodimensionale 
ma molto difficilmente può essere determinato con considerazioni teoriche.  

Sperimentalmente si è visto che i fattori d‟attrito che si incontrano nel regime supersonico 
risultano normalmente più bassi di quelli che si manifestano nel moto dei fluidi incomprimibili, in 
particolare nel caso di condotti a sezione circolare con pareti a comportamento liscio con riferimento ai 
campi di variazione: 

4  5

    10 d l 50 d    

2,5 10 Re 7 10

      1,2 M 3

 

   

 

 

è stato riscontrato che il fattore di attrito medio è compreso tra i valori: 

0,008 0,012   

ovvero si ottengono valori di   praticamente dimezzati rispetto a quelli ottenuti nel moto dei 

fluidi incomprimibili. 

Potendo allora esprimere gli effetti dell‟attrito in termini di proprietà medie del fluido nella 
sezione considerata e secondo quanto già detto al §1.1 sull‟ipotesi di monodimensionalità del moto si 
faccia riferimento all‟equazione di bilancio di energia meccanica nella forma differenziale la quale 
trascurando l‟energia potenziale del campo gravitazionale, in questo caso del tutto ininfluente, e senza 
scambi di lavoro con l‟esterno si scrive: 

2
2w dp

d w dx 0
2 2d





 
   

 
 

che può essere messa nella forma: 

2

dw dp
dx 0

w w 2d




     [3.1] 

tale equazione nel caso di gas perfetto ed in funzione del numero di Mach si può ancora scrivere: 
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2

dw 1 dp
dx 0

w kM p 2d


     [3.2] 

L‟equazione differenziale di bilancio di massa per il caso in esame ha espressione: 

dw d
0

w




    [3.3] 

inoltre differenziando l‟equazione di stato dei gas perfetti risulta: 

dp d dT

p T




    [3.4] 

di conseguenza la [3.3] diviene: 

dp dT dw
0

p T w
     [3.5] 

Inoltre dall‟espressione differenziata del numero di Mach: 

dM dw 1 dT

M w 2 T
   

combinata con la [2.21] si ottiene la variazione relativa della velocità: 

2

dw 1 dM

k 1w M
1 M

2






  [3.6] 

mentre dalla [3.5] ed ancora attraverso la [2.21]risulta: 

2dp dw
1 ( k 1)M

p w
       

e quindi per la [3.6] si ottiene: 
2

2

dp 1 ( k 1)M dM

k 1p M
1 M

2

 
 




  [3.7] 

Sostituendo le  [3.6] e [3.7] nella [3.2] si scrive: 

2

2 2 2

1 1 ( k 1)M dM
dx 0

k 1 k 1 M 2d
1 M kM 1 M

2 2



 
  
   

        

 

la quale, sommando dentro parentesi, assume la forma: 
2

3 2

1 M
dx dM

k 12d
kM 1 M

2

 


 
 

 

  [3.8] 

Si faccia adesso riferimento all‟equazione: 

dp
Tds dh


   

che combinata con la [1.24] scritta in forma differenziale: 

wdw dh 0   

diviene: 

Tds wdw dp     
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Ricavando la variazione relativa di pressione dalla (3.1) risulta: 

2dp wdw w dx
2d


     

e sostituendo nella precedente si ha: 
2w

ds dx
T 2d


  

ovvero in funzione del numero di Mach: 

2ds kRM dx
2d


  

e tenuto conto della [3.8] si perviene all‟espressione differenziale della variazione di entropia in 
funzione del solo numero di Mach: 

 2

2

R 1 M
ds dM

k 1
M 1 M

2




 
 

 

  [3.9] 

da essa risulta che: 

M 1

s
0

M 

 
 

 
 

inoltre, come è semplice verificare, risultando anche: 
2

2

M 1

s
0

M


 
 

 
 

si deduce che lo stato di massima entropia si ha in corrispondenza del regime sonico. Integrando 
la [3.9] si ottiene: 

2k 1 k 1
s R ln M ln 1 M C

2( k 1) 2

   
     

   
  [3.10] 

la quale assieme alla [1.28] consente di tracciare nel piano T, s le curve del deflusso adiabatico, 

dette linee di Fanno, più precisamente fissata una temperatura di ristagno 0T  si ottiene un fascio di curve 

ognuna delle quali è valevole per un dato numero di Mach e ciascuna di esse ha un limite, stato di 

massima entropia, in corrispondenza di M 1 ; ricavando dalla [1.28] il numero di Mach e sostituendo 
nella [3.10] si ottiene l‟equazione di una curva per quel dato numero di Mach, ossia: 

0 0T TR 2 k 1
s ln 1 ln C

2 k 1 T k 1 T

  
     

   
  [3.11] 

inoltre essendo: 

 p 0w 2c T T    [3.12] 

si deduce che le linee a temperatura costante sono anche linee a velocità costante 
conseguentemente gli stati appartenenti al ramo superiore di ogni curva corrispondono a velocità 
subsoniche mentre gli stati corrispondenti al ramo inferiore delle curve suddette corrispondono a 
velocità supersoniche, Figura 13.  

Il verso di evoluzione del deflusso è quello indicato dalle frecce in quanto la presenza dell‟attrito 
non può che causare un aumento di entropia e pertanto se il moto è inizialmente subsonico l‟aumento 
di entropia porta ad aumento della velocità, ovvero del numero di Mach, mentre se il moto è 
inizialmente supersonico si ha una diminuzione di velocità sicché in entrambi i casi la velocità del fluido 
tende al regime sonico.  
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Da queste considerazioni si può adesso enunciare il teorema fondamentale di Fanno, ovvero: nel 
deflusso adiabatico non isoentropico in un condotto cilindrico un moto subsonico non può mai divenire supersonico ed un 
moto supersonico, in assenza di onde d’urto, non può mai divenire subsonico, lo stato limite comune è il regime sonico. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                              Figura 13 

 

3.2. PARAMETRO LIMITE E GRADIENTE DI PRESSIONE 

Da quanto finora visto si può dire che facendo riferimento ad uno stato termodinamico in una 
certa sezione del condotto in corrispondenza della quale il numero di Mach è M esiste una lunghezza 

massima, valutata a partire dalla sezione medesima, alla fine della quale si ha M 1 . 

Tale lunghezza si può ottenere integrando la [3.8], ossia: 
max l 1

2

3 2
0 M

2(1 M )
 dx   dM

k 1d
kM 1 M

2

 


 
 

 

   

che fornisce l‟espressione: 

2
2

max

2
2

k 1
M

 l 1 M k 1 2ln
k 1d kM 2k

1 M
2




 
 




  [3.13] 

la variabile adimensionale a primo membro prende il nome di parametro limite di attrito e come si 
può osservare essa è funzione del solo numero di Mach; pertanto dato il diametro del condotto ed il 
numero di Mach in una sezione nota il parametro di attrito consente di determinare la lunghezza l 
residua che si può assegnare al condotto affinché il moto avvenga adiabaticamente senza che si 

verifichino fenomeni d‟urto, al limite per maxl l  il numero di Mach allo sbocco assume valore unitario.  

Tale lunghezza è molto limitata infatti osservando la (3.13) per una velocità che al limite è 
infinitamente grande si può scrivere: 

max

M

l 1 k 1 k 1
lim ln 1

d k 2 k 1





    
   

  
 

e quindi per k 1,4  ed un valore medio del fattore di attrito di 0,01 la lunghezza in 

corrispondenza della quale si raggiunge il regime sonico vale: 

maxl 82d  

maxs  

M 1  

M 1  

T  

s  
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La lunghezza tra due sezioni del condotto, Figura 14, in corrispondenza delle quali i numeri di 

Mach sono, rispettivamente, 1M  e 2M  si può ottenere calcolando dapprima le lunghezze limiti 

 
1

max M
l  e  

2
max M

l  attraverso la [3.13] e poi dall‟espressione: 

   
1 2

12 max maxM M
l l l    [3.14] 

 

 

 

 

 

 

 

 

 

 

 

                                                              Figura 14 

 

       viceversa dato il numero di Mach 1M  la [3.14] consente di determinare il numero di Mach 

incognito allo sbocco. 

Sostituendo la [2.21] nella [3.5] si ricava la variazione relativa di velocità:  

2

dw 1 dp

w (1 k )M 1 p

 
  

  
 

e quindi tenuto conto che:  
2

2w
kM

p


   [3.15] 

la (3.1) si scrive: 

   
2

2

2

kM dp
1 w 0

(1 k )M 1 dx 2d




 
   

  
 

dalla quale si ricava: 
2

2

2

dp 1 ( k 1)M
w

dx M 1 2d




  
  

 
  [3.16] 

e pertanto risulta: 

dp
0             M 1

dx

dp
0             M 1

dx

 

 

 

sicché si ha una perdita di pressione nel regime subsonico. Si osserva inoltre che per M 1  dalla 
[3.16] si ottiene: 

2dp
w

dx 2d


   

ovvero il gradiente di pressione che si manifesta nei fluidi incomprimibili. 

1M  2M  M 1   

 
1

max M
l  

 
2

max M
l  

12l  
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3.3. STATO TERMODINAMICO DI RIFERIMENTO 

Anche per il deflusso adiabatico nei condotti cilindrici viene considerato come stato di 

riferimento quello corrispondente alla condizione M 1 , dove si è visto che il fluido raggiunge la 
massima entropia, ma a differenza dello stato critico isoentropico la condizione suddetta viene 
raggiunta in modo irreversibile e pertanto delle equazioni scritte il precedenza restano valide solo la 
[1.28] e la [1.36], ovvero la prima delle [1.39], quest‟ultima viene in tal caso considerata come quella 
temperatura caratteristica dello stato critico adiabatico. 

Se si considera un processo adiabatico che parte da uno stato locale ( p,T , ,w)  fino a 

raggiungere lo stato di massima entropia c c c c( p ,T , ,w )  l‟equazione di continuità si scrive: 

c cw w   

ossia anche: 

 

1/ 2

c

c cc

w M kRT T
M

w TkRT

 
 

 
    

 
 

e quindi per la prima delle [1.39] si ottiene: 
1/ 2

2

c

2 k 1
M M

k 1 k 1
 


 

  
  

  [3.17] 

Inoltre tenuto conto dell‟equazione di stato si può scrivere: 

c

c c

p p

T T 
  

sicché: 

c c
c

T
p p

T





  
   

  
 

e tenuto conto della [3.17] e tramite la prima delle [1.39] si perviene all‟espressione: 
1/ 2

2

c

2 k 1
p pM M

k 1 k 1

 
  

  
  [3.18] 

Ancora dall‟equazione di continuità risulta: 

c

c

w
w




  

e tramite la [3.17] si ha: 
1/ 2

2

c

w 2 k 1
w M

M k 1 k 1

 
  

  
  [3.19] 

la quale unitamente alle [3.17], [3.18] e la prima delle [1.39] definiscono lo stato critico adiabatico 
ovvero lo stato di massima entropia. 

Nella  Figura 15 è rappresentato il processo i cui estremi sono gli stati sopra menzionati, in tal 

caso in corrispondenza dell‟isoentropica maxs s  si può scrivere: 

k

k 1

0 c

k 1
p p

2

 
   

 
 

mentre lungo l‟isoentropica appartenente allo stato locale vale la [1.29] e dal rapporto di queste 
pressioni di ristagno si ha: 

k

k 1
20

0 c

p p 2 k 1
M

p p k 1 k 1

 
     
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la quale tramite la [3.18] assume la forma: 
k 1

2( k 1 )
20

0

p 1 2 k 1
M

p M k 1 k 1



 
     

  [3.20] 

che fornisce il rapporto tra la pressione di ristagno relativa allo stato locale e quella che si ha nello 
stato critico adiabatico. 

 

 

 

 

 

 

 

 

 

 

  

 

                                                                         Figura 15 

 

L‟aumento di entropia nella suddetta trasformazione vale: 
1 k

k
c c

p

T p
s c ln

T p




 
  

 
 

d‟altra parte lungo l‟isoentropica locale e quella critica si può scrivere rispettivamente: 
1 k 1 k

k k
o o

1 k 1 k

k k
c c o o

Tp T p

T p T p

 

 





 

e dal rapporto di ambo i membri ne risulta: 
k 1 k 1

k k
c o

c o

T pp

T p p

 

   
   

   
 

e pertanto l‟aumento di entropia si può scrivere nella forma: 
k 1

k
o o

p

o o

p p
s c ln Rln

p p




 
  

  
  [3.21] 

ovvero in funzione del rapporto tra la pressione di ristagno locale e quella appartenente allo stato 
di massima entropia. 

Si può dire che lo stato critico adiabatico è adesso definito in modo completo in quanto oltre alle 
equazioni precedenti la [3.21] fornisce il valore della massima entropia a partire da condizioni locali 
note. 

3.4. FUNZIONAMENTO DEI CONDOTTI MISTI 

Lo studio del moto in ugelli e diffusori è stato trattato separatamente da quello nei condotti 
cilindrici in quanto benché in entrambi i casi il deflusso è adiabatico si è visto che solo nel primo caso è 
possibile, almeno in prima approssimazione, trascurare gli effetti dell‟attrito.  

  p 

 s maxs  

 T 

 s 

oT T  op  op  

cp  
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Viene adesso preso in esame lo studio del moto adiabatico in un condotto cilindrico collegato a 
monte ad un ugello, questo deflusso si può definire “misto” sia per geometria che per comportamento 
fisico del fluido in quanto se nel condotto cilindrico vale il teorema di Fanno nell‟ugello vale quello di 
Hugoniot.  

Questo studio viene affrontato in maniera ancor più sintetica di quello fatto per gli ugelli sia 
perché i fenomeni d‟urto, principali responsabili del comportamento del fluido, non vengono qui presi 
in considerazione ed anche per gli aspetti più complessi che questo deflusso combinato comporta per il 
quale si rimanda il lettore ai trattati specifici sull‟argomento.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

                                                                 Figura 16 

 

1.1.4. CONDOTTO ALIMENTATO DA UN CONVERGENTE 

Nella Figura 16 il condotto è collegato, attraverso un ugello convergente, a monte ad un serbatoio 

con pressione e temperatura di ristagno note ed a valle ad un ambiente la cui pressione sp  viene fatta 

decrescere con continuità a partire dal valore della pressione di ristagno a monte. Nell‟ugello il moto è 
isoentropico mentre nel tratto cilindrico il deflusso è adiabatico con attrito. 

Facendo riferimento al diagramma delle pressioni sottostante alla figura si osserva che se la 
pressione nel serbatoio a valle è uguale a quella di ristagno a monte non c‟è movimento, curva a, mentre 

per valori via via decrescenti di sp  rispetto alla 0p , curve b e c, si realizza il deflusso in regime 

subsonico e nella sezione di uscita si ha 2M 1 ; ad ogni diminuzione di sp  si verifica un incremento 

del numero di Mach e quindi un accrescimento della portata fino a che quando la pressione sp  

raggiunge il valore critico, curva d, nella sezione di uscita si ha 2M 1  e la portata ha valore massimo 

così come in corrispondenza della sezione di imbocco del tratto cilindrico anche il numero di Mach 
raggiunge un valore massimo.  

Per valori di sp  minori della cp , curva e, non si manifesta alcuna variazione della portata che 

rimane uguale al suo valore massimo corrispondente a 2M 1  anche perché per il teorema di Fanno il 

numero di Mach in tale sezione non può superare il valore unitario.  
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Pertanto il deflusso all‟interno del condotto rimane inalterato ma oltre la sezione di uscita il fluido 

subisce delle onde di espansione per poi raggiungere più a valle l‟adeguamento alla pressione sp . 

1.1.5. CONDOTTO ALIMENTATO DA UN CONVERGENTE - DIVERGENTE 

Il condotto cilindrico viene collegato al serbatoio di monte con un ugello convergente - 
divergente ed anche qui lo stato di ristagno nel serbatoio è noto così come può essere fatta variare la 
pressione dell‟ambiente rispetto alla pressione di ristagno del serbatoio; è evidente che in questo caso si 
deve necessariamente ammettere che nel divergente il moto sia isoentropicamente supersonico 
altrimenti, per quanto è già noto, si ricadrebbe nel caso precedente.  

Per studiare l‟influenza della pressione sp  sul deflusso di possono distinguere tre casi a seconda 

che la lunghezza reale del condotto è minore, uguale o maggiore di quella massima compatibile con lo 
stato fisico iniziale fissato nella sezione di ingresso del tratto cilindrico, come è rappresentato nella  

Figura 17, nella quale la sezione intermedia rappresenta la maxl  calcolata in corrispondenza del numero 

di Mach nella sezione iniziale del condotto cilindrico. 

 -  
1

max M
l l  in questo primo caso la sezione di sbocco è la 2 2   allora per s cp p  il moto è 

interamente supersonico nel condotto e solo nella sezione di uscita si ha 2M 1  , curva e, mentre 

se s cp p  si ha ancora 2M 1   ma il fluido subisce delle onde di espansione e solo più a valle si 

ha l‟adeguamento alla pressione sp , curva g; se s cp p  si ha 2M 1   ma un‟onda d‟urto normale 

si viene a formare nel condotto, curva d, in dipendenza del valore di sp  e tale onda si sposta 

verso monte all‟aumentare di sp . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                Figura 17 

 -  
1

max M
l l  in questo secondo caso la sezione di sbocco è la 2 2  in corrispondenza della 

quale, calcolata la pressione con le equazioni di Fanno, si ha che 2 cp p  per cui il moto nel 
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condotto è supersonico senza onde d‟urto ovvero se s 2 cp p p   si ha la curva m mentre se 

s 2 cp p p   si hanno onde di espansione, curva n, e quindi l‟adeguamento alla pressione sp  più 

a valle, per una particolare pressione s 2p p  si viene a formare un‟onda d‟urto nella sezione di 

sbocco, curva c. 

 -  
1

max M
l l  in quest‟ultimo caso la sezione di sbocco è la 2 2   e il fluido subisce sempre 

un‟onda d‟urto all‟interno del condotto e più precisamente se s cp p  si ha 2M 1   e quindi la 

sezione del condotto nella quale si forma l‟onda d‟urto dipende dalla sp , curva a ; per s cp p , 

curva f , si ha 2M 1   e tale valore vale anche per s cp p  anche se il fluido subisce onde 

oblique di espansione, curva h, e solo più a valle si ha l‟adeguamento alla pressione sp . 

Si osserva che man mano che la lunghezza del condotto cilindrico viene incrementata a partire da 

 
1

max M
l l‟onda d‟urto normale si sposta verso monte fino a formarsi nella sezione 1 1  di conseguenza 

il moto in tutto il condotto è interamente subsonico ed in corrispondenza della sezione finale si 
raggiunge il regime sonico. 



FISICA TECNICA INDUSTRIALE – VOL. 3° - TERMO-FLUIDODINAMICA   

 PROG. ING. GIULIANO  CAMMARATA 

 

| 42 

4.  MOTO ISOTERMO NEI CONDOTTI CILINDRICI 

 

4.1. PERDITE DI PRESSIONE E PORTATA DI MASSA 

Si è detto inizialmente che nel caso di comprimibilità la velocità del fluido anche per condotto a 
sezione costante varia per effetto dei cambiamenti di densità e pertanto non si annulla la variazione di 
energia cinetica. Tuttavia se il fluido viaggia di regime laminare stazionario le basse velocità fanno si che 
le variazioni suddette si possono ritenere praticamente trascurabili ai fini del bilancio di energia 
meccanica. Si può pervenire ad un‟espressione del gradiente di pressione in tale regime partendo dal 
gradiente di pressione per un fluido incomprimibile per il quale, come è noto, nel caso di un condotto 
cilindrico a sezione circolare vale la relazione: 

2

p 32
w

l d

 
   [4.1] 

che messa in funzione della portata di massa diviene: 

4

p 128
m

l   d

 

 
   [4.2] 

Questa equazione per un fluido comprimibile deve essere necessariamente scritta per un tronco 
di condotto di lunghezza elementare dx, ossia: 

4

dp 128
m

dx   d



 
   

che nel caso del gas perfetto si scrive: 

4

dp 128
RT  m

dx  d p




   

sicché integrando su tutto il tronco di lunghezza l si ha: 
2 2

1 2

4

p p 128  m l
RT

2  d






  

ovvero anche: 

1 2

4

p p 128  m l
p RT

2  d







   [4.3] 

d‟altra parte se la temperatura del gas è costante nelle due sezioni estreme si può scrivere: 

1 1 2 2p RT              p RT    

quindi dalla semisomma risulta: 

1 2 1 2
m

p p
RT RT

2 2

 


 
   

e sostituendo nella [4.3] si ottiene: 

4

m

p 128  m

l   d

 

 
    [4.4] 

relazione analoga alla [4.2] pertanto il gradiente di pressione di un gas perfetto in regime laminare 
stazionario si può ottenere dal corrispondente gradiente di pressione di un fluido incomprimibile 
adottando per la densità il valore medio delle densità nelle sezioni estreme del condotto. 

In regime turbolento le variazioni di velocità conseguenti alle diminuzioni di pressione sono 
sovente piuttosto rilevanti per cui nell‟equazione di bilancio di energia devono essere computate le 
variazioni di energia cinetica anche se, come si avrà modo di vedere, l‟approssimazione fatta per il 
regime laminare può in qualche caso valere anche in tale regime. 
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Se la temperatura è costante l‟equazione [3.3] diviene: 

dp d

p




  

e dal confronto con la [3.4] risulta: 

dw dp

w p
   

sicché la  [3.1] assume la forma: 

 2

dp dp
dx 0

p w 2d




      [4.5] 

Se lo stato fisico iniziale del fluido è caratterizzato dai valori  1 1 1, p ,w  l‟equazione di bilancio 

di massa è data da: 

1 1w w   

e quindi scrivendo: 

   2

1 1w w w w w     

e tenuto conto dell‟equazione di stato risulta anche: 
2  2

 2 2  21 1
1 1

w RT
w w

p


 


   

pertanto l‟equazione  [4.5] si scrive: 

 2  2

1 1

dp p
dp dx 0

p RT w 2d




      [4.6] 

Se si ammette che  f Re   ed essendo in tale deflusso cost.   risulta che: 

wd
Re cos t.




   

di conseguenza è anche cost.   e quindi integrando la  [4.6] si ottiene: 

2 2 2  2 1
1 2 1 1

2

l p
p p 2RT w ln

d p




 
   

 
  [4.7] 

che può essere scritta nella forma: 

2  2 1
1 1

1 2 2

2RT l p
p w ln

p p d p


 

 
  

  
  [4.8] 

Si osserva che il logaritmo del rapporto delle pressioni estreme è ampiamente trascurabile quando 

il condotto non sia troppo breve; ad esempio per 0,03   e se 1 2p 2 p , che in pratica è un rapporto 

estremamente elevato, in un condotto lungo circa 2000 diametri si avrebbe: 

1

2

l p
30              ln ln2 0,69

d p


    

ovvero per le condizioni suddette, abbastanza svantaggiose, il termine logaritmico è circa 45 volte 
più piccolo del precedente e quindi praticamente trascurabile; questo significa che la variazione di 
energia cinetica dovuta alle variazioni di densità risulta trascurabile rispetto a quella dissipata per effetto 
dell‟attrito sicché la [4.8] diviene: 
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2  2

1 1

1 2

2RT l
p w

p p 2d


 


 

che tramite l‟equazione di stato può essere anche scritta: 

 2

1 1

2

1

p 2 w

pl d 2
1

p

  

 
 
 
  
 

  [4.9] 

espressione che fornisce il gradiente di pressione per il deflusso isotermo il quale può essere 
determinato come se il fluido fosse incomprimibile partendo dai valori iniziali di densità e velocità 

correggendo poi con il fattore in parentesi che a sua volta, essendo 1 2p p , è sempre maggiore 

dell‟unità. Si può quindi affermare che: 

T cost cost

p p

l l 

 

 

   
   

   
 

ossia la resistenza effettivamente incontrata dalla corrente fluida è maggiore di quella che si 
avrebbe se il fluido fosse incomprimibile ed avente una densità è pari a quella del gas in corrispondenza 
della sezione iniziale del condotto; d‟altra parte se si pensa che nel moto turbolento la resistenza che 

incontra il fluido è proporzionale al prodotto 2w  e tenuto conto che w cost.   tale resistenza 

cresce al crescere di w  ossia al diminuire della densità, ciò che subisce il fluido durante il deflusso. 

Si faccia riferimento all‟equazione [4.7] la quale tramite l‟equazione di stato del gas può essere 
scritta: 

2 2 1
1 2

2

m l p
p p RT 2ln

A d p

  
    

  
 

ovvero anche: 
2

2 2 1
1

1 2

p m l p
p 1 RT 2ln

p A d p

     
       

      

 

si può dunque ricavare la portata di massa specifica: 

2

2

11

1

2

p
1

pm p

l pA RT 2ln
d p



 
  
 



  [4.10] 

ovvero la determinazione della portata di massa note che siano le pressioni nelle sezioni estreme, 
o quantomeno il valore del loro rapporto, in un condotto di dato diametro; nei casi in cui si può 
trascurare il termine logaritmico, come visto in precedenza, si ottiene l‟espressione semplificata: 

2

1 2

1

m p d p
1

A l pRT 

  
   
   

  [4.11] 

dalla quale o anche dalla [4.10], sempre che siano note le pressioni suddette, si può determinare 

quale diametro deve avere il condotto che deve convogliare una data portata di massa m . 
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4.2. PARAMETRO LIMITE. STATO CRITICO 

Il gradiente di pressione può essere anche scritto in funzione del numero di Mach se si considera 
che l‟equazione  [4.5] può essere messa nella forma: 

 2
 2w dp

1 w 0
p dx 2d

 


 
   

 
 

e tenuto conto della  [3.15] la precedente diviene: 

 2

2

dp 1
w

dx kM 1 2d




 
  

 
  [4.12] 

dalla quale si osserva che in corrispondenza del valore: 

 1
M

k

    [4.13] 

si ha che dp   facendo cadere in difetto la [4.12]; la [4.13] rappresenta lo stato critico isotermo in 

corrispondenza del quale il regime isotermo può essere mantenuto solo teoricamente ma in pratica tale 
regime sarebbe impossibile da realizzare.  

Si ha allora un‟effettiva perdita di pressione solo per valori di Mach inferiori al valore critico, 
ovvero risulta: 

1 dp
M              0

dxk
    [4.14] 

mentre per Mach superiori al valore critico si ha l‟inversione del gradiente di pressione, ossia: 

1 dp
M              0

dxk
    [4.15] 

Si scriva l‟equazione [4.7] partendo da condizioni iniziali note e facendo riferimento ad una 
sezione generica del condotto di ascissa x, per cui: 

  2 2  2 1
1 1 1 1

x p
p p p w 2ln

d p




 
   

 
 

ovvero anche: 
2

 2

1 1 1

1 1

p w x p
1 2ln

p p d p

    
     

  
 

quindi ordinando e scrivendo la suddetta relazione in funzione del numero di Mach si può 
scrivere: 

2

2

1 1 1

x 1 p p
1 2ln

d kM p p

   
    
   

  [4.16] 

La (4.16) è rappresentata nel diagramma di  Figura 18 dalle linee a tratto continuo ognuna delle 
quali è determinata per un dato numero di Mach iniziale e forniscono l‟andamento della pressione 

p p( x )  lungo il condotto; le linee a tratto e punto forniscono l‟andamento della pressione per fluido 

incomprimibile, in tal caso infatti si avrebbe: 
 2

1 1
1

x w
p p

d 2

 
   

ovvero in funzione del numero di Mach: 
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2

1 1

x 1 p
1

d kM p

  
  

 
  [4.17] 

che rappresenta l‟equazione delle sopraindicate rette ottenute al variare di 1M . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                Figura 18 

 

Come si può osservare il diagramma mette in evidenza ciò che del resto è già stato dimostrato 
ovvero che la pressione diminuisce più rapidamente per il fluidi comprimibili e gli scostamenti sono 

tanto maggiori quanto maggiore è il numero di Mach iniziale. Fissata la portata m  e la pressione iniziale 

1p  restano anche determinati il valore di 1M  ovvero la curva caratteristica della corrente fluida; noti 

allora la lunghezza e il diametro del condotto si può leggere sulla curva suddetta il valore del rapporto 

1

p

p
 e quindi, noto il fattore d‟attrito, ricavare la differenza di pressione necessaria affinché il condotto 

possa convogliare la portata assegnata. 

Si può altresì osservare che tutte le curve del suddetto diagramma presentano un punto a 
tangente verticale il quale rappresenta il punto rappresentativo dello stato critico, ciò significa che se la 

lunghezza del condotto è tale che il termine 
x

d


 supera l‟ascissa in quel punto è impossibile che il 

condotto possa convogliare la portata assegnata qualunque sia il rapporto delle pressioni nelle sezioni 
estreme; può al massimo essere convogliata quella portata cui corrisponde un numero di Mach iniziale 

tale che la curva rappresentativa abbia tangente verticale proprio nel punto di ascissa 
l

d


.  Scrivendo la 

[4.5]  in funzione del numero di Mach si ha: 

2

dp dp
dx 0

p kpM 2d


     

quindi ordinando: 

2

1 dp
dx 1

2d kM p

  
  
 

   [4.18] 

e tenuto conto che, per quanto visto in precedenza per la velocità, si può anche scrivere: 
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x
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dp dM

p M
    [4.19] 

la precedente assume la forma: 

2

1 dM
dx 2 1

d kM M

  
  

 
  [4.20] 

e quindi integrando si ha: 

max l  1/ k  1/ k  1/ k

3

2
 0  M  M  M

1 dM 2 dM
dx 2 1 M dM 2

d kM M k M

  
    

      

dalla quale si ottiene: 
2

2max

2

l 1 kM
ln  ( kM )

d kM

 
    [4.21] 

dove il termine a primo membro rappresenta il parametro limite di attrito per il deflusso isotermo 

e la maxl  rappresenta la massima lunghezza di condotto lungo il quale il moto, a partire da una sezione 

di assegnato numero di Mach, si mantenga isotermo senza che si verifichino fenomeni di discontinuità 
nella sezione considerata. 

 

 

 

 

 

 

 

 

 
 

 

                                                                 Figura 19 

 

La  Figura 19 è analoga alla  fig. 3.2, fatta eccezione per il numero di Mach critico, e dalla quale è 
possibile dunque determinare la lunghezza di condotto necessaria affinché il moto passi dalla sezione 

con 1M  alla sezione con 2M  mantenendo il regime isotermo e senza che si verifichino fenomeni 

d‟urto; vale ancora l‟equazione [3.14] dove però le massime lunghezze relative ai corrispondenti numeri 
di Mach vengono determinate tramite la [4.21]. 

Si può adesso determinare il rapporto di pressione corrispondente allo stato critico integrando la 
[4.19], ossia: 

1 1

p 1/ k

p M

dp dM

p M



    

dalla quale si ottiene: 

1

1

p
M k

p



    [4.22] 

pertanto la [4.16] in corrispondenza dello stato critico diviene: 

max
1 2

1

l 1
2ln( M k ) 1

d kM


     [4.23] 

12l  

1M  2M  
1

M
k

   

 
1

max M
l  

 
2

max M
l  
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dalla quale risolvendo per tentativi si ottiene il valore del numero di Mach iniziale che darebbe 
luogo alla massima portata di fluido che il condotto può convogliare sostituendo tale valore 
nell‟espressione: 

1
max 1 1 1 1

1

kp
m Aw AM 


   

che può essere scritta in funzione della temperatura: 

1
max 1

1

k p
m AM

R T
   [4.24] 

tale valore, a differenza della portata massima che si realizza nel deflusso isoentropico, ha solo un 
significato teorico ma non ha alcuna applicazione pratica in quanto, come verrà precisato qui di seguito, 
lo stato critico isotermo non può essere realizzato praticamente.  

4.3. CONDIZIONE DI ISOTERMICITÀ 

Si faccia riferimento alla [1.28] la quale differenziata diviene: 

0dT T( k 1)MdM   

ovvero in termini di variazione relativa si scrive: 

0

0
2

dT k 1 dM

1 k 1T M

M 2







 

e quindi per la [4.20] si perviene all‟espressione: 

 

2

0

20
2

dT k( k 1)M
dx

2T d
k 1 1 KM

M



 

   
 

  [4.25] 

la quale assieme alla [4.18] nonché alle già note relazioni: 

dp d dM dw

p M w




      

consente di stabilire il verso di variazione, lungo il deflusso isotermo, delle grandezze dinamiche e 
termiche che lo caratterizzano, risulta infatti: 

0 0

dp 0 dp 0

d 0 d 01 1
M                              M        

dw 0 dw 0k k

dT 0 dT 0

 

    
   

    
    

    
       

  [4.26] 

pertanto la [4.13] rappresenta il limite a cui tende il numero di Mach sia partendo da condizioni 
subsoniche che supersoniche, escludendo in questo secondo caso fenomeni d‟urto. Inoltre 
differenziando la [1.24] si può scrivere: 

2

0 p 0

w
dQ d h dh c dT

2

 
    

 
 

e pertanto, tenendo presenti le condizioni [4.23], si avrebbe: 

1
M                 dQ 0

k
   
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ciò significa che l‟attrito provoca una diminuzione di temperatura di conseguenza affinché il 
moto si mantenga isotermo è necessaria una somministrazione di calore dall‟ambiente al fluido e finché 
si verifica tale condizione l‟apporto di calore compensa effettivamente il raffreddamento del fluido 
mantenendone costante la temperatura. Mentre se si ha: 

1
M                 dQ 0

k
   

in tal caso occorrerebbe sottrarre calore al fluido per mantenere il moto isotermo in quanto 
l‟attrito causa un aumento della temperatura; in pratica però questa situazione non è realizzabile in 
quanto è tecnicamente impossibile effettuare uno scambio termico convettivo talmente intenso che 
possa compensare l‟effetto dell‟attrito.  

Infine: 

1
M                 dQ 0

k
   

in tale circostanza l‟apporto o la sottrazione di calore non influenza la temperatura la quale in 
questa circostanza limite rimarrebbe costante, anche questa situazione è solo teorica ma di impossibile 
realizzazione pratica. 

Si conclude che il deflusso isotermo di un gas lungo un condotto cilindrico può essere realizzato 
solo per numeri di Mach sufficientemente lontani dal valore critico e lungo condotti con pareti molto 
trasmittenti perché solo a tale condizione l‟azione dell‟attrito risulta concomitante ad uno scambio 
termico con l‟esterno di entità tale da mantenere costante la temperatura per l‟intera durata del deflusso, 
pertanto lo stato critico sopra definito nonché il valore della portata corrispondente determinato con la  
[4.25] hanno solo un significato teorico. 
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5.  MOTO CON SCAMBIO TERMICO NEI CONDOTTI CILINDRICI 

5.1. DEFLUSSO DI RAYLEIGH 

Si tratta di un moto a regime stazionario, internamente reversibile lungo un condotto cilindrico 
che si realizza mediante scambio di calore e senza scambi meccanici; oltre ai fenomeni dissipativi, con 
riferimento principale ovviamente all‟attrito, viene anche trascurata la variazione di energia potenziale 
del fluido. 

Per lo studio di questo tipo di deflusso oltre alle equazioni di bilancio di massa ed energia 
precedentemente utilizzate è necessario fare riferimento all‟equazione di bilancio di quantità di moto 
che nel caso in esame deve essere scritta nella forma:  

2p  w cost   [5.1] 

Viene qui preso in esame solo il caso più semplice ossia che la somministrazione di energia 
termica venga effettuata dall‟esterno, come è illustrato nella fig.5.1, escludendo il caso in cui vi siano 
sorgenti termiche all‟interno del condotto dovuti a fenomeni di combustione. 

 

 

 

 

 

 

 

 

 

 

 

 

Applicando l‟equazione (5.1) alle sezioni estreme del tronco di condotto si può scrivere: 
2 2

1 1 1 2 2 2p w p w     

ed essendo: 
2 2w kpM   

l‟eguaglianza precedente diviene: 

   2 2

1 1 2 2p 1 kM p 1 kM    

ovvero anche: 
2

1 2

2

2 1

p 1 kM

p 1 kM





   [5.2]  

espressione che collega le pressioni locali nelle sezioni di ingresso e di uscita ai corrispondenti 
numeri di Mach.  

Le pressioni di ristagno 01p , a monte della somministrazione di calore, e 02p , a valle, vanno 

ricavate supponendo che il fluido nell‟arrestarsi, in corrispondenza delle sezioni medesime, non abbia 
modo di scambiare calore ed il processo sia reversibile; pertanto l‟equazione (1.29) deve essere applicata 
sia nella sezione iniziale che in quella finale, si deve dunque scrivere: 

   figura  5.1 
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k
 
k 1

201
1

1

k
 
k 1

202
2

2

p k 1
1 M

p 2

p k 1
1 M

p 2





 
  
 

 
  
 

 

inoltre dividendo membro a membro: 

 

k
 
k 1

2

2
02 2

201 1
1

k 1
1 M

p p 2
k 1p p

1 M
2

 
 

  
 
 

  [5.3]  

e tenuto conto della (5.2) risulta: 
k

 
k 1

2
2 2

02 1

2
201 2
1

k 1
1 M

p 1 kM 2
k 1p 1 kM

1 M
2

 
 

    
 

  [5.4]  

la quale fornisce il rapporto tra le pressioni di ristagno 02p  e 01p , rapporto che è diverso 

dall‟unità e varia al variare dei numeri di Mach locali; è evidente, per quanto si è detto in precedenza, 
che tale rapporto diviene unitario se la corrente fluida non scambia calore con l‟esterno. Pertanto le 
grandezze di ristagno che nel moto isoentropico costituiscono un stato termodinamico fisso nel 
deflusso di Rayleigh esse variano al variare dello stato termodinamico locale. 

Nel deflusso isoentropico di Hugoniot così come in quello adiabatico di Fanno lo stato di 
riferimento è quello che corrisponde al regime sonico, anche in questo caso torna opportuno scegliere 

come riferimento la condizione M 1  che viene raggiunta reversibilmente ma con aumento di 
entropia, come si potrà vedere poco più avanti osservando la linea di Rayleigh.  

Considerando uno stato locale generico la (5.2) diviene: 

2

p 1 k

p 1 kM





   [5.5]  

che fornisce il rapporto tra la pressione p in una sezione qualsiasi del condotto e la pressione p  

che si ha in quella sezione dove risulta M 1 . 

Se 0p  è la pressione di ristagno corrispondente alla p e 0p  è quella corrispondente ad uno stato 

di ristagno in una sezione generica la (5.4) assume la forma: 
k

 
k 1

20

2

0

p 1 k 2 k 1
M

p 1 kM k 1 k 1





  
  

   
  [5.6]  

ossia il rapporto tra la pressione di ristagno locale e quella di riferimento corrispondente. 

Per quanto riguarda la temperatura di ristagno vale ancora l‟equazione (1.28) in quanto è da 
supporre che nell‟arresto il fluido subisca una trasformazione adiabatica essa però varia sezione per 
sezione, secondo l‟equazione (1.27), e pertanto si deve scrivere: 

201
1

1

202
2

2

T k 1
1 M

T 2

T k 1
1 M

T 2


 


 

  

e quindi facendo il rapporto dei membri: 
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2

2
02 2

201 1
1

k 1
1 M

T T 2
k 1T T

1 M
2

 
 

  
 
 

  [5.7]  

Dall‟equazione di stato applicata alle sezioni 1 e 2 si può scrivere l‟eguaglianza: 

1 2

1 1 2 2

p p

T T 
  

dalla quale si ricava il rapporto tra le temperature: 

2 2 1

1 1 2

T p

T p




  

inoltre dall‟equazione di bilancio di massa, in funzione del numero di Mach, deve essere: 
1/ 2

2 21 2 2 2

2 1 1 11 1

M kRTw M T

w M TM kRT





 
    

 
  [5.8]  

sostituendo tale rapporto nella precedente risulta: 

  

2 2

2 2 2

1 1 1

T M p

T M p

   
    
   

 

e tenendo conto della (5.2) si può ancora scrivere: 
2 2

2

2 2 1

2

1 1 2

T M 1 kM

T M 1 kM

   
    

   
  [5.9] 

pertanto la (5.7) assume la forma: 

 
 

 22
2

2
2 102

2
201 1 2
1

k 1
1 M M 1 kMT 2  

k 1T M 1 kM1 M
2


  

 
    

  [5.10]  

si ottiene dunque il rapporto tra le pressioni di ristagno relative agli stati locali delle sezioni 1 e 2 
in funzione dei numeri di Mach corrispondenti.  

Se adesso si considera una generica sezione del condotto il rapporto tra la temperatura locale e 
quella di riferimento corrispondente risulta dalla (5.9): 

 

 

22

2
2

M 1 kT

T 1 kM






  [5.11]  

mentre il rapporto tra la temperatura di ristagno locale e quella di riferimento corrispondente si 
ottiene dall‟equazione (5.10): 

 

 

2 2

0

2
2

0

k 1
2M k 1 1 M

T 2

T 1 kM


 
  

 



  [5.12] 

In maniera analoga si può determinare il rapporto tra le densità locali, infatti facendo riferimento 
alla (5.8) si può scrivere: 

1/ 2

2 1 2

1 2 1

M T

M T







 
  

 
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e quindi per la (5.9) risulta: 
2

2

2 2 1

2

1 1 2

1 kM M

1 kM M





 
  

  
  [5.13]  

allora scrivendo la (1.33) in corrispondenza degli stati 1 e 2 si ha: 
1

 
k 1

201
1

1

1
 
k 1

202
2

2

k 1
1 M

2

k 1
1 M

2













 
  
 

 
  
 

 

ovvero facendo il rapporto dei membri: 
1

 
k 1

2

2
02 2

201 1
1

k 1
1 M

2
k 1

1 M
2

 

 

 
 

  
 
 

 

e quindi per la (5.13) si ottiene il rapporto tra le densità locali di ristagno in funzione dei soli 
numeri di Mach corrispondenti: 

1
 
k 1

22
2 2

02 2 1

2
201 1 2
1

k 1
1 M

1 kM M 2
k 11 kM M

1 M
2





 
  

        
 

  [5.14]  

inoltre considerando uno stato locale e quello di riferimento si può scrivere, tramite la (5.13) il 
rapporto: 

 

2

2

1 kM

1 k M









  [5.15]  

mentre il rapporto tra le corrispondenti grandezze di ristagno si ottiene dalla (5.14), ovvero: 

 

1
 2
k 1

20

2

0

1 kM 2 k 1
M

1 k M k 1 k 1









  
  

   
  [5.16]  

Anche la variazione di entropia tra gli stati 1 e 2 può essere espressa in funzione dei numeri di 
Mach corrispondenti, infatti essendo: 

k 1

k
2 1

2 1 p

1 2

T p
s s c ln

T p



 
   

 
 

tramite le (5.2) e (5.9) si ottiene: 
k 1

2
2 k

2 1
2 1 p 2

1 2

M 1 kM
s s c ln

M 1 KM

 
             
  

  [5.17]  

Considerando uno stato locale generico di entropia s e lo stato di riferimento la cui entropia è s  
la suddetta espressione diviene: 
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k 1

k
2

p 2

1 k
s s c ln M

1 kM





 
       

 

  [5.18]  

dalla quale è immediato verificare che: 

M 1

 2

2

M 1

s
0

M

s
0

M





 
 

 

 
 

 

 

e pertanto anche nel deflusso di Rayleigh lo stato di massima entropia si ha in corrispondenza del 

regime sonico. Portando in un diagramma ( s,M )  la (5.18) si ottiene la linea di Rayleigh illustrata nella 

figura sottostante. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. SOMMINISTRAZIONE MASSIMA DI CALORE 

I rapporti tra le varie grandezze in funzione del numero di Mach forniti dalle precedenti 
espressioni consentono di poter capire come deve avvenire lo scambio termico affinché possa essere 
realizzato il deflusso di Rayleigh. 

Facendo riferimento alla (5.12) si osserva che per un dato valore di 0T   un incremento positivo 

del rapporto fornito da tale espressione comporta un aumento della temperatura 0T  cui corrisponde 

una somministrazione di calore, a norma della (1.27), mentre un incremento negativo di tale rapporto 

causa una diminuzione di 0T  con conseguente sottrazione di calore. Inoltre dalla 5.12), come è 

immediato verificare, si può scrivere: 

0

M 1

2

0

2

M 1

0 max 0

T
0

M

T
0

M

  T T







 
 

 

 
 

 



 

pertanto la temperatura di ristagno presenta un massimo in corrispondenza di M 1 , ovvero nel 

punto di massima entropia, e poiché la somministrazione di calore tende a far crescere la 0T , e quindi 

 

figura 5.2 

0 

M 1 
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anche il rapporto 0 0T / T  , il fluido in moto ricevendo calore tende a portarsi al regime sonico di 

conseguenza in regime subsonico il numero di Mach cresce così come in regime supersonico esso 

decresce ed entrambi hanno come limite M 1 ; si deduce pertanto che non è possibile passare dal 
regime subsonico a quello supersonico, e viceversa, somministrando sempre calore; in corrispondenza 

della sezione in cui si raggiunge il valore M 1  occorre iniziare a sottrarre calore altrimenti si verifica la 
formazione di onde d‟urto. 

In sintesi se il fluido si trova in regime subsonico somministrando calore il fluido accelera e tende 
al regime sonico che può venire superato solo effettuando una sottrazione di calore a valle della sezione 

M 1  in tal caso il fluido incrementa la sua velocità, mentre una sottrazione di calore comporta una 
diminuzione della velocità. Se il fluido si trova in regime supersonico una somministrazione di calore 
provoca una diminuzione della velocità fino al regime sonico mentre una sottrazione di calore 
comporta un aumento della velocità. 

Da quanto detto si deduce che il calore che si può somministrare al fluido ha un limite che 
dipende dalle condizioni in cui viene effettuato il moto. Se in corrispondenza di una sezione le 
condizioni sono date da T ed M  la quantità di calore necessaria per portare il fluido fino alla condizione 

M 1  è data da: 

 max p 0 0q c T T    [5.19]  

e tale quantità rappresenta il massimo calore somministrabile in quanto, come si è visto, 0T   è il 

massimo di 0T .  

Per potere esprimere tale calore in funzione del numero di Mach si considerino due sezioni 
generiche 1 e 2 del condotto per cui la quantità di calore da somministrare al fluido per portarlo dallo 
uno stato all‟altro sarebbe data dalla (1.27) che in questo caso conviene scrivere nella forma: 

02
12 p 01

01

T
q c T 1

T

 
  

 
 

ovvero anche: 

01 02
12 p 1

1 01

T T
q c T 1

T T

  
   

  
 

espressione che, per le (5.10) e (1.28), diviene: 

 
 

 2 2
2

2
2 12

12 p 1 1 2
2

1 2
1

k 1
1 MM 1 kMk 1 2q c T 1 M 1

k 12 M 1 kM 1 M
2

 
   

           
 

 

pertanto se lo stato 2 corrisponde al regime sonico in corrispondenza di uno stato locale generico 
si può scrivere: 

 
 

2
2

2

max p 2
2

k 1
1 kMk 1 2q c T 1 M 1

k 12 M k 1
1 M

2

 
  

        
 

 

quindi sviluppando ed ordinando si ottiene: 

 
 

2
2

p

max 2

c T M 1
q

2M k 1





  [5.20]  

dalla quale si osserva che: 

maxM 0              q   
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è evidente che questa è una situazione limite, essa però serve ad indicare che quando si parte da 
bassi valori del numero di Mach per incrementare la velocità del fluido si devono somministrare 
quantità di calore molto elevate. 

Torna più conveniente disegnare la linea di Rayleigh nel piano termodinamico (T ,s )  le cui 

equazioni parametriche sono date dalle (5.9) e (5.17) scritte in corrispondenza di una stato iniziale noto, 

caratterizzato dai valori 1 1 1(T ,s ,M ) , e da uno stato locale generico (T ,s,M ) : 

 
 

 2
2

1

1 2

1

k 1
2

2 k
1

1 p 2

1

M 1 kM
          T T

M 1 kM

M 1 kM
s s c ln

M 1 kM



 
 

  

 
            
  

 

attraverso le quali ad ogni valore del numero di Mach  M  corrisponde una coppia di valori di 

(T ,s )  ottenendo così la curva illustrata nella figura sottostante; si osserva dal diagramma che la 

massima temperatura locale si raggiunge in condizioni di moto subsonico, d‟altra parte facendo 
riferimento alla (5.11) se si pone:  

 

 

 

 
 
 
 

 
 
 
 
 

 
 
 

T
0

M





 

ne risulta l‟equazione: 

 

 

 

 

2 23

2 3
2 2

2M 1 k 4kM 1 k
0

1 kM 1 kM

 
 

 
 

che fornisce la soluzione: 

1
M

k
    [5.21]  

pertanto la temperatura locale massima sarebbe: 

 
2

max

T 1 k
T

4k

 
   [5.22]  

figura 5.3 

M 1  

M 1  

M 1  

s 

T 

maxs  

q 0  

q 0  
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Si osserva che se nella linea di Rayleigh il fluido evolve in modo internamente reversibile si può 
allora scrivere l‟eguaglianza di Clausius: 

dq Tds  

inoltre l‟equazione di bilancio di energia porge: 
2

p p 0

w
dq d c dT c dT

2

 
   

 
 

e dal confronto con la precedente risulta: 

p 0Tds c dT  

tale relazione conferma quanto detto in precedenza ossia che il punto di massima entropia lungo 
la linea di Rayleigh è anche il punto di massima temperatura di ristagno, nella fig. 5.4 sono rappresentati, 
dalle linee tratteggiate, gli stati di ristagno della linea di Rayleigh. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

5.3. VELOCITÀ DI RIFERIMENTO E VELOCITÀ MASSIMA 

Per un deflusso reversibile che avviene con scambio di calore l‟equazione di bilancio di energia 
per un gas perfetto si scrive: 

 
2

p 0

w
c T T q

2
    

avendo fatto riferimento ad uno stato iniziale dove il fluido ha velocità nulla e temperatura 0T , 

tale espressione, per quanto è già stato fatto in precedenza, si può scrivere nella forma: 
22 2

0
max

cw c
q

2 k 1 k 1
  

 
   [5.23]  

dalla quale si osserva che anche se il deflusso avviene con scambio termico la velocità locale del 
gas diminuisce all‟aumentare della corrispondente velocità del suono, e viceversa, per cui in un dato 

punto le due velocità assumono ugual valore w  fornito dalla suddetta espressione: 

  2

0
max

2 k 1 c
w q

k 1 k 1


  

  
  

  [5.24]  

 figura  5.4 

T 

s 

M 1  

M 1  s  

0 0( s ,T )   

M 1  

M 1  
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pertanto la velocità di riferimento nel deflusso di Rayleigh è sempre maggiore di quella che si 
realizza nel moto isoentropico e tale aumento è funzione della quantità di calore scambiata, in assenza 
di scambio di calore  la (5.24) si identifica con la (1.35). 

La velocità di riferimento può essere espressa in funzione del numero di Mach locale, infatti 
dall‟equazione di bilancio di massa scritta nella (5.8) e tenuto conto della (5.13) risulta: 

2
2

2 2 1

2

1 1 2

w M 1 kM

w M 1 kM

  
  

 
 [5.25] 

che fornisce il rapporto delle velocità locali. Allora considerando uno stato locale generico 

caratterizzato dai valori  w,M  e quello di riferimento  w , M 1   si può scrivere: 

 

2

2

w 1 kM

w M k 1

 



  [5.26] 

ed è facile verificare che alla suddetta espressione si può pervenire anche attraverso la (5.24), con 
procedimento meno immediato del precedente.. 

5.4. EVOLUZIONE DEL DEFLUSSO SULLA LINEA DI RAYLEIGH 

Per un fluido che si muove lungo la curva di Rayleigh il problema fondamentale di importanza 

pratica è quello della determinazione dello stato termodinamico finale 2 2 2 2( p ,T ,w ,M )  allorquando, 

come si osserva dalla  fig. 5.1, a partire da uno stato termodinamico iniziale noto 1 1 1 1( p ,T ,w ,M )  ad 

esso viene somministrata la quantità di calore 12q .  

     Lo stato termodinamico iniziale determina nel piano (T ,s )  una particolare linea di Rayleigh 

ed inoltre calcolata la temperatura di ristagno iniziale 01T , tramite la (1.28), resta anche determinata la 

temperatura di ristagno nello stato di riferimento 0T  , attraverso la (5.12), nonché la temperatura di 

ristagno finale 02T , mediante la (1.27); tra queste temperature si può allora verificare che 02 0T T   

oppure 02 0T T  . 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Nel caso in cui 02 0T T   se inizialmente M 1  lo stato finale 2 si trova ancora nel ramo 

superiore della linea di Rayleigh, fig.5.5, il deflusso è dunque caratterizzato dal tratto 12 ed è 

figura 5.5 

s  
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1  

2  

T  
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univocamente determinato dalle relazioni sopra scritte; se inizialmente è M 1  si possono verificare 
due situazioni: 

 - il fluido si muove lungo il tratto 12'  della linea di Rayleigh, fig.5.6, questa è una soluzione 

accettabile e pertanto lo stato finale 2' è ancora univocamente determinato; 

 - il fluido partendo dallo stato iniziale 1 in corrispondenza di un generico stato a sul tratto 
supersonico della linea di Rayleigh subisce un‟onda d‟urto passando allo stato b del ramo 

subsonico della stessa linea di Rayleigh, accade in questo caso che 0a 0bT T , per poi proseguire 

subsonicamente fino allo stato finale 2" , questa è una soluzione da scartare. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nel caso limite in cui 02 0T T   il fluido evolverebbe fino allo stato M 1  sia che viaggia di 

regime subsonico che supersonico. 

Nel caso in cui 02 0T T   il deflusso non è realizzabile in quanto la quantità di calore 12q  

somministrata al fluido sarebbe maggiore della massima quantità di calore che il fluido può scambiare 
lungo la linea di Rayleigh: 

 max p 0 01q c T T   

ovvero non verrebbe rispettata la condizione principale 01 02 0T T T   . 

figura 5.6 
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6.  CIRCOLAZIONE DEI FLUIDI BIFASE 

Un fluido si dice bifase quando è costituito da due fasi fisiche distinti una liquida ed una gassosa. 
Una miscela di acqua ed aria, ad esempio, costituisce una miscela bifase, come pure una miscela di 
acqua e vapore d‟acqua in equilibrio con essa. L‟interesse scientifico e tecnico per queste miscele è 
grandissimo per le notevoli applicazioni che si possono avere. Si pensi, ad esempio, agli impianti 
nucleari2, agli impianti solari3, agli impianti termotecnici civili ed industriali (si pensi alle caldaie e ai 
generatori di vapore). Il moto delle miscele bifase pone diversi problemi di calcolo fluidodinamico per 
le diverse azioni inerziali che esercitano la fase liquida e la fase gassosa. 

In generale uno studio analitico completo richiede l‟applicazione delle equazioni di Navier Stokes 
e dell‟energia (vedi Convezione termica) sia per la fase liquida che per quella gassosa.  

Inoltre, a causa dei diversi regimi di moto che si possono instaurare nel moto bifase (vedi dopo), 
si ha la doppia necessità di scrivere ed integrare le suddette equazioni di equilibrio sia nel dominio dello 
spazio (cioè in zone omogenee) che del tempo (condizioni tempo varianti). 

Se il moto dei fluidi bifase è associato anche ad uno scambio energetico (ad esempio in un tubo 
bollitore di una caldaia o di un impianto nucleare) allora si hanno, contemporaneamente ai fenomeni 
fluidodinamici, fenomeni di cambiamento di fase (ebollizione e/o condensazione) che complicano non 
poco le equazioni di bilancio. Così, ad esempio, perdite di pressione nell‟ebollizione sottoraffreddata 
sono più elevate di quelle in ebollizione ordinaria e pur tuttavia l‟incremento non è eccessivo. 

Le perdite di pressione bifase sono sempre maggiori di quelle monofasi e pertanto occorre 
sempre stimarle correttamente per evitare problemi di sottodimensionamento delle pompe di 
circolazione. L‟equazione dell‟energia già vista all‟inizio del corso sotto forma di equazione di Bernoulli 
generalizzata può essere scritta in forma differenziale nella forma: 

2

2

mdLwdw dl w
dp gdz

v d v v
       

Ricordando l‟equazione di continuità m wS  l‟equazione di Bernoulli generalizzata si può 

ancora scrivere nella forma: 

2 2

2 2

1

2

mdLm m
dp dv dz vdl

S d S v
       A) 

ove si ha il seguente simbolismo: 

   peso specifico del fluido, kg/m³;

   densità del fluido, kg/m³;

 v  volume specifico del fluido, m³/kg;

 w velocità del fluido, m/s;

 Lm lavoro motore sul fluido, J/kg; 

   fattore d‟attrito del condotto;

 d  diametro (o diametro equivalente) del condotto, m;

 l  lunghezza del condotto, m;

 p pressione nel fluido, Pa;

 m  portata di massa del fluido, kg/s.

 g  accelerazione di gravità, m²/s. 

                                                 
2 Nei reattori ad acqua bollente si ha una circolazione di acqua con piccole percentuali di  vapore in equilibrio 

termico. Questo fluido assolve sia alle funzioni di refrigerazione che di moderazione neutronica. 
3 Le centrali eliotermiche di potenza utilizzano sia miscele acqua-vapore (centrali tipo Francia) che di metalli liquidi 

(Sodio fuso o leghe NaK o similari). Anche i collettori a vetro usano una miscela bifasica costituita da freon liquido e 
aeriforme. 
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Si osservi che qualora ci riferisce alla velocità media del fluido nella sezione di passaggio del 
condotto occorre tenere conto, nelle precedenti relazioni, di un fattore pari a 1.2 per moto turbolento e 
1.8 per moto laminare, cioè occorre scrivere w al posto della sola velocità. 

A questa equazione si associa l‟equazione dell‟energia per sistemi aperti stazionari: 
2

1 2
2

w
q l gz h

 
     

 
 

ove si è indicato con: 

 h  l‟entalpia del fluido, J/kg; 

 q  il calore fornito all‟unità di massa di fluido, J/kg; 

 l=lm+lr il lavoro totale fornito all‟unità di massa di fluido, J/kg. 

Data l‟arbitrarietà nella scelta delle sezioni di integrazione si fa in modo da non avere, all‟interno 
del condotto in esame, alcun organo motore e pertanto possiamo annullare il lavoro motore presente 
nelle precedenti equazioni. 

Integrando l‟equazione di Bernoulli generalizzata fra due sezioni 1 e 2 prive di organi motori si 
ottiene la seguente espressione: 

 
2 2

2 2

1 2 2 12 21 1

1

2
GravimetricheSlip Attrito

m dz m
p p v v vdl

S v S d
        B) 

Questa equazione dice chiaramente che la differenza di pressione fra la sezione iniziale e finale 
nel condotto esaminato è somma dei tre termini a secondo membro che esprimono, nell‟ordine: 

 le perdite di pressione per effetto della variazione di energia cinetica (perdite di slip); 

 per perdite per alleggerimento termico dovute all‟azione della gravità; 

 le perdite di attrito totali dovute alla viscosità del fluido. 

Nel caso di moto bifase le perdite di slip debbono tenere conto anche delle diverse velocità delle 
due fasi e quindi dell‟attrito virtuale che si viene a determinare nel moto relativo (scorrimento o slip) 
della fase più veloce rispetto a quella più lenta. Questo termine presenta notevoli difficoltà di calcolo 
anche in considerazione del tipo di moto che si instaura nel condotto. Le perdite gravimetriche sono 
certamente le più semplici da valutare, come si vedrà nel prosieguo. Le perdite di attrito sono 
nuovamente complesse da determinare proprio per l‟eterogeneità del fluido bifase e del tipo di moto nel 
condotto. 

6.1. TIPI DI MOTO BIFASE 

Per condotti verticali si è avuto modo di esaminare i regimi di flusso che si instaurano durante 
l‟ebollizione dinamica in un tubo bollitore, come illustrato dalla Figura 3. I regimi possono essere: 

 Moto a bolle: il vapore si muove sotto forma di bolle sparse in una matrice di liquido; 

 Moto a tappi: il vapore è presente in quantità elevate e tali da creare, per coalescenza fra bolle 
vicine, dei veri e propri tappi interni al condotto; 

 Moto anulare: il liquido si muove in aderenza alle pareti e il vapore nel cuore interno della 
sezione del condotto; 

 Moto a nebbia:  il liquido è quasi del tutto evaporato ed occupa tutto il volume disponibile 
mentre il liquido, in quantità residuali, si muove sotto forma di minute goccioline sparse nella 
matrice di vapore. 

Ciascuna di queste tipologie di flusso richiede un tipo di analisi particolare per la necessità, come 
sopra accennato, di dovere integrare le equazioni di Navier Stokes e dell‟energia in zone di spazio 
spesso determinate casualmente e quindi senza alcuna possibilità pratica di previsione analitica. 
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CONVEZIONE MONOFASE

MOTO A BOLLE

MOTO A TAPPI

MOTO ANULARE

MOTO A NEBBIA

LIQUIDO

 

Figura 3: Regimi di moto in condotto verticale durante l’ebollizione 

Del resto anche l‟istaurarsi del regime di moto non è facile da prevedere anche se esistono alcune 
mappe sperimentali che delimitano, certamente non in modo preciso, i campi di esistenza dei vari 
regimi di flusso. 

MOTO A BOLLE

MOTO A TAPPI

MOTO ANULARE

MOTO STRATIFICATO

 

Figura 4: Regimi di moto in condotto orizzontale durante l’ebollizione  

Oltre ai regimi visti in precedenza si ha il moto stratificato nel quale la fase liquida si mantiene, per 
gravità, in basso e la frazione aeriforme nella parte superiore sotto forma di bolle. L‟instaurarsi di un 
regime di moto piuttosto che un altro dipende fortemente dai rapporti delle portate della fase liquida e 
della fase aeriforme. I profili di velocità nel moto bifase non hanno una definizione ben precisa, come 
del resto si può intuire, e spesso si ricorre a rappresentazioni fittizie di tipo polinomiali determinate con 
esperienze mirate per particolari regimi di moto. 

In Figura 4 si ha un esempio di regimi di flusso per l‟ebollizione in condotti orizzontali. 
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6.2. CALCOLO DELLE PERDITE DI PRESSIONE IN REGIME BIFASE 

In calcolo delle perdite di pressione nel moto bifase è stato oggetto di studi da diversi decenni.  

Inizialmente in mancanza di sperimentazioni pratiche si è cercato di proporre metodi analitici 
basati su ipotesi di moto semplificati e in particolare immaginando che il fluido complessivo bifase 
fosse determinato dalle caratteristiche medie di un fluido omogeneo opportunamente definito. 

Negli anni „settanta si sono avute le prime sperimentazioni di Martinelli e Nelson che hanno 
portato alla definizione di metodi semiempirici ritenuti più affidabili di quelli solamente teorici. 

Negli anni „novanta le esperienze di Thom hanno fornito una metodologia semiempirica completa 
oggi ritenuta fondamentale per il calcolo delle perdite di pressione in regimi bifasi. 

1.1.6. METODO DI HANFORD 

E‟ uno dei primi metodi di calcolo analitico delle perdite di pressione e si base su alcune ipotesi 
semplificative che qui riportiamo: 

 Si suppone il condotto orizzontale e quindi si trascurano le perdite gravitazionali; 

 Il fluido si suppone omogeneo avente volume specifico dato dalla relazione: 

1 2

2
m

v v
v


  

ove, per miscele sature, si ha, come si ricorda dalla Termodinamica:  l v lv v x v v    con vl 

volume specifico del liquido, vv volume specifico del vapore ed x titolo della miscela. Inoltre il punto 1 
indica l„ingresso del condotto e 2 l‟uscita. La velocità media del fluido è data dalla relazione inversa di 

Leonardo: mw
S

 . Si definisce, inoltre, la fluidità (inverso della viscosità newtoniana) data dalla 

relazione: 

1 1

l v

x x

  


   

con la solita convenzione sui pedici. La fluidità media del fluido omogeneo è data, analogamente 
a quanto visto per volume specifico medio, dalla relazione: 

1 2

2
m

 



  

essendo 1 e 2 l‟ingresso e l‟uscita del condotto considerato. Nel caso di un tubo bollitore o in 
ogni caso con scambi termici con l‟esterno l‟ipotesi di un fluido omogeneo per lunghi condotti appare 
poco realistica e in ogni caso fortemente dipendente, per via dei volumi specifici e delle viscosità, dalle 
pressioni locali nelle sezioni di condotto. Pertanto si può suddividere il condotti in tratti di piccola 
lunghezza all‟interno dei quali le ipotesi di omogeneità appaiono maggiormente valide. Per ogni 
condotto si può scrivere, con l‟ipotesi dz=0, l‟equazione di Bernoulli: 

 
( ) ( )

2 2
( ) ( ) ( ) ( ) ( )

1 2 2 12 2

1

2

i i i i i i i

m

m m
p p v v v l

S S d
     

ove con l‟apice (i) si intende il generico tratto del condotto.  

In pratica partendo dal primo tratto,  nel quale è nota la pressione (1)

1p , si determina la pressione 

di uscita (1)

2p  che è poi la pressione di ingresso del secondo tratto, cioè si ha (2) (1)

1 2p p  e così via per 

gli altri tronchi fino ad arrivare alla p2  d‟uscita dell‟ultimo tronco che coincide con la pressione finale 
all‟uscita del condotto. 

In definitiva la somma delle equazioni parziali dei singoli tratti porta all‟equazione totale: 

 
2 22 2

( ) ( ) ( ) ( ) ( )

1 2 2 12 2
1 1

1

2

i i i i i

m

m m
p p v v v l

S S d
      
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Il coefficiente di attrito  può essere calcolato con la classica relazione di Weissbach valida per 
tubi lisci: 

-0.2x=0.184 Re  

per cui per ogni singolo tratto si può scrivere l‟equazione di bilancio4: 

 
( ) ( )

1.8 1.2 0.22
( )( ) ( ) ( ) ( )

1 2 2 12
0.184

2

i i ii i i i

m

dm m
p p v v v l

S S


 

     
 

 

Per calcolare il volume specifico medio, vm, occorre conoscere come varia il titolo in funzione 
della lunghezza e della pressione parziale del tratto considerato. L‟equazione dell‟energia per il singolo 
tratto (sempre supposto orizzontale) diviene: 

2
( ) ( )

2

i i

e

w
q h

 
   

 
 

L‟entalpia della miscela bifase in una generica sezione (i) è dato da: 

lh h xr   

ove r è il calore latente di vaporizzazione alla pressione parziale nel tratto. Fra le sezioni 1  e 2  di 
ciascun tratto si ha: 

1,2 2 2 1 1lh r x r x      

ove r2 ed r1 sono i calori latenti di vaporizzazione alle pressioni p2 e p1 ed è: 

2 1l l lh h h    

la variazione delle entalpie specifiche del liquido alle pressioni suddette. Combinando le 
precedenti equazioni si ha, per la velocità media, l‟espressione: 

 l v l

m m
w v v x v v

S S
       

Pertanto si ha: 

   
1 2 1 1

2 2
2 2

2 12 122 2
l v l l v l

w m
v x v v v x v v

S
         
   

 

ove vl e vv sono note una volta conosciute le pressioni p2 e p1.  

Si osservi che i volumi specifici del liquido, non appena il titolo x supera qualche centesimo, 
divengono trascurabili di fronte ai volumi specifici del vapore, per cui la precedente diviene: 

2 1

2 2
2 2 2 2

2 122 2
v v

w m
x v x v

S
      

Con gli sviluppi sopra esposti si può applicare il metodo di Hanford per approssimazioni 
successive. Nota la pressione iniziale del prima tratto si stima la pressione di uscita dello stesso tratto e 
si calcola la x2 dello stesso tratto (eventualmente risolvendo l‟equazione di 2° grado sopra indicata).  

A questo scopo, trascurando il termine cinetico (di solito piccolo rispetto ai termini termici) si 
può scrivere: 

(1) (1) (1) (1) (1) (1)

1 1 1 2 2eq h r x r x    

Il calore fornito (1)

eq  può essere calcolato dalla relazione: 

                                                 
4 Si ricordi che è Re wd wd dm S        e quindi è 

   
0.2 0.2

0.20.184Re 0.184 d m
S





  . 
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(1)

(1)

1

1 l

eq qbdz
m

   

con b perimetro del condotto. nota (1)

2x  si ricava (1)

2v  dalla relazione: 

 
2 2 2

(1) (1) (1) (1) (1)

2 2l v lv v x v v    

e quindi: 
(1) (1)

(1) 1 2

2
m

v v
v


  

Si calcola poi: 
(1) (1)

(1) 1 2

2
m

 



  

Ora si ricava il valore della pressione di uscita (1)

2p  che di solito differisce da quella inizialmente 

stimata. Se la differenza è minore dell‟errore massimo tollerabile allora si procede con il tratto 
successivo reiterando le operazioni appena descritte.  

Nel caso di differenza maggiore dell‟errore ammissibile allora si assume la (1)

2p  appena calcolata e 

si riparte per una nuova iterazione fino a quando la differenza fra il valore di calcolo attuale e quello del 
ciclo precedente è minore dell‟errore ammissibile. 

La caduta di pressione totale è quindi data da: 

 ( ) ( )

1,2 1 2

1

i N
i i

i

p p p




    

Osservazioni sul metodo di Hanford. 

L‟ipotesi di modello omogeneo, alla base del metodo di Hanford, presuppone che la fase 
aeriforme sia in percentuale piccolissima (o che si abbia moto a nebbia) o che la pressione media sia 
elevata e vicina alla pressione critica del fluido.  

Si ricordi, infatti, che alla pressione critica non si ha differenza fra la fase liquida e quella 
aeriforme. In queste condizioni la precisione del metodo è dell‟ordine del 30% che, in mancanza di altri 
dati sperimentali, è da considerarsi buona per le applicazioni impiantistiche. 

Nelle situazioni diverse da quelle sopra indicate il metodo di Hanford commette errori non 
trascurabili. E va utilizzato con molta cautela. 

1.1.7. CONDOTTI VERTICALI - CALCOLO DELLE PERDITE GRAVIMETRICHE 

Nel caso di condotti verticali occorre valutare anche il termine gravimetrico (prima del tutto 
trascurato), cioè il termine: 

2

.
1

grav

dz
p

v
    

Vediamo adesso una semplice metodologia per effettuare questo calcolo. Si supponga di avere un 
flusso termico uniforme lungo la lunghezza del condotto e che il salto di pressione sia piccolo5.  

Allora si può scrivere: 

edq rdx  

ovvero: 

                                                 
5 Il salto di pressione p è pari alla caduta di pressione totale e pertanto questo deve essere comunque limitato nelle 

applicazioni impiantistiche onde evitare eccessive potenze di pompaggio. 
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e

qb
dq dz rdx

m
   

con z lunghezza del condotto a partire dall‟ingresso, b il perimetro e q il flusso termico specifico 
(J/m²). Questa relazione ci dice che la variazione del titolo è proporzionale alla lunghezza progressiva, 
per cui, supponendo che sia x1=0, si ha: 

    2
1l v l l v l

x
v v x v v v z z v v

l
        

Sostituendo nell‟espressione di pgrav si ha (per i=z2 – z1) : 

 

 2
22 1

.
1

2

ln
v v l

grav

v l l

v x v vdz z z
p

v x v v v

 
  

  

Questa perdita va sommata alle perdite per slip e per attrito. 

1.1.8. METODO DI MARTINELLI E NELSON 

Negli anni „settanta, data la complessità analitica del problema, si effettuarono numerose 
esperienze per determinare le cadute di pressione in miscele bifasiche di acqua ed aria.  

Inizialmente Lochkart e Martinelli definirono un moltiplicatore, Xtt, definito come radice quadrata 
del rapporto fra la caduta di pressione nella fase liquida e la caduta di pressione nella fase aeriforme ed è 
dato a sua volta dalla relazione: 

0.5 0.10.9
1l v l

tt

v l v

p x
X

p x

 

 

     
      

      
 

con x titolo del vapore e con il solito significato per gli altri simboli. In Figura 5 si ha l‟andamento 
delle curve sperimentali che forniscono il moltiplicatore di Martinelli, Xtt, al variare della pressione e del 
titolo della miscela.  

Si osservi, però, che il titolo della miscela non è costante lungo il condotto per cui sarebbe 
necessario conoscere la legge di variazione di x e procedere a successive integrazioni. 

Successivamente sono state elaborate altre curve sperimentali alla base del metodo di calcolo 
semiempirico detto di Martinelli e Nelson. 

Se si suppone, almeno inizialmente, che il titolo vari linearmente fra ingresso e uscita (con x=0 in 
ingresso del condotto) e che vi sia somministrazione uniforme di calore allora Martinelli e Nelson 
definiscono il rapporto: 

2

1

Fa

Fla

p
M

p





 

ove si ha il seguente simbolismo: 

 p2Fa caduta di pressione per attrito per moto bifase, Pa;

 p1Fla caduta di pressione per attrito per portata totale pensata di solo liquido, Pa.

In definitiva M (sempre >1) è il rapporto fra le cadute di pressione per attrito nelle reali 
condizioni di moto bifase rispetto a quelle che si avrebbero, sempre per attrito, se la portata totale fosse 
di solo liquido.  

Queste ultime sono calcolabili facilmente con i metodi della Fluidodinamica monofase visti nei 
precedenti capitoli e pertanto se si conosce M di possono calcolare le perdite di attrito bifase mediante 
la relazione: 

2 1Fa Flap M p    

Martinelli e Nelson hanno determinato l‟andamento sperimentale di M partendo dalle curve di 
Lochkart – Martinelli, come rappresentato nell‟abaco di Figura 6.  

L‟abaco fornisce M al variare della pressione nel condotto per assegnato titolo, x2, in uscita.  
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Si osservi come sia sempre M>1 (quindi le perdite bifase sono sempre maggiori di quelle 
monofase) e come le curve tendano a congiungersi per la pressione critica dell‟acqua (222 bar) laddove 
non si ha più alcuna differenza fra la fase liquida e il vapore. 

Se il titolo in ingresso è x1,0 allora si può procedere in questo modo, vedi Figura 7: 

 si calcola la M1 corrispondente alla caduta di pressione fittizia di un condotto avente titolo in 
ingresso nullo e in uscita pari ad x1; 

 Si calcola M2  per un condotto fittizio nelle condizioni di titolo in ingresso 0 e in uscita x2; 

 Si calcola il fattore M per condotto con titolo in ingresso x1 e in uscita x2 dalla differenza: 

1 2M M M   

pertanto le perdite di pressione sono date da: 

 2 2 1 1Fa Flap M M p     

Ricordando quanto detto per le cadute totali di pressione: 

tot

Slip Gravimetrico Attrito

p p p p        

il metodo di Martinelli e Nelson consente di calcolare le cadute di pressione per attrito 
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Figura 5: Diagramma del moltiplicatore X tt di Martinelli 
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Figura 6: Abaco di Martinelli e Nelson per M 

. 

x=0 x=x1 x=x2

L1 L2

M1

R1

M2

R2

 

Figura 7: Condizioni iniziali con titolo non nullo 

Il termine relativo alle cadute di pressione per slip può essere calcolato, sempre 
sperimentalmente, ponendo: 

 
2 2

2 12 2slip

m m
p v v R

S S
     

con R (ove è, per quanto detto in precedenza, 2 1R v v  ) coefficiente dato dall‟abaco di Figura 8. 
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Figura 8: Abaco di Martinelli e Nelson per R 

Nel caso in cui le condizioni iniziali del titolo siano x10 allora, in analogia a quanto detto per il 
calcolo di M e con riferimento alla Figura 7, si procede così: 

 Si calcola R1 per il tratto fittizio con titolo variabile da 0 a x1; 

 Si calcola R2 per il condotto fittizio con titolo variabile da 0 a x2; 

 Si calcola il valore reale: R=R2 – R1. 

Se nel condotto si hanno anche perdite concentrate allora queste debbono essere valutate per la 

sola fase liquida per una portata di liquido equivalente a quella totale. Le perdite di attrito p1Fla sono 
date da: 

   1 1 1Fla Fla Fladistribuite concentrate
p p p      

e le perdite bifase totali corrispondenti si calcolano moltiplicando le precedenti per il coefficiente 
R calcolato come sopra specificato. 

Osservazioni sul Metodo di Martinelli e Nelson 

Questo metodo ha come ipotesi di base l‟esistenza di due fasi distinte e quindi è in netta 
contrapposizione con il modello omogeneo di Hanford. Il modello di riferimento è, quindi, quello del 
moto anulare o del moto stratificato o anche del moto a nebbia. 

I risultati ottenuti con questo metodo vanno bene fino a titoli elevati in uscita (anche x2=1). Esso 

è tutt‟oggi quello più utilizzato per portate specifiche ( m S ) elevate. 
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I risultati sperimentali, ottenuta da Muscettola del CISE6, mostrano una sopravvalutazione di 
circa il 20% delle perdite di pressione. Ciò è ritenuto dai progettisti una garanzia di maggior sicurezza 
sia per le inevitabili incertezze progettuali che per tenere conto dell‟invecchiamento del condotto e 
quindi dell‟aumento delle perdite localizzate7. Il metodo di Martinelli e Nelson non fornisce metodi di 
calcolo del termine gravimetrico e quindi occorre effettuare separatamente questo calcolo, ad esempio 
come illustrato in precedenza (§1.1.7). 

1.1.9. METODO DI THOM 

Le ipotesi di base sono quindi analoghe a quelle di Martinelli e Nelson e pertanto si ha un 
modello a fasi separate. Le ipotesi di base sono quindi analoghe a quelle di Martinelli e Nelson e 
pertanto si ha un modello a fasi separate. 

E‟ il metodo semiempirico più recente e si basa su una serie di esperienze effettuate negli USA 
negli anni cinquanta  su miscele di acqua e vapore con pressioni variabili da 1 a 210 bar e titolo in uscita 
variabile da 3 al 100%.  

Il flusso termico è stato mantenuto uniforme (ipotesi fondamentale) lungo la superficie laterale 
del condotto. Il titolo iniziale è sempre pari a zero. 

Il metodo di Thom permette di calcolare tutti e tre i termini (slip, gravimetrico e attrito) per la 
caduta totale di pressione mediante abachi sperimentali. 

Analogamente a quanto visto in precedenza si ha ancora la definizione del fattore M: 

2

1

Fa

Fla

p
M

p





 

anche se le curve sono diverse da quelle di Figura 6. Le nuove curve sono riportate in Figura 9. 

Le curve hanno andamento simile e convergono in corrispondenza della pressione critica 
dell‟acqua. Si osservi ancora che Thom tiene conto dell‟influenza dello scorrimento fra le due fase 
mentre Martinelli e Nelson non ne tenevano conto. 

Le perdite di slip si definiscono mediante la relazione: 
2

2
'slip l

m
p R v

S
   

e quindi la formulazione è diversa da quella di Martinelli e Nelson anche per la presenza del 
volume specifico del liquido, vl. Il coefficiente R’ è riportato nell‟abaco di Figura 10 per vari titoli di 
uscita e per varie pressioni di ingresso. 

Infine le perdite gravimetriche sono calcolate mediante la relazione: 

.

.
.

1usc

ing

v

grav
v

l

dz
p L

v v
    

Il coefficiente  è dato dall‟abaco di Figura 11 per titoli di uscita e pressione di ingresso variabili. 

La perdita totale di pressione nel tubo bollitore con titolo iniziale nullo è data da: 
2

12
'tot l Fla

lSlip Gravimetrico Attrito

m L
p p p p R v M p

S v


            

Thom estende il suo metodo semiempirico anche al caso in cui non ci sia somministrazione di 
calore: in questo caso restano le formulazioni precedenti ma il termine di attrito va calcolato utilizzando 
l‟abaco di Figura 12 anziché quello di Figura 9.  

Gli altri coefficienti restano invariati. 

                                                 
6 Il CISE (Centro Italiano Studi Elettricità) si è occupato di impianti nucleari proponendo, negli anni sessanta, un tipo di 

reattore prova elementi combustibili denominato CIRENE (CIse REattore Nebbia) caratterizzato dal moto a nebbia 
all‟interno dei canali di refrigerazione. 

7 L‟invecchiamento del condotto porta al deposito di materiali (incrostazioni) e all‟incremento delle asperità interne. 
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Figura 9: Abaco di Thom per M 

Per condizioni di ingresso diverse dal titolo nullo, come illustrato in Figura 7, si procede allo 
stesso modo già visto per Martinelli e Nelson utilizzando un condotto fittizio tale che per esso il titolo 
vari da x=0 ad x=x1. 

Osservazioni sul metodo di Thom 

Rispetto al metodo di Martinelli e Nelson questo metodo presenta errori minimi rispetto ai dati 
sperimentali.  

E‟ approssimato in eccesso quando le portate specifiche sono inferiori a 230 g/(cm².s). 

Il metodo è approssimato in difetto per portate specifiche elevate, cioè > 230 g/(cm².s). 

Il metodo di Martinelli e Nelson presenta sempre valori stimati in eccesso rispetto ai dati 
sperimentali e l‟errore si riduce allorquando il titolo di uscita si avvicina al 100%. 
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Figura 10: Abaco di Thom per R 
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Figura 11: Abaco di Thom per 
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Figura 12: Abaco di Thom per M per condotto senza flusso termico 

1.1.10. METODO DI CHENOVETH, MARTIN, LESTER 

Si tratta ancora di un metodo semiempirico di rapida applicazione per la progettazione di impianti 
industriali. La sua validità si ha per diametri dei condotti > 2” (quindi tubi bollitori di caldaie e/o 
generatori di vapore) con miscela bifasica acqua – aria o acqua – vapore. 

Analogamente ai due metodi precedenti, si definisce il fattore M: 

2

1

Fa

Fla

p
M

p





 

con M dati in Figura 13, ove le curve sono in funzione del rapporto fra le cadute di pressione per 
attrito nella sola fase vapore rispetto a quelle analoghe della fase liquida: 

1

1

Fva

Fla

p

p






 

Nel calcolare questo rapporto si immagina di calcolare le perdite di pressione per attrito prima il 
condotto con solo vapore di portata pari a quella totale e poi di solo liquido con analoga portata totale. 

In ascisse si ha la frazione di sezione occupata dal liquido, 1-, essendo  la frazione di vuoto 
definita dal rapporto fra l‟area occupata dal vapore rispetto all‟area totale della sezione del condotto: 
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vS

S
   

Questo metodo non è molto indicato per basse pressioni. 
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Figura 13: fattore M per C-M-L 
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7.  STABILITÀ DEI TUBI BOLLITORI 

Negli impianti industriali (caldaie, generatori di vapore, reattori chimici, ….) riveste grande 
importanza la stabilità e la sicurezza dei tubi bollitori all‟interno dei quali si hanno i cambiamenti di 
stato dell‟acqua (come di qualunque altra sostanza). 

I fenomeni che possono avvenire all‟interno dei tubi bollitori sono molteplici in funzione del 
flusso termico, delle proprietà termofisiche del fluido e della topologia dell‟impianto. 

7.1. TUBO BOLLITORE ORIZZONTALE 

Si supponga inizialmente che il tubo bollitore sia orizzontale e a sezione costante, che sia nota la 
pressione di sbocco, p2, e che sia uniforme e costante il flusso termico lungo le pareti. 

Quando non c‟è ebollizione a velocità elevate il numero di Reynolds varia poco con il variare 
della portata ponderale poiché alle diminuzioni di portata corrisponde, a parità di flusso termico, un 
incremento di temperatura del fluido secondo la relazione: 

 e
f p

Q
c t t

m
   

essendo tf la temperatura del fluido e tp la temperatura della parete.  

Pertanto la viscosità diminuisce ed essendo: 

2

4
Re

m d m
K

d  
   

si può ritenere che il rapporto m   si mantenga sensibilmente costante. Viceversa avviene se la 

portata ponderale cresce poiché si avrebbe una.diminuzione del salto termico ed un incremento della 
viscosità dinamica. 

La caduta di pressione nel condotto, nell‟ipotesi di assenza di ebollizione e quindi con flusso 
monofase, è data dalla solita relazione: 

2

22

L m
p v

d S
   

ove per la relazione di Weissbach si ha: 
0.20.184Re   

che varia poco essendo Re sensibilmente costante, come sopra illustrato. 

Ne segue che possiamo scrivere, raggruppando i termini: 
2

1 2 1p p p K m     

che, in coordinate (p, 2m ), vedi Figura 14, è una retta passante per l‟origine e coefficiente 
angolare K1.(retta OR). 

Un diagramma più preciso potrebbe essere tracciato per punti calcolando le perdite di pressione 

effettive. La retta OR rappresenta le condizioni di funzionamento fino alla portata Bm  in cui inizia 

l‟ebollizione sottoraffreddata (vedi capitolo dell‟Ebollizione). Al di sotto di questa portata si hanno 
perdite di pressione crescenti (si ricordi che le perdite bifase sono sempre maggiori di quelle monofasi) 
al diminuire della portata di massa anche perché, a pari flusso termico, cresce il titolo di vapore 
presente.Allo sbocco abbiamo: 

2
eQ

rx
m

  

ove x2 è il titolo finale della miscela. 
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Vapore surriscaldato Liquido + Vapore Liquido
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Figura 14: Andamento delle pressioni al variare della portata 

Si ha, quindi, la curva BH di Figura 14 che si raccorda con continuità con la OR in quanto 
l‟ebollizione non si presenta contemporaneamente e nella stessa forma in tutte le sezioni del condotto. 

In corrispondenza ad un titolo x=0250,30 (a seconda dei casi), punto V della figura, si ha il 

massimo della caduta di pressione 1 2v vp p p   . Se la portata decresce ulteriormente allora p1 

diminuisce fino al punto S (dove si ha x=1) dove si ha la scomparsa del liquido allo sbocco.Una 
ulteriore diminuzione della portata comporta il surriscaldamento del vapore (si è quindi in regime 
nuovamente monofase ma di vapore e non più di liquido) con andamento lineare con una nuova K2. In 
realtà giunti nel punto Z si ha la bruciatura (burn out) del tubo bollitore. 

Si osservi che ci si può spingere fino al punto Z solo se il flusso termico specifico (cioè per unità 
di superficie) è basso. Con i valori correnti dei flussi termici si ha la bruciatura molto prima di arrivare 

ad S, più precisamente per x=0.70.8. 

Se il flusso termico è particolarmente elevato si può avere la bruciatura del tubo bollitore già 
durante l‟ebollizione sottoraffreddata. 

1.1.11. PUNTO DI LAVORO DEL TUBO BOLLITORE 

Supponiamo di avere la pressione iniziale p1=pR , come indicato in Figura 14, ed introduciamo 
all‟ingresso del condotto una resistenza localizzata (ad esempio un ugello) tale che si abbia una caduta di 
pressione data da: 
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2 2
2

2
'

2 2
r

r w m v
p r r m

v S
     

con r’ funzione della resistenza adottata. In figura si ha la rappresentazione della caduta di 

pressione con la retta p1RD formante con la p1RR (orizzontale) un angolo  tale che sia tag()=r’. 

Il significato fisico di queste rette appare evidente se si considera che per ogni valore della portata 

di massa m si hanno segmenti intercetti fra esse che rappresentano le cadute di pressione pr nella 
resistenza localizzata. 

I punti M ed N rappresentano punti di funzionamento in presenza dell‟ugello quando all‟imbocco 
è applicata una pressione p=1R, così come i punti R, R‟ rappresentano punti possibili di funzionamento 
in assenza dell‟ugello. In corrispondenza dei predetti punti, infatti, la somma della caduta di pressione 

nell‟ugello pr e nel tubo bollitore eguaglia la caduta di pressione totale p1R –p2. 

I punti come R ed M sono punti di funzionamento stabile: infatti se per ragioni accidentali la 
portata aumenta o diminuisce si ha, rispettivamente, un difetto o un eccesso di pressione motrice che 
tende a ripristinare le condizioni primitive. 

Non si può dire lo stesso di R‟ ed N‟: infatti un aumento accidentale di portata provoca un salto 
repentino in R o in M (rispettivamente) mentre una diminuzione di portata tende ad esaltarsi portando 
il condotto alla bruciatura. 

Se si sceglie come pressione di imbocco p1K si può ottenere il funzionamento nel punto R con 
l‟introduzione di una resistenza tale che sia: 

1 1

2
' '

m

K Rp p
r tag


   

Per questo valore tracciamo la retta p1KR  tale che sia: 

1 1

2 2

"
' '

m

K R

R

R R p p
tag r

m



    

Questa retta incontra la curva delle pressioni, oltre che in R, anche in K e K‟. Di questi punti solo 
R e K sono relativi ad un funzionamento stabile mentre K‟ è instabile e si salta in R o in K. Quindi con 
la scelta della pressione p1R per la pressione di imbocco una eventuale instabilità si ferma in K e 
pertanto, se la bruciatura avviene oltre questo punto, si può evitare il danno al tubo bollitore. 

Quando il funzionamento nel punto R è ottenuto con la pressione  p1R si è garantiti contro 
eventuali bruciature per ostruzioni accidentali aventi: 

2

'
'

R

RD
r

m
  

mentre con la pressione p1K  questo valore diviene più elevato, fino a: 

2

" "
'

R

R D
r

m
  

La pressione p1K presenta anche il vantaggio che, in caso di ostruzioni che portino il 
funzionamento nella curva VS, si ha ancora un funzionamento stabile e la bruciatura può essere evitata 
con maggiore facilità se si dispone di un apparecchio di allarme acustico. 

La scelta della pressione p‟1H sulla tangente da R al punto H, oltre a migliorare le condizioni di 
sicurezza precedentemente citati (con riferimento alle ostruzioni accidentali) permette un ritorno 
automatico delle condizioni dell‟arco ZSH al punto R. Questo non è possibile con pressioni minore di 
p1V; infatti dalla Figura 14 si osserva che se:p1 < p1V per il ritorno dell‟arco SV ed R non basta regolare 
la resistenza di imbocco ma occorre ridurre anche la potenza termica fornita in modo da avere una 
diminuzione di p1max (in corrispondenza di V). La scelta di una pressione di imbocco più elevata di p1B 
consente il funzionamento in tutte le condizioni mediante l‟introduzione di resistenza variabili 
(saracinesche di regolazione); si possono, infatti, intersecare con la retta di carico tutti i punti della curva 
del tubo bollitore ed avere un funzionamento stabile. 
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In definitiva, la scelta della pressione a monte di un tubo bollitore va fatta oculatamente in base al 
grado di sicurezza che si desidera ottenere. 

Il raggiungimento di condizioni di optimum comporta la necessità di scegliere pressioni piuttosto 
elevate, introducendo all‟ingresso del condotto resistenze concentrate (ugelli, saracinesche, …). Queste 
resistenze proteggono il tubo bollitore (che di solito funziona in parallelo ad altri tubi) dato che 
variazioni accidentali della portata nominale hanno minore peso. 

L‟introduzione di ugelli allo sbocco (anziché all‟imbocco) esercita una protezione, nel senso che 
fa crescere la pressione a monte. In questo caso l‟ebollizione inizia a temperature più elevate e quindi 
per portate minori. 

Tuttavia, se l‟ebollizione inizia allora le condizioni risultano aggravate. L‟ugello posto all‟imbocco 
è sempre attraversato da solo liquido mentre se è posto allo sbocco è attraversato da una miscela di 
liquido e vapore e quindi producendo una resistenza maggiore. La portata, per conseguenza, diminuisce 
rapidamente e la bruciatura del condotto viene facilitata. 

7.2. TUBO BOLLITORE VERTICALE 

Lo studio dei tubi bollitori verticali è più complesso di quello prima mostrato di tubi orizzontali.  

Per questi condotti si possono avere due casi: 

 Moto del fluido dal basso verso l‟alto: in questo caso si hanno condizioni di stabilità maggiori 
rispetto ai tubi orizzontali; 

 Moto del fluido dall‟alto verso il basso: le condizioni di sicurezza diminuiscono rispetto al caso di 
condotto orizzontale. 

1.1.12. CALCOLO DELLA PORTATA DI INIZIO E FINE EBOLLIZIONE 

Ai fini dell‟analisi della stabilità e sicurezza di un tubo bollitore è necessario conoscere le portate 
di inizio e fine ebollizione. Si abbia, quindi, un condotto sottoposto a flusso termico Qe esterno 
(supposto costante ed uniforme). Il fluido entra alla temperatura ti con entalpia hl1 e ad una pressione p 
che possiamo ritenere costante. Il calore necessario per avere l‟ebollizione è pari a: 

,2 2 1

0

le l l

x

q h h



   

ove hl2 è l‟entalpia del fluido in ebollizione alla pressione p e qe il flusso specifico (J/kg) da fornire 
al fluido. Noto il flusso totale esterno Qe e la portata totale di massa si calcola: 

,2l

e
e

Q
q

m
  

Si può anche scrivere, per la portata totale e il flusso termico totale, la relazione globale di 
bilancio: 

2 1

e
i

l l

Q
m

h h



 

essendo im la portata di massa di inizio ebollizione. 

Supponendo costante la pressione8 p del condotto, alla fine dell‟ebollizione l‟entalpia del vapore 
saturo vale: 

2 2 2v lh h r   

essendo r2 il calore latente di vaporizzazione alla pressione considerata. Il flusso specifico vale: 

2 2 1 2 12

1

l v l l l

x

q h h h r h



      

                                                 
8 Si ricordi che le cadute di pressione sono sempre mantenute basse per evitare grandi potenze di pompaggio per il 

moto del fluido nel condotto considerato. 
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e deve aversi: 

2 12
e

l l

f

Q
h r h

m
    

ove fm  è la portata specifica di fine ebollizione. Risulta, pertanto: 

2 12

e
f

l l

Q
m

h r h


 
 

Le cadute di pressione per portate di massa inferiori a quella di inizio ebollizione, im , si calcolano 

con le solite relazioni per flusso monofase (Weissbach): 
2 2

22 2

L w L m
p v

d v d S
     

Per il calcolo di  si utilizza la solita correlazione per tubi lisci 0.20.184Re  . 

Allorquando ha inizio l‟ebollizione la caduta di pressione va calcolata con uno dei metodi prima 
esposti per le perdite di pressione in moto bifase, ad esempio con il metodo di Thom. 

Il titolo di vapore in uscita dal tubo bollitore si calcola mediante la già citata equazione 
dell‟energia: 

,2

2

1,2
2le

w
q h gz

 
    

 
 

Ponendo x1=0 e trascurando il contributo dei termini meccanici (cinetico e gravimetrico) si può 
scrivere: 

1,2 2 2eq r x  

ovvero anche: 

2 2
eQ

r x
m

  

Da questa relazione si calcola il titolo in uscita x2 al variare di m . Noto x2 si calcola la caduta 
totale di pressione: 

1 2

2

2

1,2 2 1,2 2FlaFa slip grav l

l

m L
p p p p M p R v

S v


          

con M, R e  calcolati con gli abachi di Thom9. 

Va osservato, infine, che la portata allo sbocco non può variare a piacere dovendo essere sempre 
inferiore alla velocità massima (per tubi a sezione costante) pari a quella del suono, come si è visto per il 
moto dei fluidi comprimibili. 

7.3. EFFETTI DELLA VARIAZIONE DI DENSITÀ NEL MOTO DEI 
FLUIDI IN CONDOTTI VERTICALI 

All‟interno dei tubi bollitori o dei canali di refrigerazione degli impianti nucleari o di reattori 
chimici si ha moto di fluido con cambiamento di densità, dovuta alle variazioni di temperatura lungo il 
condotto, che possono produrre problemi di instabilità se non adeguatamente controllati. 

Ambiamo già trovato l‟equazione A) che qui si ripete riscrivendo diversamente il termine cinetico: 

                                                 
9 E‟ ovvio che lo stesso discorso vale per l‟applicazione del metodo di Martinelli e Nelson ove, però, le perdite 

gravimetriche debbono essere stimate separatamente. 
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2

2

1

2

mdLwdw m
dp dz vdl

v d S v
       

Integrando questa equazione fra le sezioni 1 e 2 (ingresso e uscita) e trascurando il termine 
dovuto al lavoro positivo del circolatore si ha: 

2 2 2

1 2
1 1 1

wdw dR
p p dz

v v
       

In questa equazione occorre osservare che, per condotti a sezione costante, la variazione di 
volume specifico è di solito piccola e quindi le variazioni di velocità sono parimenti piccole e pertanto il 
termine cinetico apporta contributi trascurabili. 

Nel termine gravimetrici il peso specifico  varia con la temperatura secondo la legge: 

 1 11 t t        

con  coefficiente di dilatazione cubica (o di espansione isobaro già visto in Termodinamica) e t 
la temperatura corrente. La stessa relazione vale per la variazione della densità con la temperatura. 

Per saldi termici piccoli si può ritenere parimenti piccola la variazione di densità e pertanto si può 
utilizzare il suo valore medio,  , fra le due sezioni considerate e quindi la caduta totale di pressione 

diviene: 

   
2

1 2 1,2 1 2 1 1 1
1

p p R z z t t dz          

Sempre supponendo piccole variazioni dei parametri termofisici e linearizzando le variazioni con 
l‟altezza, possiamo ancora scrivere: 

 
2

2 1
1 2 1 1 2 122 2

eQL m z z
p p z z

d S cm
   




      

ove si è tenuto conto che è  2 1eQ c m t t  .  

L‟ultimo termine (negativo) rappresenta l‟alleggerimento termico (thermal buoyancy) della colonna 
di fluido dovuto al riscaldamento subito ed è quello che determina il movimento del fluido nei casi di 
circolazione naturale10. 

La precedente equazione può essere così schematizzata: 

1.8

1 2                         (movimento verso l'alto)m

B
p p Z Am

m
     

1.8

1 2                      (movimento verso il basso)m

B
p p Z Am

m
     

ove A e B sono costanti di raggruppamento positive.  

Gli indici 1 e 2 si riferiscono sempre all‟imbocco e allo sbocco, qualunque sia l‟orientamento del 
condotto.  

Si è anche supposto, secondo la relazione di Weissbach per tubi lisci, che sia 0.2Km   ed 

inoltre si è supposto /K   indipendente dalla portata e pari al suo valore medio fra le due sezioni 

considerate. 

                                                 
10 La circolazione naturale non è quasi mai utilizzata direttamente per il moto dei fluidi negli impianti ma rappresenta 

sempre un elemento di sicurezza da considerare quando viene meno la potenza motrice della pompa. Se il fluido può ancora 
circolare esso può trasportare calore e quindi mantenere la temperatura del canale sotto controllo. In un impianto nucleare o 
in un reattore chimico o in un generatore di vapore l‟arresto del fluido all‟interno dei canali può portare facilmente a scoppi 
estremamente pericolosi e distruttivi. 
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In Figura 15 si ha la rappresentazione grafica della caduta totale di pressione sia per moto verso 
l‟alto che per moto verso il basso. In essa sono riportati anche gli andamenti dei singoli termini, 

B

m
, 1.8Am , Z per i due casi, secondo le precedenti equazioni. 

Nella figura la portata m è posta in relazione con p – Z per il moto verso l‟alto e con p + Z 
per il moto verso il basso. Le curve in neretto rappresentano le combinazioni dei termini, come dianzi 
specificato. Al crescere della potenza ceduta al fluido la curva complessiva si sposta verso destra, 
allontanandosi da quella segnata. Si osservi che le due curve (moto verso l‟alto e moto verso il basso) si 
raccordano, per continuità,  nel modo segnato a tratto punteggiato in figura. 

Quando la potenza cresce il termine 1.8Am  varia poco mentre cambia molto 
B

m
 essendo B  Qe. 

Le curve reali si arrestano in corrispondenza dei punti X nei quali ha inizio l‟ebollizione. A pieno 
carico, cioè per il massimo valore di Qe, l‟ebollizione inizia, come si intuisce,a valori più alti della portata 
essendo l‟aumento di temperatura dato (per quanto detto in precedenza) dalla relazione: 

2 1
eQ

t t
c m

   

Pertanto quando ci si trova nelle condizioni di fluido lavorante in caldaia o in un reattore nucleare 
a potenza ridotta occorre fare in modo che il salto di temperatura dello stesso fluido sia il più possibile 
costante e pari al valore di regime precedente.  

Ciò si ottiene riducendo la portata m  in modo proporzionale al calore Qe. 

Riducendo la portata m ci si porta in corrispondenza del punto M  o del punto N (a seconda del 
verso del fluido) di Figura 15. Il movimento in corrispondenza di questi punti è stabile: infatti, se per 

qualsivoglia ragione la portata m  cresce o diminuisce il punto di lavoro si sposta a destra o a sinistra e 
si determina un difetto di pressione motrice che tende a ripristinare le condizioni iniziali. 

Lo stesso succede a sinistra del punto B. A destra di B si ha, invece, instabilità e si tende verso la 
condizione del punto X di inizio ebollizione e quindi verso le condizioni di burn out del condotto. 
Anche per il tratto MB le condizioni operative non sono buone perché un aumento accidentale della 
resistenza può provocare, con relativa facilità, un salto nel tratto BX della curva. 

Tutte le circostanze sopra indicate debbono essere tenute in conto quando si progetta un tubo 
bollitore o un qualunque sistema nel quale il fluido lavorante funga da refrigerante per il sistema. 

In definitiva, in base a quanto detto, il moto verso l‟alto risulta sempre stabile. Tuttavia spesso si 
preferisce il moto verso il basso per avere di migliori condizioni operative ai fini della protezione in 
caso di incidenti11. 

1.1.13. PROGETTO DEI CONDOTTI 

Si tenga sempre presente che l‟inizio dell‟ebollizione porta sempre ad avere maggiori perdite di 
pressione e quindi aumenti consistenti della resistenza al movimento che facilitano le condizioni di burn 
out del condotto e pertanto occorre intervenire opportunamente per evitare che queste condizioni si 
raggiungano. Quando i tubi bollitori sono posti in parallelo (nei generatori termici e nei reattori nucleari 
si utilizza spesso questa configurazione) allora le condizioni operative divengono più critiche poiché 
l‟aumento della resistenza in un condotto porta ad avere una nuova ridistribuzione della portata negli 
altri condotti e quindi si ha una variazione rispetto alle condizioni nominali di lavoro. 

Se si osserva la relazione precedentemente ottenuta: 

 
2

2 1
1 2 1 1 2 122 2

eQL m z z
p p z z

d S cm
   




      

                                                 
11 Negli impianti nucleari, ad esempio, il moto verso il basso consente di contenere nella zona inferiore dell‟impianto 

il fluido caldo e radioattivo. 
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Figura 15: Caduta totale di pressione 

si può dire che il sistema prima dell‟ebollizione risulta tanto più stabile quanto più il termine 

relativo alla variazione della densità, 2 1
1

2

eQz z

cm
 


, risulta piccolo rispetto a quello delle perdite per 

attrito, 
2

22

L m

d S



.  

Cadute di pressione molto maggiori delle variazioni di densità 

Se quest‟ultimo è relativamente grande allora la progettazione di condotti in parallelo può essere 
effettuata con i metodi visti in precedenza per i condotti in serie e in parallelo. 
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Cadute di pressione piccole rispetto alle variazioni di densità 

Se il termine di variazione della densità prevale su quelle delle perdite di attrito allora si possono 
avere condizioni di instabilità e si procede iterativamente nella progettazione. 

In pratica si scelgono le pressioni di imbocco, p1, e di sbocco, p2, ed i diametri dei condotti. Si 

calcolano le portate im dei singoli condotti utilizzando la relazione precedente e quindi si calcola la 

portata totale 
1

i

N

m m


  . Se la portata totale m è inferiore a quella desiderata si modificano alcuni 

parametri di progetto e si ripete il calcolo fino al raggiungimento delle condizioni finali volute. 

Si osservi che è sempre necessario verificare, oltre alle condizioni di moto, anche quelle di 
congruenza relative alla trasmissione del calore e cioè che la superficie totale dei condotti sia tale da 
assicurare lo smaltimento del calore Qe e cioè che sia: 

1e i i ii N
Q K S t

 
   

Caso di circolazione naturale 

Spesso si desidera avere una circolazione del fluido di tipo naturale12 allora la driving force è proprio 
dovuta alla variazione di densità che è in diretta proporzione al calore ricevuto. Pertanto la velocità di 
regime nei condotti cresce se cresce la potenza termica ceduta e ciò provoca una sorta di uniformazione 
delle velocità nei condotti che riduce le tensioni termiche fra le varie zone dell‟impianto. 

La circolazione naturale avviene usualmente con basse perdite di pressione e ciò porta ad avere 
diametri di condotti superiori ai corrispondenti a circolazione forzata, come già visto in precedenza. 

                                                 
12 In alcune zone degli impianti nucleari, ad esempio negli schermi radioattivi, si preferisce avere moto verso l‟alto a 

bassa velocità e con piccole cadute di pressione. Si osservi che le condizioni di circolazione naturale sono sempre da 
prendere in considerazione per le condizioni di emergenza. Una fermata delle pompe di circolazione, infatti, non può e non 
deve comportare il blocco del fluido all‟interno dei tubi bollitori perché ciò produrrebbe certamente un incidente: il calore 
fornito non sarebbe più trasportato via e quindi si hanno scoppi o altri disastri. E‟ quanto avvenuto, ad esempio, nel reattore 
di Chernobil dove la fermata (forse volontaria) delle pompe di circolazione ha portato alla stagnazione del fluido refrigerante 
con conseguente surriscaldamento del nocciolo del reattore nucleare che è fuso. 
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