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FISICA TECNICA INDUSTRIALE — VOL. 3° - TERMO-FLUIDODINAMICA

INTRODUZIONE

LLe moderne macchine per generazione di potenza meccanica si basano sempre piu sulle turbine,
sia a vapore che a gas. Queste sono organi di notevole complessita progettuale che coinvolge numerosi
discipline quali la Fisica Tecnica, le Macchine e la Fluidodinamica.

Quest’ultima disciplina non ¢ inserita nell’ordinamento della nostra Facolta e pertanto resta al di
fuori dei normali percorsi di studio che gli Allievi Ingegneri Meccanici possono scegliere.

La Meccanica dei Fluidi ¢ storicamente impostata come Idranlica con nome apparentemente
cambiato e non copre gli argomenti relativi ai fluidi comprimibili e quindi tipici della Fluidodinamica.

In questo breve opuscolo si desidera affrontare alcuni dei concetti fondamentali della
Fluidodinamica necessari per le applicazioni impiantistiche e macchinistiche.

Si affronteranno, pertanto, i problemi della comprimibilita dei fluidi e dei loro effetti nel moto in
condotti a sezione variabile (equazioni di Hugonio?) e a sezione costante.

Sono interessanti 1 moti di Fanno e di Raileigth e 1 concetti di parametri di attrito e di lunghezza
massima nel moto dei fluidi compressibili.

Si lasciano fuori da questa trattazione tutti gli altri (numerosi) problemi di fluidodinamica che
interessano altri campi dell’Ingegneria (quale, ad esempio, acronautica e/o spaziale).

Gli argomenti qui selezionati, quindi, sono il minimo indispensabile per la moderna formazione
di un ingegnere meccanico e trovano immediata applicazione nei corsi di Macchine ed Impianti..

Del tutto nuovo ¢ poi il capitolo su fluidi bifase (cio¢ di liquidi in presenza di una fase aeriforme
o anche del proprio vapore) che trova applicazioni importanti e fondamentali nel progetto di impianti
(ad esempio caldaie, generatori di vapore, turbine, ...).

Si osserva subito che gli argomenti trattati richiederebbero da soli interi corsi annuali. Tuttavia,
data la natura del Corso, si sono sviluppati solamente gli argomenti ritenuti fondamentali rimandando
I'approfondimento ai testi in letteratura.

Catania 02/10/2010
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1. FLUIDI COMPRIMIBILI - DEFLUSSO MONODIMENSIONALE

Le grandezze fisiche che caratterizzato il moto di un mezzo fluido variano, in generale,
tridimensionalmente pertanto elaborare una teoria del moto a tre variabili euleriane risulta di enorme
complessita anche nell'ipotesi di regime stazionario. Sovente si fa riferimento allo studio del deflusso
bidimensionale scegliendo con opportuno criterio la giacitura del piani di riferimento in modo che le
variazioni del comportamento del fluido lungo la terza dimensione siano trascurabili.

Frequentemente quanto detto risulta possibile o tutt’al piu si rende necessaria qualche correzione
da apportare ai risultati lungo la dimensione trascurata; diversamente si puo interpretare il fenomeno su
piu piani paralleli interpolando poi i risultati a quote intermedie, cosi facendo il moto viene a perdere
una dimensione, e quindi una variabile euleriana, cosicché le variazioni delle grandezze fisiche
caratterizzanti il moto del fluido vengono considerati solo lungo le linee di corrente e
perpendicolarmente ad esse.

Tutte le volte che le variazioni del comportamento del fluido in direzione perpendicolare alle
linee di corrente non sono rilevanti di puo fare riferimento alla zeoria monodimensionale del deflusso salvo,
anche in questo caso, ad apportare opportune correzioni di tipo bidimensionale; ¢ in genere lecito
ricorrere a questa semplificazione nel moto lungo i condotti, sempre a condizione che le dimensioni
trasversali siano piuttosto piccole rispetto alla lunghezza del condotto stesso e cio equivale a supporre
che lungo le linee di corrente congruenti i fenomeni avvengano identicamente, in tale ipotesi ¢
sufficiente studiare quel che avviene lungo la linea mediana dell’efflusso (spesso coincidente con I’asse
del condotto) per poi estrapolare i risultati, eventualmente corretti, a tutte le altre linee di corrente.

La teoria monodimensionale implica nel regime stazionario una sola variabile euleriana e si
presenta semplice ed efficace, capace di fornire una visione essenziale dei fenomeni; occorre pero dire
che essa si presenta concettualmente insufficiente in quanto nel moto di un fluido non puo essere
trascurata l'esistenza degli attriti i quali producono variazioni di quantita di moto che sono causa di
indesiderate distribuzioni di velocita nella direzione normale a quella del deflusso. D’altra parte le forze
d’attrito, avendo carattere decisamente non conservativo, non sono funzione della sola posizione per
cui, anche nel regime stazionario, non sono direttamente valutabili alla maniera euleriana ne tanto meno
a quella lagrangiana ne consegue che entrambi i criteri di analisi cinematica debbano limitarsi in pratica,
pur mantenendo il loro rigore, al solo studio dei moti ideali.

Tale limitazione puo essere tuttavia superata mediante certi artifici consistenti nel considerare a
potenziale, lungo la regione interessata al deflusso, anche le forze di attrito valutandone globalmente, e
sperimentalmente, il lavoro dissipato. Ma se tale criterio puo essere accettato ai fini del bilancio
energetico esso non si presta a definire con semplicita i riflessi degli attriti sulla distribuzione delle
velocita cosicché Iartificio rimane valido solo a condizione di limitare il campo di moto ad un esiguo
tubo di flusso (che al limite degeneri in una linea di corrente) su ogni sezione del quale la velocita possa
ritenersi costante.

Questa ¢ probabilmente la ragione che porta a definire “exleriana” la teoria monodimensionale del
deflusso mentre in realta il criterio euleriano ¢ di carattere generale in quanto si estende alle tre
dimensioni dello spazio; in effetti solo in forma monodimensionale il metodo euleriano risulta
applicabile, quando si tratta di deflusso con attrito, in virtu della predetta possibilita di valutare, sia pure
per via empirica, il lavoro dissipato in funzione della successione delle velocita nel campo di moto.

Facendo riferimento al gas perfetto, approssimazione valida per gas a media e bassa densita, viene
qui preso in esame il moto monodimensionale con e senza attrito nei deflussi interni per i quali le
variazioni di densita sono della massima importanza per individuare la natura della corrente; questo
modello fisico anche se, come gia detto, sembra piuttosto limitato approssima molto bene la realta di
molte correnti fluide.

L’ipotesi di monodimensionalita presuppone quindi che tutte le grandezze fisiche interessate
(pressione, densita, temperatura, velocita, ecc.) abbiano distribuzione uniforme in qualsiasi sezione del
condotto.
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1.1. COMPRIMIBILITA ED ESPANSIONE

La variazione volumetrica di un fluido influisce sull’andamento del moto in maniera alquanto
complessa ed anche nel deflusso in condotti cilindrici, dove per fluidi a densita costante il moto puo
essere considerato mediamente uniforme, i cambiamenti di densita fanno variare la velocita anche lungo
la direzione di avanzamento; proprio queste variazioni di densita e velocita sono quelle che
determinano la necessita di una trattazione di tale deflusso distinta da quella svolta per i fluidi
incomprimibili in quanto in tale circostanza il campo dinamico e quello termico interagiscono
mutuamente.

Lo studio del comportamento di un fluido comprimibile in moto necessita pertanto della
conoscenza dell’equazione cinetica di stato e quella del processo termodinamico responsabile della
variazione volumetrica suddetta.

Viene qui dedicata particolare attenzione ad deflusso adiabatico, sia nei condotti a sezione
variabile che in quelli cilindrici, visto che nella gran parte dei problemi tecnici ¢ quello che presenta
interesse maggiore; viene pero anche analizzato il moto isotermo nei condotti cilindrici anche se la
realizzazione di tale deflusso, come si avra modo di vedere, puo avvenire solo a particolari condizioni.

E’ noto dalla Termodinamica che lo stato fisico di una sostanza pura ed omogenea ¢ descritto
attraverso I’equazione:

f(p,v,T)=0 [1.1]
oppure in forma esplicita da una delle equazioni:

v=v (p,T)

p=pVT) [1.2]

T=T(p,v)

le quali differenziate divengono:

dv=(ﬂ] dT + —V] dp
oT), P
p

vidp

ﬁzl(@j Tl 1 4
p plaT), p(vj
op);

d—Tzl 1 dv+£—1 dp
T T(M] T(ﬁp]
oT), T),

che possono essere scritte nella forma:
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%:a dT — x; dp
v

P _sar-—L oy [1.3]
p PV i+
d_T:idv_FL dp

T aT pT

1( v
a=—| — [1.4]
viaT),
prende il nome di coefficiente di espansione isobara' ed esprime la variazione relativa di
volume specifico al variare della temperatura in un processo a pressione costante; il termine:

“ :_l(ﬂ Vj /1.5]
v T

nelle quali il termine:

ap

viene denominato coefficiente di comprimibilita isoterma, esso indica la variazione relativa di volume
specifico al variare della pressione in un processo a temperatura costante; inoltre:

_1(2p
rslew) e

rappresenta il coefficiente di tensione isovolumico ed esprime, in una trasformazione a volume costante,
Peffetto della temperatura sulla pressione. Tale coefficiente e quello di espansione isobara sono in
generale funzioni della pressione e della temperatura. Le /7.3] costituiscono le equazioni differenziali di
stato relative ad un fluido qualsiasi allo stato termodinamico monofase.

I coefficienti termodinamici sopra definiti non sono indipendenti tra loro, infatti tenuto conto
che per una funzione del tipo (7.7) si puo scrivere:

(22)(%5)(55) -~
57)

ovvero anche:

=-1
ov (ﬂpj
ap)\adT),
e quindi dalle (7.4), (1.5) e (1.6) si ottiene:
(04
=p [1.7]

X B

relazione che consente il calcolo di uno dei coefficienti noti che siano gli altri due.
Se il fluido in esame ¢ un gas perfetto per i coefficienti espansione e di tensione si scrive:

gt 2 [RT} _R
vaTl p , bV

ﬁ_gﬁ(ﬂj _R
poT\LvVv ), pv

! Spesso detto anche coefficiente di dilatazione cubica dei materiali.
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il che equivale a scrivere:
1
a=p== 1.8
B=7 [1.8]

ossia tali coefficienti sono indipendenti dalla pressione.
Integrando la prima delle /7.3/ lungo un processo isobaro e la seconda lungo un processo
isovolumico si ottiene rispettivamente:

;

V=V, exp UT a dT}
T

P=p, exp UTOﬂ dT}

si osserva che se lintervallo di temperatura non ¢ grande i coefficienti @ e B possono ritenersi
con buona approssimazione costanti pertanto le suddette relazioni divengono:

v=y, exp [a (T-T,)]
p=p, exp [A(T-T))]

inoltre sviluppando in serie e trascurando i termini di ordine superiore si puo scrivere:

v=y[l+a (T-T,)]
p=p, [1+8 (T-T,)]

come temperatura iniziale si puo considerare quella del ghiaccio fondente pari a 273,75 K. Per
grandi intervalli di temperatura le suddette espressioni possono ancora essere ritenute valide a

/1.9]

[1.10]

condizione che o e 3 siano da intendere come valori medi lungo tali intervalli. Sempre nel caso di gas
perfetto per il coefficiente di comprimibilta isotermo si ha:

__1J(RT}) _RT
TNl p ), o

ovvero anche:

n=s [1.11]

esso quindi non dipende dalla temperatura. La comprimibilita di un fluido puo anche avvenire
isoentropicamente, in tal caso dalle equazioni del primo e secondo principio della termodinamica
risulta:

(du),+p (dv), =0
(dh), v (dp), =0
ovvero nella forma equivalente:

5 )
oV ), ap),

quindi effettuando il rapporto:

-3

oV

e scrivendo nella forma:
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_lﬂ(ﬁ_ﬂ_i
vigp)\duj; p

si puo definire un altro coefficiente termodinamico di variazione volumetrica dato dalla:

1({ v
== 2= 1.12
~ V(ﬂ pl 12

denominato coefficiente di comprimibilita isoentropica il quale rappresenta la variazione di volume
specifico al variare della pressione in un processo ad entropia costante; tale coefficiente, come si avra
modo di vedere poco piu avanti, ¢ legato alla velocita di propagazione delle onde di pressione in un
mezzo fluido. Pertanto la relazione:

éh 1
| =— 1.13
(ﬁ Ul XsP 112

rappresenta l'equazione differenziale di una trasformazione isoentropica, nota dalla

termodinamica, ed esprime la variazione delle proprieta calorifiche, entalpia ed energia interna, del
fluido in funzione delle sue proprieta termiche, pressione e volume specifico, in un processo

1soentropico. La quantita:
-2
ou)

rappresenta appunto esponente dell’isoentropica, sicché per un fluido qualsiasi il coefficiente di
comprimibilita isoentropico assume la forma:

[

X = [1.14]

*

k'p

se il fluido ¢ un gas perfetto risulta:

pertanto la /7.74] diviene:

1
=— 1.15
%= [1.15]
e dal confronto con la [1.11] ne risulta:
k=4 [1.16]

s

ossia il coefficiente adiabatico & ¢ dato dal rapporto tra i due coefficienti di comprimibilita
isotermo ed isoentropico, rispettivamente. Si osserva altresi che la suddetta espressione, come si puo
dimostrare, ha validita anche per un fluido qualsiasi.

I gas hanno la tendenza a comprimersi molto piu elevata rispetto a quella dei liquidi, in condizioni
standard di pressione e temperatura ¥t risulta dell’ordine di 10° m?/N. I liquidi oppongono maggiore
resistenza alle azioni che tendono a comprimerli. Integrando la prima delle /7.3] per un processo
isotermo si ottiene:

P
V=V, exp Hpo pa dp]
anche qui considerando non eccessivo l'intervallo di pressione si puo scrivere:
V=V, exp I:_ZT(p_po):I [1.17]

quindi sviluppando in serie e trascurando i termini di ordine superiore al primo si ha:
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V=Yy I:l_ZT(p_po)] [1.18]

Per i liquidi pit comuni y; ¢ dell’ordine di 10~ m?/N,in particolare nel caso dell’acqua, alle
medesime condizioni di pressione e temperatura, esso vale circa 5.10 " m?/N ossia ventimila volte
piu piccolo del corrispondente valore che compete al gas, di conseguenza atteso il piccolo valore di y
dalla [1.18] st deduce che il valore di » ¢ praticamente coincidente con quello di V, e cio consente di
considerare i liquidi come “fluidi incomprimibili”.

Tuttavia anche 1 gas possono essere trattati allo stesso modo dei liquidi tutte le volte che il loro
movimento non comporta sensibili variazioni di pressione.

L’ipotesi di incomprimibilita porta ovviamente ad una fondamentale semplificazione negli
sviluppi analitici e fornisce al tempo stesso risultati di completa attendibilita per molti problemi pratici.

Non si deve pero dimenticare che il fluido incomprimibile costituisce una semplice astrazione,
analoga a quella del corpo rigido; in un fluido reale e per processi isotermici ad ogni variazione di
pressione si associa una variazione dell’energia potenziale elastica connessa ai corrispondenti
cambiamenti di volume e tale variazione di energia equivale al lavoro meccanico compiuto dalle
pressioni esterne sulla superficie di contorno durante la variazione volumetrica.

L’ipotesi di incomprimibilita presupporrebbe che la pressione del fluido potesse variare
indipendentemente da un effettivo lavoro delle pressioni esterne; assume pertanto una certa importanza
stabilire entro quali limiti ¢ effettivamente lecito ammettere I'incomprimibilita dei fluidi.

1.2. VELOCITA DEL SUONO E NUMERO DI MACH

Si consideri un tubo cilindrico nel quale un pistone viene spostato con un improvviso movimento
AX da sinistra verso destra; a seguito di tale spostamento si viene a generare nel fluido immediatamente
vicino al pistone un aumento di pressione il quale non si manifesta all’istante in tutti i punti del
condotto, essendo il fluido dotato di inerzia e di elasticita, bensi si propaga, verso destra, con velocita ¢
tale velocita di propagazione di questa perturbazione provocata nel fluido viene denominata velocita del
SUONO.

dw
, p+dp ¢ D
p+dp
c-dw ¢
b
Figura 1

PROG. ING. GIULIANO CAMMARATA

| 6



FISICA TECNICA INDUSTRIALE — VOL. 3° - TERMO-FLUIDODINAMICA

Per potere determinare questa velocita si consideri un riferimento solidale con l'onda di
pressione, in tal caso il fluido scorre da destra verso sinistra e passando attraverso il fronte d’onda la sua
velocita passa dal valore ¢ al valore ¢—dw. Nell’ipotesi che il fluido si muove di moto stazionario
rispetto al riferimento solidale col fronte d’onda applicando I'equazione di bilancio di quantita di moto
in due sezioni immediatamente a monte ed a valle di questo si ha:

p+pc®=p+dp+(p+dp)(c—dw)’
e trascurando infinitesimi di ordine superiore si puo scrivere:

dp+c’dp=2pcdw

Applicando inoltre 'equazione di bilancio di massa si scrive:
p c=(p+dp)(c—dw)

che diviene:

cdp=pdw

e sostituita nella precedente fornisce:
dp+c’dp=2c’dp
dalla quale si ottiene:
d
c= @ [1.19]
dp

Se si tiene conto che la velocita di propagazione delle vibrazioni sonore nel mezzo fluido ¢ molto
grande nessuno scambio di calore, anche se piccolo, riesce a prodursi nelle zone di compressione e di
depressione dell’onda da una parte ed il mezzo dall’altra cosicché le vibrazioni del mezzo dovute alla
propagazione dell’onda si possono considerare adiabatiche ed isoentropiche, pertanto la [1.19] deve

essere scritta:
Cc= (@j [1.20]
op),

nota come eguazione di Laplace. 1’ipotesi che ha condotto alla [1.20] ¢ che eccesso di pressione sia
piccolo, al limite infinitesimo; in realta si dimostra che non essendo tale incremento infinitesimo la
velocita di propagazione effettiva €' differisce dal valore fornito dalla suddetta espressione, ovvero si
verifica che €'>C per incrementi di pressione positivi e viceversa per incrementi negativi. Il valore di ¢
calcolato con la [1.20] viene anche denominato wvelocita del suono di frequenza zero, infatti quando le
vibrazioni sonore di frequenza sufficientemente alta si propagano in un mezzo fluido l'ipotesi sulla loro
natura isoentropica cessa di essere valida, per tali situazioni la velocita del suono dipende anche dalla
frequenza.

Tuttavia per un intervallo di frequenze che presentano pratico interesse I’equazione di Laplace
fornisce valori di ¢ che, a meno di qualche centesimo di percento, coincidono con 1 dati sperimentali.

Esprimendo la [1.20] in termini di volume specifico si ha:

e tramite la /7.74] si ottiene:

c= |— [1.21]

Se il fluido ¢ un gas perfetto, tenuto conto dell’equazione di stato, la suddetta relazione diviene:

c=vkRT [1.22]

PROG. ING. GIULIANO CAMMARATA
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la velocita del suono dipende in tal caso dalla sola temperatura, mentre in un gas reale ¢ ¢
funzione anche della pressione.

Osservando la [1.20] si deduce che ammettere 'incomprimibilita equivale ad assegnare valore
infinito alla velocita del suono, cio significa che ogni piccola variazione di pressione provocata in un
punto qualsiasi della massa fluida venga istantaneamente risentita in tutti gli altri punti.

Nell’esempio citato il fluido ¢ comprimibile per cui esso non si sposta subito alla velocita del
pistone, come cio invece avrebbe luogo se al posto del fluido il pistone spingesse un cilindro di metallo.

Affinché lipotesi di incomprimibilita non dia luogo a contraddizioni troppo evidenti le
dimensioni della massa fluida devono essere abbastanza limitate in modo tale da potere ritenere
trascurabile il tempo effettivamente necessario per la trasmissione delle variazioni di pressione fino ai
punti piu lontani, oppure tali variazioni risultino cosi lente e graduali ed il tempo predetto sia
brevissimo.

Nel caso di liquidi sara allora necessario mettere in conto la comprimibilita nello studio dei
fenomeni che riguardano l'inizio e I'arresto del movimento entro lunghi condotti (colpo d’ariete) e non
se ne potra prescindere nemmeno nel caso di condotti brevi quando I'avviamento o 'arresto del moto
avvengono in un intervallo di tempo estremamente breve.

La comprimibilita deve soprattutto essere presa in considerazione allorquando il fluido acquista
velocita che si avvicina al valore di ¢, cio si verifica con relativa frequenza nei processi gasdinamici ed
aerodinamici sia perché la velocita del suono negli aeriformi ¢ assai minore di quella che compete ai
liquidi (da un quarto ad un quinto, circa, di quella dell’acqua) e sia perché in seno all’aria ¢ piu facile
raggiungere velocita di trasporto molto elevate.

Lesistenza di questa velocita di propagazione ¢ responsabile di una fondamentale distinzione tra
il regime subsonico (w < ¢) ed il regime supersonico (w > ¢), tale distinzione si rende necessaria in quanto il
comportamento termodinamico del fluido nei due regimi di moto ¢ assai diverso.

Si consideri a tal proposito una corrente fluida in moto a sia » la velocita in un punto qualsiasi in
corrispondenza del quale lo stato termodinamico ¢ caratterizzato dai valori di p,», 1 ; allora il rapporto
adimensionale:

M =

w [1.23]
C

viene denominato numero di Mach e sta ad indicare il rapporto tra la velocita del fluido in un
punto, in un dato stato termodinamico, e la velocita del suono nel medesimo punto e allo stesso stato;
pertanto il regime di deflusso di un fluido, al variare della velocita, viene cosi classificato:
M <1 regime subsonico
M =1 regime sonico
M <<1 regime incomprimibile
M > 1 regime supersonico
M >>1 regime ipersonico
Come visto solo per M <<1 (in pratica all'incitca M <0,3) si puo ritenere accettabile I'ipotesi
di incomprimibilita; per valori elevati della velocita » non si puo trascurare lo stato termodinamico del
fluido il quale sara sottoposto ad espansioni e compressioni.

1.3. STATI TERMODINAMICI PARTICOLARI

E’ noto che i valori di p,», T individuano lo stato termodinamico di un fluido e questa terna di
grandezze in un punto qualsiasi, in corrispondenza del quale il fluido ¢ dotato di velocita », rappresenta
uno stato termodinamico generico comunemente chiamato stato locale; questo stato non mette in
evidenza nessun particolare circa il comportamento fisico del fluido.

Si consideri adesso un deflusso adiabatico senza scambio di lavoro e con variazione di energia
potenziale trascurabile; applicando I'equazione di bilancio energetico fra uno stato locale (4,») ed uno
stato (N, ,W, =0) risulta:
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2

m=h+%§ [1.24]

questo stato fisico particolare viene denominato stato di ristagno ovvero anche stato di arresto
adiabatico ed N, rappresenta /entalpia di ristagno ossia quel valore di entalpia che il fluido avrebbe se a
partire da condizioni locali fosse portato adiabaticamente fino alla condizione di velocita nulla.

Se (h,w,) e (h,,w,) sono due stati locali e se il fluido scambia calore 'equazione di bilancio
energetico, tenuto conto della precedente, si puo scrivere:

G, :(h2+%j_[m+w_2l]:hoz_ho1 [1.25]

dalla quale si osserva che P'entalpia di ristagno rimane costante se non vi ¢ scambio di calore con
Pesterno, anche in presenza di fenomeni dissipativi; essa aumenta, o diminuisce, nel caso di
somministrazione, o sottrazione, di calore al fluido.

L’entalpia di ristagno ¢ quindi una grandezza rappresentativa del contenuto energetico del fluido,
prescindendo dall’effettiva utilizzazione di tale energia al fine di ottenere lavoro. Nel caso di gas
perfetto la [1.24] diviene:

2
T, =T+ 11.267
2c,

che rappresenta la femperatura di ristagno, definita in maniera analoga a quanto fatto per 'entalpia;
in tal caso dalla [1.25] si ha:

G, =C, (Toz _T01) [1.27]
pertanto anche la temperatura di ristagno ¢ rappresentativa del contenuto energetico per un gas
perfetto e varia solo se vi ¢ scambio di calore con P'esterno. In un deflusso adiabatico si ha sempre:
h, =cost. T, =cost.

Scrivendo la [1.20] nella forma:
T, w? k-1 w?
2=1+ =1+
T 2c,T 2 kRT

e quindi per le [1.22] e [1.23] risulta:
T k-1
L=1+—=M?
T 2
ossia per un dato gas il rapporto tra la temperatura di ristagno e quella locale ¢ funzione del
numero di Mach. Inoltre essendo:
k
To [P}
T Up

ko
%:(u%ll\/ﬁ} ! [1.29]

che rappresenta la pressione di ristagno, ossia quella pressione che il gas avrebbe se partendo da
condizioni locali (p,w) fosse portato isoentropicamente fino alla condizione di velocita nulla.

[1.28]

dalla [1.28] si ottiene:

Facendo riferimento all’equazione di bilancio energetico in forma meccanica e trascurando
ancora variazioni di energia potenziale si puo scrivere:
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W, —w; +j2d—p+l =0
R

2 L p
e supposto che gli estremi di integrazione siano due stati di ristagno tale espressione diviene:
02 dp
_ 0
|, = jm b [1.30)
0

tale eguaglianza ¢ dovuta al fatto che calcolare I'integrale suddetto nelle condizioni di ristagno
equivale ad eseguire il calcolo considerando, ad ogni passo di integrazione, pressione e densita nelle
condizioni di ristagno.

Nel caso di gas perfetto e se questo non scambia calore la [1.30] si scrive:

. =j;f RTO%:RTOInh [1.31]
Po )
dalla quale risulta:
|
Por = Po2 EXP ﬁ [1.32]
0

pertanto nel moto adiabatico la pressione di ristagno non ¢ una costante, lo diviene solo che il
deflusso avviene isoentropicamente, ovvero:

|R=0 Po1r = Po2 = Po

sicché la pressione di ristagno ¢ una grandezza rappresentativa del contenuto entropico del gas e
quindi dalla sua capacita di trasformare in lavoro meccanico I’energia posseduta. Essendo inoltre:

k-1
T_ [P,
Ty £o
ancora dalla (7.28) risulta:
1
— k-1
&=(1+k—1M2) ' /1.33]
yo, 2

si ottiene la densita di ristagno, definita allo stesso modo della pressione di ristagno e come tale ¢
una costante solo nel deflusso isoentropico. In questo caso sarebbe:

1k _ 1k
T Por =T P
ed essendo costante la temperatura di ristagno sara anche:
Por = Po2 = Po

Le equazioni [1.28], [1.29] e [1.33] dimostrano che nel caso di deflussi adiabatici reversibili esiste
un legame univoco tra il numero di Mach ed 1 rapporti fra le grandezze termodinamiche locali e quelle di
ristagno.

Si puo concludere che lo stato di ristagno costituisce uno stato di arresto adiabatico per entalpia e
temperatura mentre per pressione e densita esso ¢ uno stato di arresto isoentropico.

Si faccia ancora riferimento alla [1.26] che puo essere messa nella forma:

W_2 kRT_kRTO
2 k-1 k-1
ovvero anche:
w»o¢& ¢
—+ = 1.34
2 k-1 k-1 [1.54]
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dalla quale si osserva che la velocita locale del gas diminuisce all’aumentare della velocita del
suono e viceversa; da qui si deduce che in corrispondenza di un dato punto, caratterizzato da un dato
stato termodinamico, le due velocita hanno eguale valore sicché:

W=C=W,

in tale stato il numero di Mach diviene unitario ed il valore comune alle due velocita vale:

ﬂ 2
WC:CO m [735]

che prende il nome di velocita critica.
Essendo noto lo stato di ristagno la temperatura critica si puo determinare dalla [1.28], sicché:
2
T.=T, | — /1.36]
k+1

ed ¢ ovvio che tale valore da solo non ¢ sufficiente a definire uno stato termodinamico, sono
necessari i valori di pressione e densita per i quali, come si ¢ visto, si rende necessaria la condizione di
isoentropicita del deflusso; pertanto dalla [1.29] si perviene alla:

K

0. = Py [LJ " 137

k+1
e dalla [1.33] si ha:

E )?—1
pc_po k+1 [ ]

Queste ultime tre equazioni individuano lo stato termodinamico corrispondente alla condizione
di M =1 che viene cosi denominato stato critico.

Partendo da uno stato locale (p, 0,T,W) combinando le suddette relazioni con le [1.28], [1.29] e

[1.33] si puo scrivere:
T =T 2 kel
k+1 k+1

k
2 k-1 ,\ka
=p| —+—M? 1.39
Pe p(k+1 k+1 ) 115
1
2 k-1.,\ka
—p| L+ ome
Pe ;)(k+1 k+1 j

lo stato critico isoentropico ¢ pertanto uno stato termodinamico corrispondente alla condizione
M =1 ottenuto a partire da condizioni locali o di ristagno.
Essendo il deflusso isoentropico i valoti di T, p,, o, sono costanti in ogni punto del campo di

moto. Questo particolare stato termodinamico ¢ fondamentale nello studio dell’efflusso dei gas lungo 1
condotti a sezione variabile (ugelli e diffusori) nei quali, come si avra modo di vedere qui di seguito, sia
per geometria sia per condizioni di moto lentropia si puo ritenere costante, almeno in prima
approssimazione.

Dalla [1.34] si osserva che nel moto isoentropico la velocita ha un limite superiore che si ottiene
allorquando la velocita locale del suono diviene nulla, in caso si puo scrivere:

Wi =Co 4| [1.40]
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questa velocita in pratica sarebbe realizzata solo allo zero assoluto di temperatura in
corrispondenza del quale 'entalpia del gas sarebbe totalmente trasformata in energia cinetica; tale valore
in condizioni isoentropiche non puo quindi essere raggiunto.

Facendo riferimento alla [1.40] la [1.34] assume la forma:

2 2
W C

—+— =1 [1.41]
Wmax CO

la quale mostra come tutti i possibili regimi di moto sopra descritti per un gas perfetto giacciono
su un’ellisse di assi (W,C), come ¢ illustrato nella Figura 2.

Figura 2

1.4. FATTORE DI COMPRIMIBILITA

Si faccia riferimento all’equazione energetica per un fluido incomprimibile la quale, trascurando
variazioni di energia potenziale e le resistenze per attrito, si scrive:
2

w1
—+—(p- =0
2 (P—po)
essendo P, la pressione di ristagno del fluido; scrivendo tale equazione nella forma:
2
w
= m-p [1.42]

si osserva che la pressione dinamica del fluido si identifica come differenza tra la pressione di
ristagno e quella locale; non si puo dire altrettanto nel caso di un fluido comprimibile. Si consideri
infatti il rapporto:

f=p0_p
k oW
2

che viene denominato fattore di comprimibilita, da esso si deduce che se il fluido ¢ incomprimibile si

[1.43]

ha f, =1 mentre se il fluido ¢ comprimibile deve essere f, >1 e pertanto si ha:
2

oW
2

<p,—P [1.44]
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Al fine di valutare la differenza di pressione P, — P si consideri un gas perfetto che si muove

isoentropicamente, in tal caso si puo scrivere:

p w ? — E p M 2
2 2
di conseguenza la [1.43] diviene:
f, :LZ P4
kM p
e quindi per la [1.29] risulta:
k
2 k-1 k-1
f = I+—M?| -1 1.45

pertanto per un dato gas, ovvero per un assegnato valore di 4, il fattore di comprimibilita ¢
funzione del solo numero di Mach locale. Sviluppando in serie binomiale il termine in parentesi si puo

scrivere:
k

LT VER LI SYEI SYEI (Gl S VE IO VL
2 2" 78 48

e la [1.45] diviene:

M? 2-k
f,=1l+—+=—-M*"+O(M°® 1.46
e a e VAR (' 11461
sicché dalla [1.43] si ottiene la differenza di pressione richiesta, ossia:
p W2 M 2 2_ k 4 6
-p= 1+ —+ M*+0O(M 1.47
Po—p =" { > " (M") [147]

Se il moto del gas ¢ lontano dal regime sonico, ossia per M <<1, i termini alla seconda ed alla
quarta potenza delle ultime due relazioni divengono piccolissimi di conseguenza dalla [1.46] risulterebbe

che f, =1, ossia il fluido si puo considerare incomprimibile, mentre la si identificherebbe con la [1.42].

Tale risultato risulta alquanto significativo, il deflusso adiabatico dei gas attorno ad oggetti e lungo
i condotti si puo ritenere incomprimibile finché il numero di Mach ¢ piccolo, M <0,3 citca, ottenendo

cosi nel modello a densita costante una indubbia semplificazione di calcolo.

PROG. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — VOL. 3° - TERMO-FLUIDODINAMICA

2. MOTO ADIABATICO NEI CONDOTTI A SEZIONE VARIABILE

Allorquando 1 fluidi si comportano come comprimibili si hanno interessanti comportamenti per il
loro moto all’interno di condotti a sezione variabile che qui si presentano.

2.1. MOTO ISOENTROPICO: VELOCITA E PORTATA SPECIFICA

Nello studio dei condotti a sezione variabile il problema che in pratica si pone ¢ quello di
analizzare la loro conformazione e le condizioni operative necessarie al fine di ottenere mentre il fluido
scambia lavoro, ed eventualmente calore, che esso subisca determinate trasformazioni; viceversa di
individuare le trasformazioni che il fluido subisce nell’attraversare un condotto di forma assegnata ed in
determinate condizioni.

I condotti che vengono qui esaminati sono suddivisi in due classi fondamentali dove il fluido
segue un comportamento totalmente diverso, si definisce infatti:

- ugello un condotto che, a prescindere dalla sua forma geometrica, consente di ottenere un
incremento della velocita a spese di una diminuzione di pressione e densita;

- diffusore un condotto che, prescindendo dalla forma geometrica, consente di realizzare una

diminuzione della velocita a vantaggio di un aumento di pressione e di densita. Si vedra nel

prossimo paragrafo che la modalita del deflusso in questi particolari condotti dipende

esclusivamente dal regime di partenza della corrente fluida pur conservando la stessa geometria.

Si consideri allora un fluido che viaggia in regime stazionario in un condotto a sezione variabile
per il quale siano rispettate le seguenti ipotesi:

- pareti termicamente isolate,
- non vi sia scambio di lavoro meccanico,
- le variazioni di energia potenziale dovute al campo gravitazionale siano trascurabili,

- deflusso monodimensionale.

La prima ipotesi ¢ senz’altro verificata in quanto trattandosi di condotti corti ed avendo a che fare
con velocita elevate ne risulta che la quantita di calore scambiata attraverso le pareti ¢ molto piccola ed
in pratica quasi sempre trascurabile, la terza ipotesi si ritiene accettabile appunto perché le alte velocita
danno luogo a variazioni di energia cinetica molto grandi rispetto e quelle di energia potenziale, anche la
quarta ipotesi si ritiene valida se il condotto ¢ ad asse rettilineo o comunque poco incurvato di modo
che i filetti fluidi siano paralleli e diretti secondo I'asse. La seconda ipotesi non viene per il momento
presa in considerazione. Sotto le suddette condizioni I'equazione di bilancio di energia nella forma
termodinamica si scrive:

w2 —w;

TJr(h—hl):O

w= W +(h —h) [2.1]

che consente la determinazione della velocita del fluido in una sezione generica del condotto a

dalla quale si ricava:

partire da uno stato locale noto, carattetizzato dai valori (h,W,), e viene denominata velocita adiabatica;
mentre I’equazione di bilancio di energia nella forma meccanica si scrive:

2 2
W—2Wl+jpd—p+lR=0

dalla quale risulta:

W

2.2]

I
HEM
+
N
—
|
|
o
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che consente di determinare la velocita in una generica sezione del condotto a partire dallo stato
locale noto caratterizzato dai valori (P, W,).

Le equazioni [2.1] e [2.2] sono di carattere generale nel senso che sono valide per qualsiasi fluido,
anche se per dare forma risolutiva alla seconda sono necessarie la conoscenza del processo
termodinamico e del lavoro delle forze d’attrito altrimenti il problema risulta due volte indeterminato.

Se il condotto, ugello o diffusore, ¢ convenientemente breve e la superficie lambita dal fluido ¢
ben levigata la trasformazione si pud considerare praticamente reversibile in quanto il termine |
diviene piuttosto piccolo rispetto al valore che assume I'energia cinetica nella sezione finale e pertanto
puo essere considerato trascurabile, almeno in prima approssimazione, di conseguenza la (2.2) diviene:
pdp

p

/2.3

W= W +2 I
Si puo dire pertanto che la [2.1] ¢ valida nel caso di processo reversibile ed irreversibile ma
necessariamente adiabatico mentre la [2.3] ¢ applicabile a qualunque processo purché necessariamente
reversibile il quale se ¢ anche adiabatico la suddetta espressione viene denominata velocita isoentropica.
Facendo riferimento alla [2.1] e se il fluido ¢ un gas perfetto si puo scrivere:

W= \jwf +2¢,(T,-T)

ovvero anche:

W= Wf+k2—k1RT1 -1

- 1

e tenuto conto sia dell’equazione di stato che I'equazione di trasformazione in funzione di
pressione e temperatura si ottiene:

k-1

k
W= wf+k2—klRTl 1-| P [2.4]

Py

ovvero la velocita isoentropica del gas perfetto; ¢ immediato verificare che alla suddetta
equazione si puo pervenire anche attraverso la [2.3] sostituendo nellintegrale I'equazione di
trasformazione in funzione di pressione e densita.

La portata di massa specifica si puo ottenere dalla relazione:

L
A P
nella quale essendo:
1 1
p] _p(p)
P=P| | o7l ~
‘\p)  RLip
e tenuto conto della (2.4) si perviene alla relazione:
1 k4
i k k
m_BfP) ey Kprli[2 12.5]
A RT,(p k-1 P,

ossia la portata specifica isoentropica di un gas perfetto. Si osserva che qualora la velocita W, non sia
nota si puo mettere la [2.4] nella forma:

PROG. ING. GIULIANO CAMMARATA

| 15



FISICA TECNICA INDUSTRIALE — VOL. 3° - TERMO-FLUIDODINAMICA | 16

3
w2 —wW = kz_k RT, 1—(£j /2.6]

inoltre potendo scrivere:

2
W,
W —w = w? l—[—lj

tenuto conto dell’equazione di bilancio di massa:

w3

e dell’equazione di trasformazione la precedente espressione diviene:

2

i (3R
W —wW, =W |1-| — | | —
AP

e sostituendo nella [2.6] si ottiene:

KR, ka
we | k=1 ® 1—(£J 12.7]
k

in tal caso la velocita isoentropica viene messa in relazione con la geometria del condotto; per la
portata di massa si puo allora scrivere:

2 2 kil
m_ [k p k-1 [ka (pjk
—=,|= — | - = [2.8]
A \R T, 1—(AJZ[pJ Py Py
Vla)
tale espressione consente anche di risolvere il problema inverso, ossia quello di determinare ’area

della sezione di uscita del condotto, nota che sia quella in ingresso, affinché sia garantita una data
portata di massa di gas compatibile con lo stato termodinamico iniziale e la pressione finale.

=N

Per semplificare le espressioni suddette si potrebbe considerare una particolare sezione del
condotto ove vi siano condizioni tali per le quali sia nulla, o quanto meno trascurabile, la velocita del
fluido; nella maggior parte delle situazioni reali tale sezione non esiste pero ad essa si pud sempre fare

riferimento in quanto noto che sia il suo stato termodinamico (P, o, T;,W,) si pud sempre

determinare lo stato di ristagno ad essa associato (P, gy, T,) attraverso le equazioni [1.28], [1.29] e
[1.33] sicché la [2.4]

k-1
2k p )k

w= |—RT, |1-| — 2.9
2 e, 1 2] 29

mentre per la portata di massa specifica risulta:
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k+1

p Tk
— 2.10
\/ (poj =10

Se si tiene conto della [1.29] per la suddetta equazione si puo scrivere:

2 k-1
k k
A~ R T, P Po
K Py 2 1 1- 1
— 2 k-1
R\/ﬂ k 1(l+k—1M2jk—l 1+—=M?
e quindi semplificando ed ordinando si ottiene:
m p M
«/‘TO_ T [2.11]
0 2(k-1
(1+|v| 2) o
2

la quale esprime la portata specifica in funzione dello stato termodinamico di ristagno e del
numero di Mach; tale relazione costituisce una forma alternativa alla [2.10] ed ha un’importanza
notevole nel campo della termofluidodinamica applicata alle macchine.

Uno dei problemi fondamentali nello studio del comportamento degli ugelli e diffusori ¢ quello di
determinare il valore massimo di portata specifica che puo defluire nel condotto in esame e piu
precisamente a quale stato termodinamico tale valore corrisponde.

Con riferimento alla [2.10] si osserva che la portata specifica varia al variare della pressione ed il
valore massimo si ottiene allorquando risulta massimo il termine in parentesi quadra per il quale, in

corrispondenza di una data pressione p”, deve essere nulla la derivata prima:
2 k+1
Za o
2 [EJk _k+1(pj o
k'po Py kP, \ Po

p po k+1 _pc

pertanto la massima portata specifica si raggiunge in corrispondenza dello stato critico sicché
sostituendo questo valore di pressione nella [2.10] si perviene all’espressione:

k+1
m m K p, ([ 2 )akD
- == |—= — 2.12
(A)max A Rﬁ(kﬂ) e

Dalla [2.10] si osserva che la portata aumenta al diminuire della pressione fino al valore fornito

dalla [2.12] per poi decrescere fino ad annullarsi addirittura laddove la velocita assume valore
massimo, ¢ evidente che questo discorso ¢ inaccettabile; in pratica attraverso l'osservazione
sperimentale si ¢ visto che una volta raggiunta la pressione critica la portata conserva costantemente il
valore massimo sicché 'andamento della funzione [2.10] ¢ quello riportato nella figura 3 dove il ramo di
curva tratteggiato ha solo un significato matematico ma non corrisponde ad alcuna situazione reale.

dalla quale si ottiene:
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>3

N—

ma

Pe P
Po Po
Figura 3

Questo fatto pone senz’altro un limite alla validita della [2.10] in quanto non essendo fisicamente
giustificabile il secondo ramo della curva suddetta tale equazione ¢ accettabile solo per P = p,.

2.2. TEOREMA DI HUGONIOT

L’ipotesi di considerare reversibile il deflusso adiabatico negli ugelli e diffusori costituisce
ovviamente solo un’approssimazione anche se abbastanza accettabile visto che, per quanto detto in
precedenza, si tratta di condotti di caratteristiche geometriche tali che i fenomeni dissipativi non hanno
ne lo spazio ne il tempo sufficiente per far sentire in modo apprezzabile i loro effetti; nella realta pero
questa ¢ una semplificazione che viene fatta solo in una prima fase di calcolo, o di verifica, al fine di
determinare 1 valori teorici di velocita, portata di massa e le altre grandezze fisiche e successivamente, in
un seconda fase, vengono messe in conto le irreversibilita, fra I'altro inevitabili, modificando 1 valori
delle suddette grandezze mediante opportuni coefficienti correttivi determinabili solo attraverso
I'osservazione sperimentale.

Considerando in una prima approssimazione il moto isoentropico attraverso le equazioni
differenziali di bilancio di massa ed energia si puo analizzare il comportamento di un fluido
comprimibile che attraversa un condotto a sezione variabile. Per le condizioni poste inizialmente
I’equazione differenziale di bilancio energetico si scrive:

de+%:0 [2.13]
P

che si puo6 anche mettere nella forma:

w wldp) p
ovvero per la [1.20] e la [1.23].

d—W+i2d—'0=0 [2.14]
w M° p

inoltre differenziando ’equazione di continuita:
£ W A=cost.

risulta:

AW 0 [2.15]
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quindi sostituendo nella [2.14] ed ordinando si ha:

dA ) dw
—=\M"-1)— 2.16
L= (MP-1)— [2.16]
quindi sostituendo nella /2.73/ si ha:
dA dp
—=(1-M?*)— 2.17
A M) 2T
sostituendo ancora la [2.15] nella [2.14] si ottiene:
dﬁ:[%—ljdl [2.18]
A M yo,

Le [2.10], [2.17] e [2.18]sono le equazioni di Hugoniot le quali descrivono il moto di un fluido
comprimibile qualsiasi lungo un condotto a sezione variabile, piu precisamente attraverso le suddette
equazioni ¢ possibile risalire al comportamento totalmente opposto del fluido nei riguardi dei due
regimi di deflusso.

Nel caso di deflusso subsonico le variazioni della sezione del condotto causerebbero la variazione
delle grandezze fisiche nel modo seguente:

dw>0 dw<0
dA<0 dp<0 dA>0 dp>0
dp<0 dp>0
mentre in regime supersonico si avrebbe:
dw<0 dw>0
dA<0 dp>0 dA>0 dp<0
dp>0 dp<0

Da queste condizioni si vede che per poter incrementare la velocita del fluido, a spese di una
diminuzione di pressione e densita, occorre un condotto convergente in regime subsonico ed un
divergente in regime supersonico pertanto in un convergente non puo essere realizzato il regime
supersonico, al limite si raggiunge il regime sonico; un condotto che realizza questa condizione di moto
viene denominato rappresenta ugello e puo essere costituito da un solo convergente o da un
convergente collegato ad un divergente, come ¢ illustrato nella Figura 4a.

Per decelerare il fluido, con recupero di pressione e densita, occorre un convergente in regime
supersonico ed un divergente in regime subsonico; un condotto che realizza questo deflusso
rappresenta un diffusore, illustrato nella Figura 4b.

Si osserva quindi come la denominazione, ovvero la caratteristica del condotto, non dipende dalla
forma geometrica bensi dal regime di moto della corrente.

Da queste considerazioni si pud enunciare il feorema di Hugoniot secondo il quale nel moto
isoentropico in un condotto a sezione variabile il passaggio da moto subsonico a supersonico, e
viceversa, puo avvenire solo in una sezione di area minima che viene chiamata sezione di gola.

Con riferimento al gas perfetto che fluisce in regime stazionario ¢ possibile ricavare una relazione
fra il numero di Mach e ’area della sezione trasversale del condotto; in tal caso si fa riferimento alla
sezione di gola in corrispondenza della quale si ¢ raggiunta la velocita del suono, ovvero la condizione
M =1, e che pertanto viene definita segione critica A, .

L’equazione di bilancio di massa tra la sezione suddetta ed una sezione generica consente di
scrivere:

pWA=pW, A

ovvero anche:
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Tenuto conto della prima e terza delle [1.39] si ottiene:
k+1

A 1[ 2 k-1 2jZ(k—l)
—=—|—+—M
A Mik+1 k+1

questa funzione, rappresentata nella Figura , presenta un minimo per M =1 dove si ha A=A, per

2.19]

A
ogni altro valore del rapporto — >1 si hanno due valori del numero di Mach: uno per il regime

A

A
subsonico [— ed uno di regime supersonico | — e quindi per aumentare il numero di
M<1 M >1

Mach Ia sezione trasversale deve diminuire, nel senso del deflusso, a velocita subsoniche ed aumentare a
velocita supersoniche; viceversa per diminuire il numero di Mach.

Tutto cio ¢ in accordo con quanto dedotto dalle equazioni di Hugoniot. I valori del rapporto —

sono tabulati ed anche diagrammati per dato numero di Mach ma anche per un dato valore di £1il quale,
come si osserva ancora dal diagramma di Figura 5, influenza il suddetto rapporto solo per elevati valori
del numero di Mach e piu precisamente nel caso di regimi supersonici.
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>|>

v

M<1 M=1 M>1

Figura 5

Nello studio del funzionamento degli ugelli e diffusori risulta conveniente esprime il rapporto —

in funzione del rapporto di pressione P infatti facendo riferimento alle [2.10] e [2.12] dal loro

b

Po
rapporto risulta:
K+l
k-1 ( 2 )kl
A 2 k+1
— = > T /2.20]
Al ()
Po Po

A
dalla quale ad ogni valore del rapporto— corrispondono due soluzioni isoentropiche: una di

P

moto subsonico P ed una di moto supersonico P ; per A=A, siha la soluzione —= .
Po Jma 0/M>1 Po

Si osserva che per dato condotto, ugello o diffusore, e a seconda del regime di moto, subsonico o
supersonico, in cui si trova il fluido una delle due soluzioni suddette dovra necessariamente essere
scartata in quanto risulterebbe incompatibile con il comportamento caratteristico del condotto in
esame, piu in particolare si possono fare le seguenti considerazioni conclusive per ciascuno dei due
condotti.

Nel caso di un ugello si puo dire che se il fluido arriva alla sezione di gola con moto subsonico il
deflusso nel divergente, per il teorema di Hugoniot, prosegue subsonicamente e questa ¢ una
condizione da non prendere in considerazione in quanto il condotto funzionerebbe come un tubo di
Venturi, il fluido nella sezione di gola deve necessariamente arrivare con velocita sonica in tal caso nel
divergente il moto o ritorna subsonico, soluzione da scartare, come puo divenire supersonico che
rappresenta la condizione che si vuole realizzare; questa situazione di moto ¢ schematicamente illustrata
nella Figura 6.
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Opposto ¢ il comportamento del diffusore in quanto se il fluido perviene alla sezione di gola con
moto supersonico esso nel divergente procede supersonicamente, condizione da non prendere in
considerazione, il fluido deve arrivare nella sezione di gola con velocita ¢ sonica allora nel divergente il

Figura 7
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moto puo ritornare supersonico, soluzione da scartare, come puo divenire subsonico e questa
rappresenta la condizione che si vuole realizzare; la situazione di moto ¢ illustrata nella Figura 7.

Una particolare equazione di Hugoniot si puo ottenere partendo dall’equazione differenziale di
bilancio energetico nella forma:

wdw+dh=0

la quale per un gas perfetto diviene:

wdw+kk—RdT =0

ovvero sctivendo in termini di variazioni relative:

dw 1 kRT AT

tL 1o
w k-1w T

ed ordinando si ottiene:

OI—T=(1—k)M2d—W [2.21]
T w

tale equazione, a differenza delle tre precedenti, vale per moto adiabatico con attrito ma il fluido
deve essere un gas perfetto, essa mette in evidenza che nei fenomeni di efflusso la variazione di
temperatura ¢ sempre opposta in segno alla variazione di velocita e pertanto ad una diminuzione di
velocita corrisponde un aumento di temperatura, il gas si comprime, cosi come ad un aumento di
velocita consegue una diminuzione di temperatura, il gas si espande; si puo quindi affermare che, in
valore assoluto, ad una variazione di velocita segue una variazione di temperatura tanto piu rapida
quanto piu ¢ elevato il numero di Mach.

2.3.  CONDIZIONE DI FUNZIONAMENTO DI UN UGELLO

Si ¢ visto attraverso il teorema di Hugoniot come la trasformazione termodinamica che un fluido
subisce nell’attraversare un ugello o un diffusore dipende, ovviamente per un dato fluido, solo dalla
legge con cui la sezione del condotto varia lungo 'asse, tale teorema costituisce pertanto la base per
potere effettuare una analisi qualitativa del comportamento di un ugello, o di un diffusore, di
caratteristiche geometriche prefissate una volta assegnato lo stato termodinamico del fluido a monte e
facendo variare la pressione a valle.

Questo studio viene qui condotto facendo riferimento al moto isoentropico di un gas perfetto
che si espande in un ugello considerando separatamente i casi in cui esso ¢ costituito da un solo
convergente o da un convergente -divergente in quanto il funzionamento di quest’ultimo ¢ leggermente
pit complesso del primo.

Analoghe considerazioni ma nel verso opposto, ovvero a diagrammi capovolti, si possono poi
fare nel caso del diffusore.

1.1.1. UGELLO CONVERGENTE

Nella Figura 8 ¢ rappresentato un ugello convergente dove il gas a partire da uno stato
termodinamico di ristagno a monte fluisce in un ambiente la cui pressione P, viene fatta decrescere
con continuita a partire dal valore p,. Il funzionamento di questo condotto ¢ caratterizzato da quattro
situazioni fondamentali:

a) Se Py = P, non si ha deflusso in quanto non si realizza alcun gradiente di pressione in seno al

fluido ed ¢ quindi nulla la portata di massa; ’'andamento della pressione segue ovviamente la linea
otizzontale del diagramma di fig. 2.7.

b) Se P, < Ps <P, siviene ad avere un gradiente di pressione in seno al gas ed essendo il moto

subsonico si ha anche p, = P, e quindi la velocita nella sezione di uscita vale:
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Figura 8

un ulteriore abbassamento di pressione ma sempre compreso nellintervallo suddetto del

diagramma, non farebbe altro che aumentare la velocita e la portata ma il regime di moto nella sezione

di uscita rimane subsonico.

¢) Se P, = P, il regime di moto nella sezione di uscita ¢ sonico:

W, =W, =k RT,

pertanto la portata di massa raggiunge il valore massimo:

k+1
my o _ [k (LJH
A, max_ R\ﬁ k+1

d) Se P, <P, il gradiente di pressione nel convergente rimane come nella curva ¢ cosi come

rimangono inalterate velocita e portata nella sezione di uscita ma il fluido all’uscita del condotto

subisce delle onde di espansione e solo piu a valle si adegua alla pressione P, dell’ambiente.
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L’assenza di un divergente a valle di A, impedisce pertanto al fluido di raggiungere il regime
supersonico e cio ¢ in perfetto accordo con il teorema di Hugoniot.

1.1.2. UGELLO CONVERGENTE - DIVERGENTE

Si ¢ detto che il funzionamento di questo condotto ¢ un po’ pit complesso del precedente se non
altro nel divergente visto che dovendosi qui realizzare il regime supersonico ¢ possibile la formazione di
onde d’urto anche se questo fenomeno non verra qui preso in considerazione.

Partendo da una pressione a valle uguale a quella a monte, condizione corrispondente al valore di
portata nulla, la pressione di scarico Pgviene al solito ridotta con continuita dal valore di ristagno Py, a

valori via via decrescenti e per ogni valore di Py si calcola un valore di pressione P, in corrispondenza
della sezione di gola.

Finché risulta py > P, la velocita del fluido il tale sezione ¢ subsonica e pertanto il moto risulta
subsonico anche nel divergente sicché il condotto si comporta come un tubo di Venturi.

Allorquando si ha p, = p, la sezione di gola diviene critica e la portata del fluido diviene

massima a questo punto il moto nel tratto convergente ¢ completamente definito mentre il moto nel
divergente dipende dalle condizioni imposte a valle.

Si ¢ visto che in questa situazione le soluzioni nel divergente possono essere due in tal caso la
(2.20) deve pero essere scritta:

k+1

H(Zj“
A k+1
A e %_L%
pOl pOl

da questa equazione si possono ricavare i due valori di pressione P, = ( p, )M< e p= ( p2)M>l

nella sezione di uscita del divergente.
Per cui si puo trarre una prima conclusione:

a) per Py < P, < Py il moto del fluido nel divergente risulta subsonico isoentropico, che
rappresenta la soluzione da scartare;

b) per

soluzione ottimale.

P, =P, si ottiene nel divergente il moto supersonico isoentropico, che sarebbe la

Resta adesso da chiarire che cosa accade al fluido quando si verifica P, < p, < P, ed ancora
quando siha p, < p;.

Si ¢ detto che se il moto ¢ supersonico ¢ necessario prevenire la formazione di onde d’urto le
quali possono aver luogo all'interno del divergente ed anche nell’'ambiente dove il fluido avra lo sbocco.

A causa della formazione di un’onda d’urto la pressione di ristagno diminuisce bruscamente dal
valote a monte Py, , dove siha M >1, a quello a valle p,,, dove si verifica M <1.

Se il fronte d’onda puo formarsi in una sezione qualsiasi del divergente si supponga che questo
avvenga nella sezione di uscita e pertanto, senza peraltro entrare nei dettagli di questo argomento, si
dimostra che:

"

P, _ 2K

*: M,_k—l
p,  k+1

k+1

nella quale p, ¢ la pressione che si ha nella sezione 2 prima della formazione del’onda mentre

p,” ¢ la pressione immediatamente a valle del fronte d’onda, M, >1 ¢ il numero di Mach a monte del

fronte d’onda, non viene considerato quello a valle M, <1.
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Calcolata la pressione a valle dell’onda d’urto con I'equazione suddetta si possono fare le seguenti
considerazioni:

¢) per p; <Pp,<pP, il moto non & isoentropico con formazione di un’onda d’urto in una

sezione interna al divergente;

per pP,=Pp, il moto ¢ isoentropico nel divergente con formazione di un’onda d’urto in

corrispondenza della sezione di uscita;

¢) per P, <P, <P, il moto ¢ isoentropico nel divergente ma con formazione di onde d’urto

esterne di compressione, ovvero il fluido ¢ sopraespanso;

/) per P, < P, il moto ¢ isoentropico nel divergente ma con formazione di onde d’urto esterne

di espansione, ovvero il fluido ¢ sottoespanso.

La curva discreta tracciata nel divergente rappresenta il luogo dei punti in corrispondenza dei
quali si manifesta un’onda d’urto normale, tutti i punti di tale curva rappresentano pressioni a valle del
fronte d’onda.

1.1.3. OSSERVAZIONI

In tutto cio che si ¢ detto, anche sull’ugello convergente, si osserva che non ¢ stata presa in
considerazione la lunghezza del condotto pertanto I'ugello potrebbe teoricamente avere qualunque
lunghezza, ¢ evidente che se il condotto ¢ molto breve la diminuzione di pressione avviene con forti
gradienti nella direzione assiale mentre se esso ¢ lungo si avrebbero gradienti di pressione minori; nella
realta questa lunghezza viene fissata da diversi criteri di carattere costruttivo.
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Per lo stato termodinamico a monte ¢ stato convenientemente scelto quello di ristagno al quale,
come gia detto, si puo sempre risalire da uno stato locale noto in quanto una velocita nulla all'inizio
dell’espansione significherebbe considerare infinita I'area della sezione, si puo pero in pratica tendere a
questa condizione costruendo le pareti dell’'ugello tangenti alle pareti del serbatoio di monte, come ¢
illustrato nella Figura 10, cosicché la velocita risulta piccola e quindi trascurabile e non ¢ necessario poi
che la parte convergente dell’ugello abbia un profilo particolare, qualunque forma ¢ accettabile purché
'area decresca gradualmente fino alla sezione di gola; il tronco convergente puo avere una lunghezza
abbastanza breve e questo significa che le perdite per attrito fra fluido e parete sono considerate quasi
nulle.

Fignra 10

Molto piu delicato ¢ invece il divergente il quale deve essere realizzato piu accuratamente in
quanto qui il fluido ha superato la barriera del suono, inoltre allorquando il fluido esce dall’ugello le
pareti del divergente devono avere curvatura molto graduale fino a divenire parallele in corrispondenza
della sezione di uscita. Inoltre se per ridurre gli attriti occorre che il tratto divergente sia breve I’angolo
di divergenza non puo essere troppo grande altrimenti si avrebbe il distacco della vena fluida dalle
pareti con formazione di vortici e conseguenti fenomeni dissipativi.

Nella maggior parte dei casi pratici il profilo di un ugello ha forma tronco-conica con angolo
convergente fino a circa 45° mentre ’angolo di apertura nel divergente ¢ in genere compreso trai /° e
i 10°. Da queste considerazioni si puo dire che per un ugello convergente - divergente le dimensioni
fondamentali, cio¢ quelle da calcolare, si riducono alle aree della sezione di gola ed alla sezione di uscita
mentre se l'ugello ¢ costituito da un solo convergente il calcolo riguarda solo I'area della sezione di
uscita.

Figura 11
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2.4. MOTO ADIABATICO CON ATTRITO

11 deflusso isoentropico ha una notevole importanza teorica in quanto costituisce un riferimento
limite mentre il moto adiabatico irreversibile riveste grande importanza pratica in quanto qualunque
movimento fluido lungo un condotto di qualsivoglia geometria ¢ sempre accompagnato da perdite di
energia anche in condotti corti e ben profilati come lo sono gli ugelli e i diffusori, principale
responsabile di tali perdite ¢ lattrito dovuto prevalentemente alla viscosita del fluido ed alla rugosita
delle pareti nonché, con riferimento ai fluidi che qui vengono trattati, all’effetto della comprimibilita.

Gli effetti dovuti alla viscosita del fluido si manifestano in due modi:

- formazione di uno strato limite in una zona a ridosso delle pareti per cui anche supponendo
isoentropico il deflusso i valori delle aree introdurre nelle espressioni della portata no sarebbero
piu quelli geometrici;

- per effetto dell’attrito in seno al fluido e tra fluido e parete si avra nel caso di un ugello una
riduzione della velocita di efflusso e di portata rispetto ai corrispondenti valori isoentropici, nel
caso di un diffusore una parte della variazione di energia cinetica verra convertita in calore di
conseguenza a parita di variazione di entalpia e di energia cinetica 'aumento di pressione risultera
minore di quello che si avrebbe nella corrispondente compressione isoentropica.

Si consideri il deflusso di un fluido in un ugello dove a causa delle perdite per attrito 'entropia
cresce nella direzione del moto, inoltre tenuto conto che durante il deflusso, con o senza attrito, il

fluido si espande sino alla pressione P, all’uscita dell’'ugello il punto 2r corrispondente allo stato
termodinamico reale si trovera sulla stessa isobara ma piu a destra del punto 2 e poiché le isobare nel
diagramma /-s hanno pendenza positiva si ha che h,, >h, e pertanto durante il deflusso si ha sempre

h —h,, <h —h, conseguentemente la velocita del gas W,, all’uscita dall’ugello sara sempre inferiore di

quella isoentropica.
Si scriva 'equazione di bilancio energetico tra uno stato locale generico ed uno stato locale noto

la quale se il moto ¢ isoentropico allora si scrive:
2 2
W™ —W,
W W hop)=0
2
mentre per il moto adiabatico si ha:

2 2
Wi, — W,

|rr2_ +(hirr_h1)=o
il rendimento isoentropico dell’'ugello ¢ dato dall’espressione:
w2 — w2

i 1

rr

7 :h_L_hirr — 2
“ h-h wW-w
2

ovvero se la velocita iniziale si ritiene trascurabile, per quanto ¢ stato fatto osservare in
precedenza, si puo ancora scrivere:

2
i

2
=& 222
Mie W [2.22]
2

in tal caso il rendimento isoentropico di un ugello ¢ dato dal rapporto tra I'energia cinetica
adiabatica e quella isoentropica nella sezione di uscita, pertanto risulta:

=

=

r

\Nirr =W 77ie

che si puo anche scrivere come:
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W, =k, W [2.23]

rr W
sicché la velocita adiabatica W, si ottiene da quella isoentropica, fornita dalla [2.4], moltiplicando

questa per il fattore K, =4/, che viene denominato coefficiente di velocita, ¢ un coefficiente di riduzione

sperimentale che, nella maggior parte dei casi, ¢ poco discosto dall’unita e dipende dalla forma e dalla
rugosita delle pareti.

Nel caso di ugelli convergenti K, ha un’influenza trascurabile sulla velocita in quanto assume
valori compresi fra 0,97+0,99 ed il moto si considera abbondantemente isoentropico; nel caso di
ugelli convergenti - divergenti i valori di K, sono compresi fra 0,94+0,96 ¢ cid perché il condotto ¢

piu lungo e sia perché nella parte divergente si realizzano velocita piu elevate.

La perdita di energia per attrito puo essere espressa come la differenza tra I'energia cinetica
isoentropica nella sezione di uscita dell’'ugello e quella adiabatica irreversibile in corrispondenza della
stessa sezione, ossia:

2 2
AE, = L [2.24]
2
che attraverso la [2.22] diviene:
2 2
wW W
AEattr :(1—77ie)?:§? [2'25]

nella quale il termine ¢ viene chiamato coefficiente di perdita di energia.

Se 7 e 2 sono gli stati termodinamici in cui si trova il fluido, rispettivamente, all'ingresso e
all’'uscita dell’'ugello la differenza tra la velocita isoentropica in uscita:

w, =,/2 (h —h,)

e quella adiabatica nella medesima sezione:

Woirr = 2 (hl —h 2irr)
la perdita di energia puo essere scritta:

AE,, =h, —h, [2.26]

attr

ed ¢ dunque espressa come differenza tra Uentalpia adiabatica e quella isoentropica nella sezione
di uscita dell’'ugello. Inoltre tenuto conto della [2.25] ed utilizzando la velocita isoentropica la suddetta
relazione assume la forma:

AEattr :é/ (hl_hZ) [2'27]

e quindi eguagliando i secondi membri di queste espressioni si puo determinare il valore
dell’entalpia adiabatica nella sezione di uscita:

N =0+ (h1_h2) [2.28]

Nel diagramma di Figura 12 ¢ rappresentato il deflusso adiabatico dell’ugello, si osserva che
larea sotto la curva 1-2, rappresenta il lavoro necessatio per vincere le forze d’attrito che si
trasforma irreversibilmente in calore assorbito dal fluido sicché la temperatura del gas nella sezione di
uscita dell’ugello ¢ maggiore di quella isoentropica; d’altra lungo ’adiabatica 1—-2,, risulta:

Quier = Eﬂrr T ds
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Figura 12

si osserva dal diagramma T —S che Parea sottesa dalla curva isobarica 2—2. rappresenta la perdita di
g rr pp

energia cinetica per attrito AE, ; infatti tenuto conto che per lungo un’isobara reversibile si ha:
Tds =dh

allora integrando tra i punti 2 € 2, risulta:

T2irr

T ds=hy, —h, /2.29]

irr

nella quale il primo membro rappresenta proprio I'area della curva tratteggiata sopramenzionata,
dal confronto con I'area sottesa dalla curva 1—2, si osserva che la perdita di energia cinetica per attrito

AEattr

assorbita dal fluido e si trasforma di nuovo in lavoro meccanico.

rappresenta solo una parte del calore di attrito la rimanente parte, non tratteggiata, viene

Pertanto vale sempre la disuguaglianza:
hZirr - hZ < qattr [250]

ne consegue che la forma della curva 1-2,,, esprimente “comvenzionalmente’ un adiabatica

irreversibile, non ha alcuna importanza per I’analisi del deflusso con attrito.

Nel caso un deflusso adiabatico con attrito essendo Q. =0 risulta:
dh =vdp +daq,,,

quindi integrando:
P2
h2irr - hl = ~|.P1 Vdp + qattr [237]
Draltra parte tenuto conto che per un processo isoentropico si ha:
P2
h,—h =  vdp

si puo affermare che i due integrali delle equazioni suddette non sono affatto identici, infatti
sottraendo membro a membro si puo scrivere piu precisamente:

h2irr - h2 = (J-:z Vdp) _(J.:Z Vdp) + qattr [ZﬁZJ

e quindi attraverso la (2.30) dalla suddetta espressione si deduce che:

(I:Z Vdp)attr g (J.p[:2 Vdp)l’ev

attr
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pertanto il lavoro utilizzabile in un moto adiabatico con attrito ¢ sempre maggiore di quello
corrispondente al deflusso isoentropico.
Tenuto conto della (2.26) 1a (2.32) assume la forma:

P2 P2
(Ipl Vdp) _(JApl Vdp)rev = qattr _AEattr [253]

espressione che rispecchia quanto detto in precedenza.

attr
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3. MOTO ADIABATICONEI CONDOTTI CILINDRICI

3.1. L’ATTRITO NEI FLUIDI COMPRIMIBILI. TEOREMA DI FANNO

I’analisi dimensionale dimostra che nel caso di regimi di moto completamente sviluppati il fattore
d’attrito & dipende in generale dal numero di Reynolds, dal numero di Mach e dall’eventuale scabrezza
relativa, nel caso di condotti con parete a comportamento non liscio; 'esperienza perod conferma che
per regimi subsonici, o al limite sonici, la dipendenza del fattore di attrito ¢ trascurabile nei riguardi del
numero di Mach di conseguenza per la determinazione del fattore stesso possono essere utilizzate con
buona approssimazione le stesse correlazioni che riguardano il moto dei fluidi incomprimibili.

Diversamente accade nel regime supersonico dove il fattore d’attrito dipende da altri parametri,
oltre a quelli sopra citati, e cio trova spiegazione nel fatto che in tale regime non si puo avere un moto
completamente sviluppato in quanto la condizione M >1 puo essere mantenuta per una lunghezza di
condotto molto limitata oltre la quale vengono a manifestarsi i fenomeni d’urto, come verra illustrato
poco piu avanti. In tale circostanza lo spazio attraversato dal fluido rappresenta per intero una “regione
di ingresso” nella quale il fattore d’attrito risulta variabile sezione per sezione in quanto dipende dal
numero di Mach, dal numero di Reynolds locale Re(X), dallo spessore iniziale dello strato limite
nonché dal grado di turbolenza iniziale; conseguentemente verrebbe anche a cedere lipotesi di
monodimensionalita del moto sicché le equazioni di bilancio precedentemente scritte non sarebbero piu
valide. Il fattore di attrito che viene utilizzato nel deflusso supersonico viene definito come un fatfore
medio apparente che continua a soddisfare ancora le equazioni di bilancio nel deflusso monodimensionale
ma molto difficilmente puo essere determinato con considerazioni teoriche.

Sperimentalmente si ¢ visto che 1 fattori d’attrito che si incontrano nel regime supersonico
risultano normalmente piu bassi di quelli che si manifestano nel moto dei fluidi incomprimibili, in
particolare nel caso di condotti a sezione circolare con pareti a comportamento liscio con riferimento ai
campi di variazione:

10d<1<50d
2,5-10° <Re<7-10°
1,2<M <3

¢ stato riscontrato che il fattore di attrito medio ¢ compreso tra i valori:

0,008 < ¢ <0,012

ovvero si ottengono valori di & praticamente dimezzati rispetto a quelli ottenuti nel moto dei
fluidi incomprimibili.

Potendo allora esprimere gli effetti dell’attrito in termini di proprieta medie del fluido nella
sezione considerata e secondo quanto gia detto al §1.1 sull’ipotesi di monodimensionalita del moto si
faccia riferimento all’equazione di bilancio di energia meccanica nella forma differenziale la quale
trascurando ’energia potenziale del campo gravitazionale, in questo caso del tutto ininfluente, e senza
scambi di lavoro con I'esterno si scrive:

2
d| ¥ +%+£W2dx:0
2 p 2
che puo essere messa nella forma:
dw dp ¢
—+——>+—-dx=0 [3.1]
w  pw  2d

tale equazione nel caso di gas perfetto ed in funzione del numero di Mach si puo6 ancora scrivere:
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dw 1 d
—+ 2—p+£dx:0 /3.2]
w kM p 2d
L’equazione differenziale di bilancio di massa per il caso in esame ha espressione:
dw d
=+2P o0 /3.3]
W p
inoltre differenziando I'equazione di stato dei gas perfetti risulta:
dp d dT
®_dr, 0 3.4
p p T
di conseguenza la [3.3] diviene:
dp dT dw
@ 2 +—=0 [3.5]
p T w
Inoltre dall’espressione differenziata del numero di Mach:
oM _dw_1dT
M w 2T

combinata con la [2.21] si ottiene la variazione relativa della velocita:

aw _ k—ll dM 13.6]
LSt VER

mentre dalla [3.5] ed ancora attraverso la [2.21]risulta:

dp _ _ dw
e [1+(k-1)M? ] ”

e quindi per la [3.0] si ottiene:
d 1+(k-1)M? dM
®__ (k—l) [3.7]
T VL
2

Sostituendo le [3.6] e [3.7] nella [3.2] si scrive:

_ 2
ki.l o 1+(k kl)l;/l dM +£dX:O
145 ~M? kM2(1+_M2) 2d
2 2
la quale, sommando dentro parentesi, assume la forma:
M2
L dx = 1-M dM /3.8]

2d kM3(1+k2_1M2j

Si faccia adesso riferimento all’equazione:

Tds = dh— 9P

P
che combinata con la [1.24] scritta in forma differenziale:

wdw+dh =0
diviene:

pTlds =—pwdw—dp
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Ricavando la variazione relativa di pressione dalla (3.7) risulta:

S
dp = — pwdw — = pw-dx
p=-p 2d’0

e sostituendo nella precedente si ha:

2
ds = gy
T 2d

ovvero in funzione del numero di Mach:
ds = kRM 2 > dx
2d

e tenuto conto della [3.8] si perviene all’espressione differenziale della variazione di entropia in
funzione del solo numero di Mach:

ds = dm /3.9]

da essa risulta che:
0s
( - 0
M )y,
inoltre, come ¢ semplice verificare, risultando anche:

0%s
[GM Zj <0
M=1

si deduce che lo stato di massima entropia si ha in corrispondenza del regime sonico. Integrando
la [3.9] st ottiene:

s:F{InM—&In(HEMZj}rC /3.10]
2(k—-1) 2

la quale assieme alla [1.28] consente di tracciare nel piano T, s le curve del deflusso adiabatico,
dette /inee di Fanno, pit precisamente fissata una temperatura di ristagno T si ottiene un fascio di curve

ognuna delle quali ¢ valevole per un dato numero di Mach e ciascuna di esse ha un limite, stato di
massima entropia, in corrispondenza di M =1; ricavando dalla [1.28] il numero di Mach e sostituendo
nella [3.10] si ottiene 'equazione di una curva per quel dato numero di Mach, ossia:

S:E{Ini(T—o—lj—k—?ln;—o}+C [3.11]

inoltre essendo:

w=.[2c, (T, -T) [3.12]

si deduce che le linee a temperatura costante sono anche linee a velocita costante
conseguentemente gli stati appartenenti al ramo superiore di ogni curva corrispondono a velocita
subsoniche mentre gli stati corrispondenti al ramo inferiore delle curve suddette corrispondono a
velocita supersoniche, Figura 13.

11 verso di evoluzione del deflusso ¢ quello indicato dalle frecce in quanto la presenza dell’attrito
non puo che causare un aumento di entropia e pertanto se il moto ¢ inizialmente subsonico 'aumento
di entropia porta ad aumento della velocita, ovvero del numero di Mach, mentre se il moto ¢
inizialmente supersonico si ha una diminuzione di velocita sicché in entrambi 1 casi la velocita del fluido
tende al regime sonico.
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Da queste considerazioni si puo adesso enunciare il teorema fondamentale di Fanno, ovvero: #e/
deflusso adiabatico non isoentropico in un condotto cilindrico un moto subsonico non puo mai divenire supersonico ed un
moto supersonico, in assenza di onde d’urto, non puo mai divenire subsonico, lo stato limite comune ¢é il regime sonico.

M<1

M>1

Y

max S

Figura 13

3.2. PARAMETRO LIMITE E GRADIENTE DI PRESSIONE

Da quanto finora visto si puo dire che facendo riferimento ad uno stato termodinamico in una
certa sezione del condotto in corrispondenza della quale il numero di Mach ¢ M esiste una lunghezza
massima, valutata a partire dalla sezione medesima, alla fine della quale siha M =1.

Tale lunghezza si puo ottenere integrando la [3.8], ossia:

lay 1 ,
o[ 20y,
0 M kl\/lg( +72 M J

che fornisce I'espressione:

k+1
1—M2 k+lI )

I
= —+ n

6_5 —M

[3.13]

la variabile adimensionale a primo membro prende il nome di parametro limite di attrito e come si
puo osservare essa ¢ funzione del solo numero di Mach; pertanto dato il diametro del condotto ed il
numero di Mach in una sezione nota il parametro di attrito consente di determinare la lunghezza /
residua che si puo assegnare al condotto affinché il moto avvenga adiabaticamente senza che si

verifichino fenomeni d’urto, al limite per | =1, il numero di Mach allo sbocco assume valore unitatio.

Tale lunghezza ¢ molto limitata infatti osservando la (3.73) per una velocita che al limite ¢
infinitamente grande si puo scrivere:

"m(flmaxj __[k+1| k+1_1)
d ), kU2 k-1

e quindi per K=1,4 ed un valore medio del fattore di attrito di 0,07 la lunghezza in

corrispondenza della quale si raggiunge il regime sonico vale:

| ~82d
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La lunghezza tra due sezioni del condotto, Figura 14, in corrispondenza delle quali i numeri di
Mach sono, rispettivamente, M; e M, si pud ottenere calcolando dapprima le lunghezze limiti

(lmaX)M e (lax )M attraverso la [3.13] e poi dall’espressione:

I12 :(Imax)Ml _(Imax)M2 [374]
I12
M, M, M* =1
— — —
| (ImaX)M1 |
}7<Imax )M2 4‘
Figura 14

viceversa dato il numero di Mach M, la [3.14] consente di determinare il numero di Mach

incognito allo sbocco.
Sostituendo la [2.21] nella [3.5] si ricava la variazione relativa di velocita:

aw__ 1 |dp
w | (1-k)M?*-1|p

2
PV _ kM2 3.15]
p

e quindi tenuto conto che:

la (3.7) si scrive:

2
%_1 %+£/)W2:0
(1_K)M2—-1 "~ |dx  2d

dalla quale si ricava:

dp | 1+(k-1)M? | & )
— = | = pW 3.16
dx[ Mi-1 |2d” el
e pertanto risulta:

d_p<0 M <1

dx

%>0 M>1

dx

sicché si ha una perdita di pressione nel regime subsonico. Si osserva inoltre che per M =1 dalla
[3.10] st ottiene:

£

dx _E

ovvero il gradiente di pressione che si manifesta nei fluidi incomprimibili.
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3.3. STATO TERMODINAMICO DI RIFERIMENTO

Anche per il deflusso adiabatico nei condotti cilindrici viene considerato come stato di
riferimento quello corrispondente alla condizione M =1, dove si ¢ visto che il fluido raggiunge la
massima entropia, ma a differenza dello stato critico isoentropico la condizione suddetta viene
raggiunta in modo irreversibile e pertanto delle equazioni scritte il precedenza restano valide solo la
[1.28] e la [1.306], ovvero la prima delle [1.39], quest’ultima viene in tal caso considerata come quella
temperatura caratteristica dello szazo critico adiabatico.

Se si considera un processo adiabatico che parte da uno stato locale (p,T,p,W) fino a

raggiungere lo stato di massima entropia ( p,,T.,0.,W, ) Pequazione di continuita si scrive:

PW= PW,

Lo pMARRT (T v
©ow, JkRT,

T
e quindi per la prima delle [1.39] si ottiene:

ossia anche:

c

5 k-1 -1/2
=pM| —+—=M? 3.17
Pe=p (k+1 k+1 j 2171
Inoltre tenuto conto dell’equazione di stato si puo scrivere:
P _ P
pele PT

sicché:

sy

e tenuto conto della [3.17] e tramite la prima delle [1.39] si perviene all’espressione:

2 K_1 1/2
Ancora dall’equazione di continuita risulta:
w, = W
or
e tramite la [3.17] st ha:
1/2
wczﬂ[i+ﬂwj [3.19]
Mik+1 k+1

la quale unitamente alle [3.17], [3.18] e la prima delle [1.39] definiscono lo stato critico adiabatico
ovvero lo stato di massima entropia.

Nella Figura 15 ¢ rappresentato il processo i cui estremi sono gli stati sopra menzionati, in tal
caso in corrispondenza dell’isoentropica S =S, si puo scrivere:

k
o= p [k+1)k1
0 c 2

mentre lungo l'isoentropica appartenente allo stato locale vale la [1.29] e dal rapporto di queste
pressioni di ristagno si ha:
k
&zﬂ(i+uwj“
P P \k+1 k+1
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la quale tramite la [3.18] assume la forma:
k+1

&:i[_z +—k_1|v|2}2(“) 3.20]
pp M{k+1 k+1

che fornisce il rapporto tra la pressione di ristagno relativa allo stato locale e quella che si ha nello
stato critico adiabatico.

T Po _ Po
T=T,
P
N
AN
\\
S~ Pe
k) smax Ky
Figura 15
L’aumento di entropia nella suddetta trasformazione vale:
1-k
T K
As=c, In-=< Pe
TUp
d’altra parte lungo I'isoentropica locale e quella critica si puo scrivere rispettivamente:
1-k 1k
Tp ¥ =T,p,*
1k 1k

T.p.* =T,p,*

e dal rapporto di ambo i membri ne risulta:
k-1 k-1

R
TR Py

e pertanto 'aumento di entropia si puo scrivere nella forma:
k-1

P, | p

AsS=cC In(—"} =RIn=2 [3.21]

p ' '
P, P,

ovvero in funzione del rapporto tra la pressione di ristagno locale e quella appartenente allo stato
di massima entropia.

Si puo dire che lo stato critico adiabatico ¢ adesso definito in modo completo in quanto oltre alle
equazioni precedenti la [3.21] fornisce il valore della massima entropia a partire da condizioni locali
note.

3.4. FUNZIONAMENTO DEI CONDOTTI MISTI

Lo studio del moto in ugelli e diffusori ¢ stato trattato separatamente da quello nei condotti
cilindrici in quanto benché in entrambi i casi il deflusso ¢ adiabatico si ¢ visto che solo nel primo caso ¢
possibile, almeno in prima approssimazione, trascurare gli effetti dell’attrito.
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Viene adesso preso in esame lo studio del moto adiabatico in un condotto cilindrico collegato a
monte ad un ugello, questo deflusso si puo definire “wisto” sia per geometria che per comportamento
fisico del fluido in quanto se nel condotto cilindrico vale il teorema di Fanno nell’ugello vale quello di
Hugoniot.

Questo studio viene affrontato in maniera ancor piu sintetica di quello fatto per gli ugelli sia
perché i fenomeni d’urto, principali responsabili del comportamento del fluido, non vengono qui presi
in considerazione ed anche per gli aspetti pitt complessi che questo deflusso combinato comporta per il
quale si rimanda il lettore ai trattati specifici sull’argomento.

1 2
Po
p
To )
1 2
P
Po a Ps = Po
;
\ C Pc < Ps <P
% d Ps = Pe
° e pS < pC

Figura 16

1.1.4. CONDOTTO ALIMENTATO DA UN CONVERGENTE

Nella Figura 16 il condotto ¢ collegato, attraverso un ugello convergente, a monte ad un serbatoio
con pressione e temperatura di ristagno note ed a valle ad un ambiente la cui pressione P, viene fatta

decrescere con continuita a partire dal valore della pressione di ristagno a monte. Nell’'ugello il moto ¢
isoentropico mentre nel tratto cilindrico il deflusso ¢ adiabatico con attrito.

Facendo riferimento al diagramma delle pressioni sottostante alla figura si osserva che se la
pressione nel serbatoio a valle ¢ uguale a quella di ristagno a monte non ¢’¢ movimento, curva @, mentre

per valori via via decrescenti di P, rispetto alla P,, curve b e ¢ si realizza il deflusso in regime
subsonico e nella sezione di uscita si ha M, <1; ad ogni diminuzione di P, si verifica un incremento
del numero di Mach e quindi un accrescimento della portata fino a che quando la pressione P

raggiunge il valore critico, curva 4, nella sezione di uscita si ha M, =1 e la portata ha valore massimo

cosi come in corrispondenza della sezione di imbocco del tratto cilindrico anche il numero di Mach
raggiunge un valore massimo.

Per valori di Py minori della P, , curva ¢, non si manifesta alcuna variazione della portata che

timane uguale al suo valore massimo corrispondente a M, =1 anche petrché per il teorema di Fanno il
numero di Mach in tale sezione non puo superare il valore unitario.
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Pertanto il deflusso all’interno del condotto rimane inalterato ma oltre la sezione di uscita il fluido
subisce delle onde di espansione per poi raggiungere piu a valle 'adeguamento alla pressione p;.

1.1.5. CONDOTTO ALIMENTATO DA UN CONVERGENTE - DIVERGENTE

Il condotto cilindrico viene collegato al serbatoio di monte con un ugello convergente -
divergente ed anche qui lo stato di ristagno nel serbatoio ¢ noto cosi come puo essere fatta variare la
pressione dell’ambiente rispetto alla pressione di ristagno del serbatoio; ¢ evidente che in questo caso si
deve necessariamente ammettere che nel divergente il moto sia isoentropicamente supersonico
altrimenti, per quanto ¢ gia noto, si ricadrebbe nel caso precedente.

Per studiare l'influenza della pressione P, sul deflusso di possono distinguere tre casi a seconda
che la lunghezza reale del condotto ¢ minore, uguale o maggiore di quella massima compatibile con lo
stato fisico iniziale fissato nella sezione di ingresso del tratto cilindrico, come ¢ rappresentato nella

Figura 17, nella quale la sezione intermedia rappresenta la |, calcolata in corrispondenza del numero

X

di Mach nella sezione iniziale del condotto cilindrico.
-l = (|maX)M1 in questo primo caso la sezione di sbocco ¢ la 2'—2" allora per p, = p, il moto ¢
interamente supersonico nel condotto e solo nella sezione di uscita si ha M, =1, curva ¢, mentre
se Py < P, si haancora M, =1 ma il fluido subisce delle onde di espansione e solo piu a valle si
ha I'adeguamento alla pressione pg, curva g se P > P, si ha M, <1 ma un’onda d’urto normale
si viene a formare nel condotto, curva 4, in dipendenza del valore di P, e tale onda si sposta

verso monte all’aumentare di p,.

2 2, 2"
1
Po
To Ps Ps Ps
1
2 27 2”
P
Po
—
_b \ a
6 -
Po isoen 3 ?sd—
f
& s
h
Figura 17 x

- < (L )M in questo secondo caso la sezione di sbocco ¢ la 2—2 in corrispondenza della
1

quale, calcolata la pressione con le equazioni di Fanno, si ha che P, < p, per cui il moto nel
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condotto ¢ supersonico senza onde d’urto ovvero se P, =P, < P, si ha la curva » mentre se
P, < P, < P, si hanno onde di espansione, curva #, e quindi 'adeguamento alla pressione P, piu
a valle, per una particolare pressione P, = P, si viene a formare un’onda d’urto nella sezione di
sbocco, curva ¢
-1 >(ImaX)M in quest’ultimo caso la sezione di sbocco ¢ la 2"—2" ¢ il fluido subisce sempre
1
un’onda d’urto allinterno del condotto e piu precisamente se P > P, si ha M, <1 e quindi la
sezione del condotto nella quale si forma I'onda d’urto dipende dalla p,, curva a ; per p, = p,,
curva f, si ha M, =1 e tale valore vale anche per p, < p, anche se il fluido subisce onde
oblique di espansione, curva 4, e solo piu a valle si ha I'adeguamento alla pressione p;.
Si osserva che man mano che la lunghezza del condotto cilindrico viene incrementata a partire da
(lmax )M I'onda d’urto normale si sposta verso monte fino a formarsi nella sezione 1-1 di conseguenza
1

il moto in tutto il condotto ¢ interamente subsonico ed in corrispondenza della sezione finale si
raggiunge il regime sonico.

PROG. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — VOL. 3° - TERMO-FLUIDODINAMICA | 42

4. MOTO ISOTERMO NEI CONDOTTI CILINDRICI

4.1. PERDITE DI PRESSIONE E PORTATA DI MASSA

Si ¢ detto inizialmente che nel caso di comprimibilita la velocita del fluido anche per condotto a
sezione costante varia per effetto dei cambiamenti di densita e pertanto non si annulla la variazione di
energia cinetica. Tuttavia se il fluido viaggia di regime laminare stazionario le basse velocita fanno si che
le variazioni suddette si possono ritenere praticamente trascurabili ai fini del bilancio di energia
meccanica. Si puo pervenire ad un’espressione del gradiente di pressione in tale regime partendo dal
gradiente di pressione per un fluido incomprimibile per il quale, come ¢ noto, nel caso di un condotto
cilindrico a sezione circolare vale la relazione:

A 2
4p _3 2w [4.1]
I d
che messa in funzione della portata di massa diviene:
A 128
2P SEOH 4.2
| pxd

Questa equazione per un fluido comprimibile deve essere necessariamente scritta per un tronco
di condotto di lunghezza elementare dx, ossia:

3 @ ~128u i
dx przd?
che nel caso del gas perfetto si scrive:
dp  128u
dx zd'p
sicché integrando su tutto il tronco di lunghezza /i ha:

pi—p; _128uml

RT m

= 2 RT
2 7 d

ovvero anche:

p,+ P, 128 m |

== Ap=—-—"S"— RT 4.3

2 P 7 d* [#3]
d’altra parte se la temperatura del gas ¢ costante nelle due sezioni estreme si puo scrivere:
P, = leT P, =P, RT

quindi dalla semisomma risulta:

p1+p2 _,01+p2 RT=p RT

2 2
e sostituendo nella [4.3] si ottiene:
4p _128um n: 4.4]
Il p,7d

relazione analoga alla [4.2] pertanto il gradiente di pressione di un gas perfetto in regime laminare
stazionario si puo ottenere dal corrispondente gradiente di pressione di un fluido incomprimibile
adottando per la densita il valore medio delle densita nelle sezioni estreme del condotto.

In regime turbolento le variazioni di velocita conseguenti alle diminuzioni di pressione sono
sovente piuttosto rilevanti per cui nell’equazione di bilancio di energia devono essere computate le
variazioni di energia cinetica anche se, come si avra modo di vedere, I'approssimazione fatta per il
regime laminare puo in qualche caso valere anche in tale regime.
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Se la temperatura ¢ costante 'equazione [3.3] diviene:

d_dp
pp
e dal confronto con la [3.4] risulta:
dw  dp
woop

sicché la [3.1] assume la forma:
—%+ dpz +£dx=0
p pw° 2d

4.5]

Se lo stato fisico iniziale del fluido ¢ caratterizzato dai valori ( Prs pl,Wl) I'equazione di bilancio
di massa ¢ data da:
PW = p\W;
e quindi scrivendo:
pW =(pW)W= (oW, )W
e tenuto conto dell’equazione di stato risulta anche:

2

2 /012W12 :ﬂ 2

PV =—" P,V
P
pertanto I'equazione [4.5] si scrive:
—dp+Ldp+£dX:O [4.6]

P RTp’w’ = 2d

Se si ammette che & = f (Re) ed essendo in tale deflusso g =COSt. risulta che:

wd
Re = P = COst.
Y7,
di conseguenza ¢ anche & =CO0St. e quindi integrando la [4.0] si ottiene:
p? — p> =2RT p’w,” (%Iﬂn&J [4.7]
P,

che puo essere scritta nella forma:
sp= 2RT o (él

P,
OrW, —+In—j [4.8]
p+p, ld T p,

Si osserva che il logaritmo del rapporto delle pressioni estreme ¢ ampiamente trascurabile quando
il condotto non sia troppo breve; ad esempio per & =0,03 e se p, =2p,, che in pratica ¢ un rapporto
estremamente elevato, in un condotto lungo circa 2000 diametri si avrebbe:

sl_3g InPL —In2=0,69
d P,

ovvero per le condizioni suddette, abbastanza svantaggiose, il termine logaritmico ¢ circa 45 volte
piu piccolo del precedente e quindi praticamente trascurabile; questo significa che la variazione di
energia cinetica dovuta alle variazioni di densita risulta trascurabile rispetto a quella dissipata per effetto
dell’attrito sicché la [4.8] diviene:
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T, ¢
AD= st
b= P, + P, l . 2d

che tramite 'equazione di stato puo essere anche scritta:

2
ﬂ: 2 éplwl /4.9]
I, P |d 2

Py

espressione che fornisce il gradiente di pressione per il deflusso isotermo il quale puo essere
determinato come se il fluido fosse incomprimibile partendo dai valori iniziali di densita e velocita

correggendo poi con il fattore in parentesi che a sua volta, essendo P, > pP,, ¢ sempre maggiore
dell’unita. Si puo quindi affermare che:

)P
I T=cost I p=cost

ossia la resistenza effettivamente incontrata dalla corrente fluida ¢ maggiore di quella che si
avrebbe se il fluido fosse incomprimibile ed avente una densita ¢ pari a quella del gas in corrispondenza
della sezione iniziale del condotto; d’altra parte se si pensa che nel moto turbolento la resistenza che

incontra il fluido & proporzionale al prodotto W’ e tenuto conto che pW=COst. tale resistenza
cresce al crescere di W ossia al diminuire della densita, cio che subisce il fluido durante il deflusso.
Si faccia riferimento all’equazione [4.7] la quale tramite I'equazione di stato del gas puo essere

scritta:
|
2_ RT ég+2|n
2l = (Aj[ pJ

2
p2|1-| P2 RT( j o omP
P A\ d pz

ovvero anche:

si puo dunque ricavare la portata di massa specifica:

[4.10]

ovvero la determinazione della portata di massa note che siano le pressioni nelle sezioni estreme,
o quantomeno il valore del loro rapporto, in un condotto di dato diametro; nei casi in cui si puo
trascurare il termine logaritmico, come visto in precedenza, si ottiene I’espressione semplificata:

2

Jﬁ £l o

dalla quale o anche dalla [4.10], sempre che siano note le pressioni suddette, si puo determinare
quale diametro deve avere il condotto che deve convogliare una data portata di massa M.

[4.11]
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4.2. PARAMETRO LIMITE. STATO CRITICO

11 gradiente di pressione puo essere anche scritto in funzione del numero di Mach se si considera
che 'equazione [4.5] puo essere messa nella forma:

2
p )dx 2d

e tenuto conto della [3.15] la precedente diviene:

dp 1 & 2
— = —— | pW 4.12
dx (kMZ—Jde [#72]
dalla quale si osserva che in corrispondenza del valore:
YR 4.13)

K

si ha che dp — oo facendo cadere in difetto la [4.12]; la [4.13] rappresenta lo stato critico isotermo in

corrispondenza del quale il regime isotermo puo essere mantenuto solo teoricamente ma in pratica tale
regime sarebbe impossibile da realizzare.

Si ha allora un’effettiva perdita di pressione solo per valori di Mach inferiori al valore critico,
ovvero risulta:

M<i @<0 [4.14]

Jk dx

mentre per Mach superiori al valore critico si ha 'inversione del gradiente di pressione, ossia:

M >+ LI [4.15]

Jk dx

Si scriva Pequazione [4.7] partendo da condizioni iniziali note e facendo riferimento ad una
sezione generica del condotto di ascissa x; per cui:

X
py—p°= plplwlz[%+2|n%j

2 2
W, X
1_[£} :/01_1£§_+2|n&)
P, p d P
quindi ordinando e scrivendo la suddetta relazione in funzione del numero di Mach si puo
scrivere:

ovvero anche:

2
&x 1 (pj p
o2 = 1-| = | |+2In—= 4.16]
d kMm? P, o

La (4.76) ¢ rappresentata nel diagramma di Figura 18 dalle linee a tratto continuo ognuna delle
quali ¢ determinata per un dato numero di Mach iniziale e forniscono I'andamento della pressione
p = p(X) lungo il condotto; le linee a tratto e punto forniscono I'andamento della pressione per fluido
incomprimibile, in tal caso infatti si avrebbe:

X AN

pl_p:d 2

ovvero in funzione del numero di Mach:
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x_1 P [4.17]

d kMZlT p,

che rappresenta 'equazione delle sopraindicate rette ottenute al vatiare di M.

20 40 60 80 100 120 140

Figura 18

Come si puo osservare il diagramma mette in evidenza cio che del resto ¢ gia stato dimostrato
ovvero che la pressione diminuisce piu rapidamente per il fluidi comprimibili e gli scostamenti sono
tanto maggiori quanto maggiore ¢ il numero di Mach iniziale. Fissata la portata M e la pressione iniziale
p, restano anche determinati il valore di M, ovvero la curva caratteristica della corrente fluida; noti
allora la lunghezza e il diametro del condotto si puo leggere sulla curva suddetta il valore del rapporto
P e quindi, noto il fattore d’attrito, ricavare la differenza di pressione necessaria affinché il condotto

P:
possa convogliare la portata assegnata.

Si puo altresi osservare che tutte le curve del suddetto diagramma presentano un punto a
tangente verticale il quale rappresenta il punto rappresentativo dello stato critico, cio significa che se la
lunghezza del condotto ¢ tale che il termine % supera I'ascissa in quel punto ¢ impossibile che il
condotto possa convogliare la portata assegnata qualunque sia il rapporto delle pressioni nelle sezioni
estreme; puo al massimo essere convogliata quella portata cui corrisponde un numero di Mach iniziale

¢l

tale che la curva rappresentativa abbia tangente verticale proprio nel punto di ascissa i Scrivendo la

[4.5] in funzione del numero di Mach si ha:

—_— =
p kpM? 2d
quindi ordinando:
%dx:(l— kl\tlzj% [4.18]
p

e tenuto conto che, per quanto visto in precedenza per la velocita, si puo anche scrivere:
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w_
p M
la precedente assume la forma:
£ ( 1 j dm
Zdx=2 -1|— 4.20
d kM ? M (20

e quindi integrando si ha:

(. 17k 1/k 1/
I édxzz-‘- ( 12_1Jd_M=EJ‘ |\/|—3d|\/|_2J. d_M

dalla quale si ottiene:

Ely  1-kM?
d kM ?

dove il termine a primo membro rappresenta il parametro limite di attrito per il deflusso isotermo
ela |, rappresenta la massima lunghezza di condotto lungo il quale il moto, a partire da una sezione

+In (kM?) [4.21]

di assegnato numero di Mach, si mantenga isotermo senza che si verifichino fenomeni di discontinuita
nella sezione considerata.

1
M, M, M*=——
— — — kK

Figura 19

La Figura 19 ¢ analoga alla fig. 3.2, fatta eccezione per il numero di Mach critico, e dalla quale ¢
possibile dunque determinare la lunghezza di condotto necessaria affinché il moto passi dalla sezione

con |\/|l alla sezione con |\/|2 mantenendo il regime isotermo e senza che si verifichino fenomeni

d’urto; vale ancora 'equazione [3.14] dove pero le massime lunghezze relative ai corrispondenti numeri
di Mach vengono determinate tramite la [4.21].

Si puo adesso determinare il rapporto di pressione corrispondente allo stato critico integrando la

[4.19], ossia:
“dp (" dm
J.pl?__.[Ml ™

dalla quale si ottiene:

P Mk 4.22]
Py
pertanto la [4.16] in corrispondenza dello stato critico diviene:
&l 1
20 =2In(M, k) + -1 4.23
q (Myy kM2 [4.23]
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dalla quale risolvendo per tentativi si ottiene il valore del numero di Mach iniziale che darebbe
luogo alla massima portata di fluido che il condotto puo convogliare sostituendo tale valore

nell’espressione:
. k
My = PLAW, = plAMlﬂ /ﬂ
Pr

che puo essere scritta in funzione della temperatura:

kK by

— [4.24]

Ry il

tale valore, a differenza della portata massima che si realizza nel deflusso isoentropico, ha solo un

significato teorico ma non ha alcuna applicazione pratica in quanto, come verra precisato qui di seguito,
lo stato critico isotermo non puo essere realizzato praticamente.

mmax = AMl

4.3. CONDIZIONE DI ISOTERMICITA

Si faccia riferimento alla [1.28] la quale differenziata diviene:

dT, =T(k-1)MdM

ovvero in termini di variazione relativa si scrive:

dar, k-1 d™m
L 1 k-1m
M2 2
e quindi per la [4.20] si perviene all’espressione:
_ 2
dT, k(k—-1)M édx 4.25)

T _(I\fz+k—1j(1—|<|v|2) d

la quale assieme alla [4.18] nonché alle gia note relazioni:
dp dp dM  dw
p p M w
consente di stabilire il verso di variazione, lungo il deflusso isotermo, delle grandezze dinamiche e
termiche che lo caratterizzano, risulta infatti:

dp<0 dp>0

1 dp<0 1 dp>0
M<— M>— 4.26
<JE dw>0 >\/E dw <0 (28]

dT, >0 dT, <0

pertanto la [4.13] rappresenta il limite a cui tende il numero di Mach sia partendo da condizioni
subsoniche che supersoniche, escludendo in questo secondo caso fenomeni d’urto. Inoltre
differenziando la [1.24] si puo scrivere:
2

dQ:d[h+W7j:dh0 —c,dT,

e pertanto, tenendo presenti le condizioni [4.23], si avrebbe:

M<i dQ>0

K
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cio significa che lattrito provoca una diminuzione di temperatura di conseguenza affinché il
moto si mantenga isotermo ¢ necessaria una somministrazione di calore dall’ambiente al fluido e finché
si verifica tale condizione I'apporto di calore compensa effettivamente il raffreddamento del fluido
mantenendone costante la temperatura. Mentre se si ha:

M>i dQ <0

Jk
in tal caso occorrerebbe sottrarre calore al fluido per mantenere il moto isotermo in quanto
Pattrito causa un aumento della temperatura; in pratica pero questa situazione non ¢ realizzabile in
quanto ¢ tecnicamente impossibile effettuare uno scambio termico convettivo talmente intenso che
possa compensare I'effetto dell’attrito.
Infine:

M =L dQ =0

K

in tale circostanza I'apporto o la sottrazione di calore non influenza la temperatura la quale in
questa circostanza limite rimarrebbe costante, anche questa situazione ¢ solo teorica ma di impossibile
realizzazione pratica.

Si conclude che il deflusso isotermo di un gas lungo un condotto cilindrico puo essere realizzato
solo per numeri di Mach sufficientemente lontani dal valore critico e lungo condotti con pareti molto
trasmittenti perché solo a tale condizione I'azione dell’attrito risulta concomitante ad uno scambio
termico con I'esterno di entita tale da mantenere costante la temperatura per I'intera durata del deflusso,
pertanto lo stato critico sopra definito nonché il valore della portata corrispondente determinato con la
[4.25] hanno solo un significato teorico.
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5. MOTO CON SCAMBIO TERMICO NEI CONDOTTI CILINDRICI
5.1. DEFLUSSO DI RAYLEIGH

Si tratta di un moto a regime stazionario, internamente reversibile lungo un condotto cilindrico
che si realizza mediante scambio di calore e senza scambi meccanici; oltre ai fenomeni dissipativi, con
riferimento principale ovviamente all’attrito, viene anche trascurata la variazione di energia potenziale
del fluido.

Per lo studio di questo tipo di deflusso oltre alle equazioni di bilancio di massa ed energia
precedentemente utilizzate ¢ necessario fare riferimento all’equazione di bilancio di quantita di moto
che nel caso in esame deve essere scritta nella forma:

p+p W =cost [5.1]
Viene qui preso in esame solo il caso piu semplice ossia che la somministrazione di energia

termica venga effettuata dall’esterno, come ¢ illustrato nella fig.5.7, escludendo il caso in cui vi siano
sorgenti termiche all'interno del condotto dovuti a fenomeni di combustione.

G2
1 P 2
A\ A\ A\ \4 \ A\ A\ A\
W, Wy
e —— B ——
M, M,
A A A A A A A A
LERR 2 T
P1 G12 P2
Sugnra 5.1

Applicando 'equazione (5.7) alle sezioni estreme del tronco di condotto si puo scrivere:
P+ AW, = P, + oW,
ed essendo:
PW =kpM ?
I'eguaglianza precedente diviene:

P (1+kM7) = p, (1+kM7)

ovvero anche:
P, 1+kM;

_ =RV 5.2
p, 1+kM; B2

espressione che collega le pressioni locali nelle sezioni di ingresso e di uscita ai corrispondenti
numeri di Mach.

Le pressioni di ristagno Py, a monte della somministrazione di calore, ¢ Py,, a valle, vanno

ricavate supponendo che il fluido nell’arrestarsi, in corrispondenza delle sezioni medesime, non abbia
modo di scambiare calore ed il processo sia reversibile; pertanto 'equazione (7.29) deve essere applicata
sia nella sezione iniziale che in quella finale, si deve dunque scrivere:
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P, 2
k.
h=[1+ﬂ|\/|22j k_l
P, 2
inoltre dividendo membro a membro:
k
1+ Ky
P2 _ P, 2 ?
—S =t 5.3
P P11 k-1 M 2 7
T
e tenuto conto della (5.2) risulta:
K
k-1, ,)k1
P, 1+kM? k=1,,> '
01 2| 1+ - M;

la quale fornisce il rapporto tra le pressioni di ristagno P, € Py, rapporto che ¢ diverso
dall’unita e varia al variare dei numeri di Mach locali; ¢ evidente, per quanto si ¢ detto in precedenza,
che tale rapporto diviene unitario se la corrente fluida non scambia calore con l'esterno. Pertanto le
grandezze di ristagno che nel moto isoentropico costituiscono un stato termodinamico fisso nel
deflusso di Rayleigh esse variano al variare dello stato termodinamico locale.

Nel deflusso isoentropico di Hugoniot cosi come in quello adiabatico di Fanno lo stato di
riferimento ¢ quello che corrisponde al regime sonico, anche in questo caso torna opportuno scegliere
come riferimento la condizione M =1 che viene raggiunta reversibilmente ma con aumento di
entropia, come si potra vedere poco piu avanti osservando la linea di Rayleigh.

Considerando uno stato locale generico la (5.2) diviene:

p  1+kK
p* 1+kM?

/5.5]

che fornisce il rapporto tra la pressione p in una sezione qualsiasi del condotto e la pressione p”*
che si ha in quella sezione dove risulta M =1.
Se p, ¢ la pressione di ristagno corrispondente alla p“e P, ¢ quella corrispondente ad uno stato

di ristagno in una sezione generica la (5.4) assume la forma:
k

pp 1+kM?{k+1 k+1

/5.6

ossia il rapporto tra la pressione di ristagno locale e quella di riferimento corrispondente.

Per quanto riguarda la temperatura di ristagno vale ancora l'equazione (7.28) in quanto ¢ da
supporre che nell’arresto il fluido subisca una trasformazione adiabatica essa pero varia sezione per
sezione, secondo I'equazione (7.27), e pertanto si deve scrivere:

T, 2
IE:1+K:EM§
T, 2

e quindi facendo il rapporto dei membri:
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k-1

T, T, 1+ 5 M2 .
T, T k=1 '
ot 1+—M;
2
Dall’equazione di stato applicata alle sezioni 7 e 2 si puo scrivere eguaglianza:
P
Pl T,
dalla quale si ricava il rapporto tra le temperature:
L_Php
LPR 2>

inoltre dall’equazione di bilancio di massa, in funzione del numero di Mach, deve essere:

1/2
.&=%yMNmB=M{£] /5.8]

P W - Ml\/kRTl M, Ty

sostituendo tale rapporto nella precedente risulta:

2 2
Tl Ml pl

e tenendo conto della (5.2) si puo ancora scrivere:

2 2 2
T_2: M, 1+kM12 /5.9]
T M, 1+kM,
pertanto la (5.7) assume la forma:
k-1

1+——M?2 2
T, 1t Mo M, (1+kmy) 510
T, 1+k;le M, (1+kM7)

si ottiene dunque il rapporto tra le pressioni di ristagno relative agli stati locali delle sezioni 7 e 2
in funzione dei numeri di Mach cortispondenti.

Se adesso si considera una generica sezione del condotto il rapporto tra la temperatura locale e
quella di riferimento corrispondente risulta dalla (5.9):
2
T M?(1+k
T _Mirl) 5.11]
T (1+kM2)

mentre il rapporto tra la temperatura di ristagno locale e quella di riferimento corrispondente si
ottiene dall’equazione (5.70):

2M2(k+n(1+kglmz]
.= 7 [5.12]
To (1+km?)

In maniera analoga si puo determinare il rapporto tra le densita locali, infatti facendo riferimento

alla (5.8) si puo scrivere:
-1/2
P &(T_z]
P M (T,
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e quindi per la (5.9) risulta:

2
1+kM; (M
P2 _ 22 —1 [5.13]
o 1+kM; (M,
allora scrivendo la (7.33) in corrispondenza degli stati 7 e 2 st ha:
1

&:(1 k- 1|\/|j
Pr 2

1
&:(1 K- 1|\/| ]kl
P2 2

ovvero facendo il rapporto dei membri:

1
14+ K=y |
A

P P14 k- 1|\/|2

e quindi per la (5.73) si ottiene il rapporto tra le densita locali di ristagno in funzione dei soli
numeri di Mach corrispondenti:

1
k-1

PREPTIE T [5.14]

k=1,
21 1+ —— M,
B£:1+kM§[Mlj 2
1+-——=M?
2

inoltre considerando uno stato locale e quello di riferimento si puo sctivere, tramite la (5.73) il
rapporto:

p _ 1+km?
P (1+k)M?

[5.15]

mentre il rapporto tra le corrispondenti grandezze di ristagno si ottiene dalla (5.74), ovvero:

1

oy 1rkm? ( 2 k-1 )
*: M

P (1+k)M K+l k+1

[5.16]

Anche la variazione di entropia tra gli stati 7 e 2 puo essere espressa in funzione dei numeri di
Mach corrispondenti, infatti essendo:

k-1

Tk
s,-s,=¢,In-2 [plj
TP,

tramite le (5.2) e (5.9) si ottiene:

) kel
M 1+kM2 |k
s.,—S, =c_In 2 1 517
2 (Mlj(1+KM§} 17

Considerando uno stato locale generico di entropia s e lo stato di riferimento la cui entropia ¢ s”
la suddetta espressione diviene:
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kil

s—s"=c,In M{%)k [5.18]

dalla quale ¢ immediato verificare che:

(ﬁ) ~0
oM )y

0 %s
£6M2j <0
M=1

e pertanto anche nel deflusso di Rayleigh lo stato di massima entropia si ha in corrispondenza del
regime sonico. Portando in un diagramma (S,M ) la (5.78) si ottiene la linea di Rayleigh illustrata nella

figura sottostante.

As

Sfignra 5.2

5.2.  SOMMINISTRAZIONE MASSIMA DI CALORE

I rapporti tra le varie grandezze in funzione del numero di Mach forniti dalle precedenti
espressioni consentono di poter capire come deve avvenire lo scambio termico affinché possa essere
realizzato il deflusso di Rayleigh.

Facendo riferimento alla (5.72) si osserva che per un dato valore di T, un incremento positivo
del rapporto fornito da tale espressione comporta un aumento della temperatura T, cui corrisponde

una somministrazione di calore, a norma della (7.27), mentre un incremento negativo di tale rapporto
causa una diminuzione di T, con conseguente sottrazione di calore. Inoltre dalla 5.72), come ¢

).
M Jy

2
L;\;"J <0
M=1

Tomax = To

Omax

immediato verificare, si puo scrivere:

pertanto la temperatura di ristagno presenta un massimo in corrispondenza di M =1, ovvero nel
punto di massima entropia, ¢ poiché la somministrazione di calore tende a far crescere la T, e quindi
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anche il rapporto T, /T, , il fluido in moto ricevendo calore tende a portarsi al regime sonico di

conseguenza in regime subsonico il numero di Mach cresce cosi come in regime supersonico esso
decresce ed entrambi hanno come limite M =1; si deduce pertanto che non ¢ possibile passare dal
regime subsonico a quello supersonico, e viceversa, somministrando sempre calore; in corrispondenza
della sezione in cui si raggiunge il valore M =1 occorre iniziare a sottrarre calore altrimenti si verifica la
formazione di onde d’urto.

In sintesi se il fluido si trova in regime subsonico somministrando calore il fluido accelera e tende
al regime sonico che puo venire superato solo effettuando una sottrazione di calore a valle della sezione
M =1 in tal caso il fluido incrementa la sua velocita, mentre una sottrazione di calore comporta una
diminuzione della velocita. Se il fluido si trova in regime supersonico una somministrazione di calore
provoca una diminuzione della velocita fino al regime sonico mentre una sottrazione di calore
comporta un aumento della velocita.

Da quanto detto si deduce che il calore che si puo somministrare al fluido ha un limite che
dipende dalle condizioni in cui viene effettuato il moto. Se in corrispondenza di una sezione le
condizioni sono date da T'ed M la quantita di calore necessaria per portare il fluido fino alla condizione

M =1 ¢ data da:
O =€ (To —To) /5.19]

e tale quantita rappresenta il massimo calore somministrabile in quanto, come si & visto, T, & il
massimo di Tj.

Per potere esprimere tale calore in funzione del numero di Mach si considerino due sezioni
generiche 7 e 2 del condotto per cui la quantita di calore da somministrare al fluido per portarlo dallo
uno stato all’altro sarebbe data dalla (7.27) che in questo caso conviene scrivere nella forma:

T
Oip = CpTor | =2 =1
o1
ovvero anche:
T T
=cT,| 2| 21
q12 p'1 T1 T01

espressione che, perle (5.70) e (1.28), diviene:
2 k_]. 2
k=1 )| My (1+km7) | I+ M;
0y, =C,T 1+TM1 > T -1
. (T00E)| 1Ty

pertanto se lo stato 2 corrisponde al regime sonico in corrispondenza di uno stato locale generico
si puo scrivere:

(1w

M?(k+1) 1+ﬂ|v|
2

k-1
qmax :CpT (1+TMZJ

-1
2

quindi sviluppando ed ordinando si ottiene:

) 2
c,T(M?-1)
= 7 5.20
dalla quale si osserva che:
M —>0 Oy —> ©

PROG. ING. GIULIANO CAMMARATA

| 55



FISICA TECNICA INDUSTRIALE — VOL. 3° - TERMO-FLUIDODINAMICA | 56

¢ evidente che questa ¢ una situazione limite, essa pero serve ad indicare che quando si parte da
bassi valori del numero di Mach per incrementare la velocita del fluido si devono somministrare
quantita di calore molto elevate.

Totrna piu conveniente disegnare la linea di Rayleigh nel piano termodinamico (T,S) le cui
equazioni parametriche sono date dalle (5.9) e (5.77) scritte in corrispondenza di una stato iniziale noto,
caratterizzato dai valoti (T,,S,,M, ), e da uno stato locale generico (T,5,M ):

M (1+kM?)
M, (1+kM?)

-1

2 k+l
M 1+kM7 ) K
s=s,+c,In|| — | | ——
M, 1+ kM
attraverso le quali ad ogni valore del numero di Mach M corrisponde una coppia di valori di
(T,s) ottenendo cosi la curva illustrata nella figura sottostante; si osserva dal diagramma che la

massima temperatura locale si raggiunge in condizioni di moto subsonico, d’altra parte facendo
riferimento alla (5.77) se si pone:

A
T
M=1
M<1 q<}
g>0
M>1
Smax 5 .
Sfignra 5.3
oT
— =0
oM

ne risulta 'equazione:
2M (1+k)"  4kM®(1+k)’
2\2 2)\® =0
(1+kM ) (1+kM )

che fornisce la soluzione:

M =L [5.21]

Jk
pertanto la temperatura locale massima sarebbe:
T (1+k)°
r k)

= 5.22
max 4K -22]
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Si osserva che se nella linea di Rayleigh il fluido evolve in modo internamente reversibile si puo
allora scrivere 'eguaglianza di Clausius:

dq =Tds

inoltre ’equazione di bilancio di energia porge:
2

w
dg=d (7j+cpdT =c,dT,

e dal confronto con la precedente risulta:

Tds =c,dT,

tale relazione conferma quanto detto in precedenza ossia che il punto di massima entropia lungo
la linea di Rayleigh ¢ anche il punto di massima temperatura di ristagno, nella fig. 5.4 sono rappresentati,
dalle linee tratteggiate, gli stati di ristagno della linea di Rayleigh.

T L (0.T5)

/’/g

Sigura 5.4

5.3. VELOCITA DI RIFERIMENTO E VELOCITA MASSIMA

Per un deflusso reversibile che avviene con scambio di calore 'equazione di bilancio di energia

per un gas perfetto si scrive:
2

W
7+cp(T—TO):q

avendo fatto riferimento ad uno stato iniziale dove il fluido ha velocita nulla e temperatura T,

tale espressione, per quanto ¢ gia stato fatto in precedenza, si puo scrivere nella forma:

w? o c? c?

2 K-1 k-1

dalla quale si osserva che anche se il deflusso avviene con scambio termico la velocita locale del
gas diminuisce all’aumentare della corrispondente velocita del suono, e viceversa, per cui in un dato

+ Opax [5.23]

punto le due velocita assumono ugual valore W fornito dalla suddetta espressione:

_ 2
W= M[ % +qmaxl [5.24]

k+1 (k-1
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pertanto la velocita di riferimento nel deflusso di Rayleigh ¢ sempre maggiore di quella che si
realizza nel moto isoentropico e tale aumento ¢ funzione della quantita di calore scambiata, in assenza
di scambio di calore la (5.24) si identifica con la (7.35).

La velocita di riferimento puo essere espressa in funzione del numero di Mach locale, infatti
dall’equazione di bilancio di massa scritta nella (5.8) e tenuto conto della (5.73) risulta:

2
%: & —1+kM12 [5.25]
w, (M, ) 1+kmM}

che fornisce il rapporto delle velocita locali. Allora considerando uno stato locale generico

caratterizzato dai valori (W, M ) e quello di riferimento (W*, M = 1) si puo scrivere:

W' 1+kM?

WM (kD) [5-26]

ed ¢ facile verificare che alla suddetta espressione si puo pervenire anche attraverso la (5.24), con
procedimento meno immediato del precedente..

5.4. EVOLUZIONE DEL DEFLUSSO SULLA LINEA DI RAYLEIGH

Per un fluido che si muove lungo la curva di Rayleigh il problema fondamentale di importanza
pratica ¢ quello della determinazione dello stato termodinamico finale (p,,T,,W,,M,) allorquando,

come si osserva dalla fig. 5.7, a partire da uno stato termodinamico iniziale noto ( p;,T;,W;,M;) ad
esso viene somministrata la quantita di calore .
Lo stato termodinamico iniziale determina nel piano (T,S) una particolare linea di Rayleigh

ed inoltre calcolata la temperatura di ristagno iniziale T, , tramite la (7.28), resta anche determinata la

temperatura di ristagno nello stato di riferimento Ty, attraverso la (5.72), nonché la temperatura di

bl

ristagno finaleT,,, mediante la (7.27); tra queste temperature si puo allora verificare che Ty, <T,

oppure T, > Ty .

fignra 5.5

Nel caso in cui Ty, <T, se inizialmente M <1 lo stato finale 2 si trova ancora nel ramo

superiore della linea di Rayleigh, fig.5.5, il deflusso ¢ dunque caratterizzato dal tratto 72 ed ¢
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univocamente determinato dalle relazioni sopra scritte; se inizialmente ¢ M >1 si possono verificare
due situazioni:

- il fluido si muove lungo il tratto 12" della linea di Rayleigh, fig.5.6, questa ¢ una soluzione
accettabile e pertanto lo stato finale 2' ¢ ancora univocamente determinato;

- il fluido partendo dallo stato iniziale 7 in corrispondenza di un generico stato a sul tratto
supersonico della linea di Rayleigh subisce un’onda d’urto passando allo stato 4 del ramo

subsonico della stessa linea di Rayleigh, accade in questo caso che T,, =T, , per poi proseguire

subsonicamente fino allo stato finale 2", questa ¢ una soluzione da scartare.

Sfignra 5.6

Nel caso limite in cui Ty, :TO* il fluido evolverebbe fino allo stato M =1 sia che viaggia di
regime subsonico che supersonico.
Nel caso in cui Ty, >T," il deflusso non & realizzabile in quanto la quantita di calore Q,,

somministrata al fluido sarebbe maggiore della massima quantita di calore che il fluido puo scambiare
lungo la linea di Rayleigh:

Onax = Cp (TO* _TOl)

ovvero non verrebbe rispettata la condizione principale Ty, < Ty, <T,’ .
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6. CIRCOLAZIONE DEI FLUIDI BIFASE

Un fluido si dice bifase quando ¢ costituito da due fasi fisiche distinti una liquida ed una gassosa.
Una miscela di acqua ed aria, ad esempio, costituisce una miscela bifase, come pure una miscela di
acqua e vapore d’acqua in equilibrio con essa. L’interesse scientifico e tecnico per queste miscele ¢
grandissimo per le notevoli applicazioni che si possono avere. Si pensi, ad esempio, agli impianti
nucleari’, agli impianti solari’, agli impianti termotecnici civili ed industriali (si pensi alle caldaie e ai
generatori di vapore). Il moto delle miscele bifase pone diversi problemi di calcolo fluidodinamico per
le diverse azioni inerziali che esercitano la fase liquida e la fase gassosa.

In generale uno studio analitico completo richiede I'applicazione delle equazioni di Navier Stokes
e dell’energia (vedi Convezione termica) sia per la fase liquida che per quella gassosa.

Inoltre, a causa dei diversi regimi di moto che si possono instaurare nel moto bifase (vedi dopo),
si ha la doppia necessita di scrivere ed integrare le suddette equazioni di equilibrio sia nel dominio dello
spazio (cio¢ in zone omogenee) che del tempo (condizioni tempo varianti).

Se il moto dei fluidi bifase ¢ associato anche ad uno scambio energetico (ad esempio in un tubo
bollitore di una caldaia o di un impianto nucleare) allora si hanno, contemporaneamente ai fenomeni
fluidodinamici, fenomeni di cambiamento di fase (ebollizione e/o condensazione) che complicano non
poco le equazioni di bilancio. Cosi, ad esempio, perdite di pressione nell’ebollizione sottoraffreddata
sono piu elevate di quelle in ebollizione ordinaria e pur tuttavia 'incremento non ¢ eccessivo.

Le perdite di pressione bifase sono sempre maggiori di quelle monofasi e pertanto occorre
sempre stimarle correttamente per evitare problemi di sottodimensionamento delle pompe di
circolazione. I.’equazione dell’energia gia vista all’inizio del corso sotto forma di equazione di Bernoulli
generalizzata puo essere scritta in forma differenziale nella forma:

2
—dp=M+pgdz+§ﬂW—+%
v d2v v

Ricordando lequazione di continuita M= pWS I'equazione di Bernoulli generalizzata si puo

ancora scrivere nella forma:

.2
m—zvdl + dL,,
2S

m? 1
—dp=—dv+ydz+<&— A
P=32 /4 fd )

ove si ha il seguente simbolismo:

peso specifico del fluido, &g/ 77,

densita del fluido, &g/ 77

volume specifico del fluido, 7’/ kg

velocita del fluido, 72/ s,

lavoro motore sul fluido, ]/ £g

fattore d’attrito del condotto;

diametro (o diametro equivalente) del condotto, 7
lunghezza del condotto, 7

pressione nel fluido, Pz

portata di massa del fluido, &g/ s.

0 3T S Ayw g <D

accelerazione di gravita, 72/ s.

2 Nei reattori ad acqua bollente si ha una circolazione di acqua con piccole percentuali di vapore in equilibtio
termico. Questo fluido assolve sia alle funzioni di refrigerazione che di moderazione neutronica.

3 Le centrali eliotermiche di potenza utilizzano sia miscele acqua-vapore (centrali tipo Francia) che di metalli liquidi
(Sodio fuso o leghe NaK o similari). Anche i collettori a vetro usano una miscela bifasica costituita da freon liquido e
aeriforme.
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Si osservi che qualora ci riferisce alla velocita media del fluido nella sezione di passaggio del
condotto occorre tenere conto, nelle precedenti relazioni, di un fattore pari a 1.2 per moto turbolento e
1.8 per moto laminare, cio¢ occorre scrivere aW al posto della sola velocita.

A questa equazione si associa 'equazione dell’energia per sistemi aperti stazionari:

2

q+l=A, W?+gz+h

ove si ¢ indicato con:

h Pentalpia del fluido, ]/ 4g

q il calore fornito all’unita di massa di fluido, |/ kg

/=1,+/ illavoro totale fornito all’unita di massa di fluido, ]/ g.

Data Darbitrarieta nella scelta delle sezioni di integrazione si fa in modo da non avere, all'interno

del condotto in esame, alcun organo motore e pertanto possiamo annullare il lavoro motore presente
nelle precedenti equazioni.

Integrando I'equazione di Bernoulli generalizzata fra due sezioni 1 e 2 prive di organi motori si
ottiene la seguente espressione:

M2 2dz m® 12
pl—pz—?(vz—vl)-l- 17 +_282 EJ:L §Vd| B)
Slip Gravimetriche Attrito

Questa equazione dice chiaramente che la differenza di pressione fra la sezione iniziale e finale
nel condotto esaminato ¢ somma dei tre termini a secondo membro che esprimono, nell’ordine:

le perdite di pressione per effetto della variazione di energia cinetica (perdite di slip);
per perdite per alleggerimento termico dovute all’azione della gravita;

le perdite di attrito totali dovute alla viscosita del fluido.

Nel caso di moto bifase le perdite di s/p debbono tenere conto anche delle diverse velocita delle
due fasi e quindi dell’attrito virtuale che si viene a determinare nel moto relativo (scorrimento o s/p)
della fase piu veloce rispetto a quella piu lenta. Questo termine presenta notevoli difficolta di calcolo
anche in considerazione del tipo di moto che si instaura nel condotto. Le perdite gravimetriche sono
certamente le piu semplici da valutare, come si vedra nel prosieguo. Le perdite di attrito sono
nuovamente complesse da determinare proprio per eterogeneita del fluido bifase e del tipo di moto nel
condotto.

6.1. TIPI DI MOTO BIFASE

Per condotti verticali si ¢ avuto modo di esaminare i regimi di flusso che si instaurano durante
I’ebollizione dinamica in un tubo bollitore, come illustrato dalla Figura 3. I regimi possono essere:

Moto a bolle: il vapore si muove sotto forma di bolle sparse in una matrice di liquido;

Moto a tappi: il vapore ¢ presente in quantita elevate e tali da creare, per coalescenza fra bolle

vicine, dei veri e propri tappi interni al condotto;

Moto anulare: 1l liquido si muove in aderenza alle pareti e il vapore nel cuore interno della

sezione del condotto;

Moto a nebbia: il liquido ¢ quasi del tutto evaporato ed occupa tutto il volume disponibile

mentre il liquido, in quantita residuali, si muove sotto forma di minute goccioline sparse nella
matrice di vapore.

Ciascuna di queste tipologie di flusso richiede un tipo di analisi particolare per la necessita, come
sopra accennato, di dovere integrare le equazioni di Navier Stokes e dell’energia in zone di spazio
spesso determinate casualmente e quindi senza alcuna possibilita pratica di previsione analitica.
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Figura 3: Regimi di moto in condotto verticale durante ['ebollizione

Del resto anche listaurarsi del regime di moto non ¢ facile da prevedere anche se esistono alcune
mappe sperimentali che delimitano, certamente non in modo preciso, i campi di esistenza dei vari
regimi di flusso.

o

e
= o , ° o ° o MOTO A BOLLE

° o O o O o o MOTO ANULARE

(@) © e ©
o ©O o it . ° MOTO STRATIFICATO

Figura 4: Regimi di moto in condotto orizzontale durante I'ebollizione

Oltre ai regimi visti in precedenza si ha il moto stratificato nel quale la fase liquida si mantiene, per
gravita, in basso e la frazione aeriforme nella parte superiore sotto forma di bolle. L’instaurarsi di un
regime di moto piuttosto che un altro dipende fortemente dai rapporti delle portate della fase liquida e
della fase aeriforme. I profili di velocita nel moto bifase non hanno una definizione ben precisa, come
del resto si puo intuire, e spesso si ricorre a rappresentazioni fittizie di tipo polinomiali determinate con
esperienze mirate per particolari regimi di moto.

In Figura 4 si ha un esempio di regimi di flusso per I’ebollizione in condotti orizzontali.
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6.2. CALCOLO DELLE PERDITE DI PRESSIONE IN REGIME BIFASE

In calcolo delle perdite di pressione nel moto bifase ¢ stato oggetto di studi da diversi decenni.

Inizialmente in mancanza di sperimentazioni pratiche si ¢ cercato di proporre metodi analitici
basati su ipotesi di moto semplificati e in particolare immaginando che il fluido complessivo bifase
fosse determinato dalle caratteristiche medie di un fluido omogeneo opportunamente definito.

Negli anni ‘seffanta si sono avute le prime sperimentazioni di Martinelli e Nelson che hanno
portato alla definizione di metodi semiempirici ritenuti piu affidabili di quelli solamente teorici.

Negli anni ‘novanta le esperienze di Thom hanno fornito una metodologia semiempirica completa
oggi ritenuta fondamentale per il calcolo delle perdite di pressione in regimi bifasi.

1.1.6. METODO DI HANFORD

E’ uno dei primi metodi di calcolo analitico delle perdite di pressione e si base su alcune ipotesi
semplificative che qui riportiamo:

Si suppone il condotto orizzontale e quindi si trascurano le perdite gravitazionali;
11 fluido si suppone omogeneo avente volume specifico dato dalla relazione:
ity
"2
ove, per miscele sature, si ha, come si ricorda dalla Termodinamica: V=V, +X(VV —Vl) con v,

volume specifico del liquido, », volume specifico del vapore ed x titolo della miscela. Inoltre il punto 7
indica l‘ingresso del condotto e 2 'uscita. La velocita media del fluido ¢ data dalla relazione inversa di

Leonardo: W= %S' Si definisce, inoltre, la fluidita (inverso della viscosita newtoniana) data dalla

relazione:

il—xx

H K H,

con la solita convenzione sui pedici. La fluidita media del fluido omogeneo ¢ data, analogamente
a quanto visto per volume specifico medio, dalla relazione:

_tHhtH,
2

essendo 7 e 2 l'ingresso e I'uscita del condotto considerato. Nel caso di un tubo bollitore o in
ogni caso con scambi termici con I'esterno I'ipotesi di un fluido omogeneo per lunghi condotti appare
poco realistica e in ogni caso fortemente dipendente, per via dei volumi specifici e delle viscosita, dalle
pressioni locali nelle sezioni di condotto. Pertanto si puo suddividere il condotti in tratti di piccola
lunghezza all'interno dei quali le ipotesi di omogeneita appaiono maggiormente valide. Per ogni
condotto si puo scrivere, con I'ipotesi dz=0, 'equazione di Bernoulli:

(i) (i) m2 0) (i) m 1 i)y, (D ()
p, —p, = 82(v2 -V )+2S dé vl

ove con Iapice () si intende il generico tratto del condotto.

Hr,

In pratica partendo dal primo tratto, nel quale ¢ nota la pressione pl(l) , sl determina la pressione

(2) _ p(l)

. . 1 N . . .. o . N
di uscita p{? che ¢& poi la pressione di ingresso del secondo tratto, cioé si ha pf e cosi via per

gli altri tronchi fino ad arrivare alla p, d’uscita dell’'ultimo tronco che coincide con la pressione finale
all’uscita del condotto.

In definitiva la somma delle equazioni parziali dei singoli tratti porta all’equazione totale:
00y, M 1<, 00
v I
p p2 SZ Z( 1 ) 282 d 25
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Il coefficiente di attrito & puo essere calcolato con la classica relazione di Weissbach valida per
tubi lisci:
x=0.184 Re™**

per cui per ogni singolo tratto si puo sctivere 'equazione di bilancio®:

0) o m?, . _ i\ dfl.zluo_.z -
P — P, Z?( él)—Vl('))+0.184(§) T(I)V'E“I)I(I)

Per calcolare il volume specifico medio, »,, occorre conoscere come varia il titolo in funzione
della lunghezza e della pressione parziale del tratto considerato. I’equazione dell’energia per il singolo
tratto (sempre supposto orizzontale) diviene:

M) _ A® h+V—V_2
¢ 2

L’entalpia della miscela bifase in una generica sezione () ¢ dato da:
h=h +xr

ove r¢ il calore latente di vaporizzazione alla pressione parziale nel tratto. Fra le sezioni 7 e 2 di
clascun tratto si ha:

Al,2 = Ahl +0LX, —0X

ove 7, ed 7, sono 1 calori latenti di vaporizzazione alle pressioni p, e p, ed ¢:

Ah =h —h

la variazione delle entalpie specifiche del liquido alle pressioni suddette. Combinando le
precedenti equazioni si ha, per la velocita media, 'espressione:
_.m m
W=—V=—|V, +X(V,—V
S S I: | ( v I)]

Pertanto si ha:

W2 m? 2 2
A? = 2_82|:VI1 +X, (vVZ +v,2)} —[v,1 +X (vv1 +v,1)]
ove 7,e v, sono note una volta conosciute le pressioni p, € p;.
Si osservi che i volumi specifici del liquido, non appena il titolo x supera qualche centesimo,
divengono trascurabili di fronte ai volumi specifici del vapore, per cui la precedente diviene:

2 .2
W m 2.2 2.2
I:XZVVZ _X1VV1:|

2 2s?
Con gli sviluppi sopra esposti si puo applicare il metodo di Hanford per approssimazioni

successive. Nota la pressione iniziale del prima tratto si stima la pressione di uscita dello stesso tratto e
si calcola la x;,dello stesso tratto (eventualmente risolvendo 'equazione di 2° grado sopra indicata).

A questo scopo, trascurando il termine cinetico (di solito piccolo rispetto ai termini termici) si
puo scrivere:

(€N) (€] D, @ _ D, O
e —A hi+r1 X7 =6L7X

1l calore fornito qél’ puo essere calcolato dalla relazione:

4 Si ricordi che & Re = pwd/u = pwd /g =dm/uS e quindi &

eoamre-om(3] ()"
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con b petimetro del condotto. nota X{ si ricava V{? dalla relazione:

@ _y® O (y® O
Vo) =V X% (vVz -V )

e quindi:
1) ®
Vi’ +V
om_n 2
V' =

2
Si calcola poi:
@ _ /U»l(l) + ﬂél)
:um - 2

Ora si ricava il valore della pressione di uscita pgl) che di solito differisce da quella inizialmente

stimata. Se la differenza ¢ minore dell’errore massimo tollerabile allora si procede con il tratto
successivo reiterando le operazioni appena descritte.

Nel caso di differenza maggiore dell’errore ammissibile allora si assume la pél) appena calcolata e
si riparte per una nuova iterazione fino a quando la differenza fra il valore di calcolo attuale e quello del
ciclo precedente ¢ minore dell’errore ammissibile.

La caduta di pressione totale ¢ quindi data da:
i=N

APz = 3= )

i=1
Osservazioni sul metodo di Hanford.

L’ipotesi di modello omogeneo, alla base del metodo di Hanford, presuppone che la fase
aeriforme sia in percentuale piccolissima (o che si abbia moto a nebbia) o che la pressione media sia
elevata e vicina alla pressione critica del fluido.

Si ricordi, infatti, che alla pressione critica non si ha differenza fra la fase liquida e quella
aeriforme. In queste condizioni la precisione del metodo ¢ dell’ordine del 30% che, in mancanza di altri
dati sperimentali, ¢ da considerarsi buona per le applicazioni impiantistiche.

Nelle situazioni diverse da quelle sopra indicate il metodo di Hanford commette errori non
trascurabili. E va utilizzato con molta cautela.

1.1.7. CONDOTTI VERTICALI - CALCOLO DELLE PERDITE GRAVIMETRICHE

Nel caso di condotti verticali occorre valutare anche il termine gravimetrico (prima del tutto
trascurato), cioe¢ il termine:
20z
Apgrav. = 1 7
Vediamo adesso una semplice metodologia per effettuare questo calcolo. Si supponga di avere un
flusso termico uniforme lungo la lunghezza del condotto e che il salto di pressione sia piccolo’.

Allora st puo scrivere:

dq, = rdx

OVVEero:

> 11 salto di pressione Ap ¢ pari alla caduta di pressione totale e pertanto questo deve essere comunque limitato nelle
applicazioni impiantistiche onde evitare eccessive potenze di pompaggio.
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dg, = q—de = rdx
m

con g lunghezza del condotto a partire dall'ingresso, 4 il perimetro e ¢ il flusso termico specifico
(J/ 7%). Questa relazione ci dice che la vatiazione del titolo ¢ proporzionale alla lunghezza progressiva,
per cui, supponendo che sia x,=0, si ha:

X
V=V +Xx(V, -V )=V, +|—2(z -7)(v,—Vv,)
Sostituendo nell’espressione di Ap,,,, si ha (per /=3, g)):

2dz _ z,-7 |an+Xz(Vv—V|)
LV X (v, —v) v,

APyray. =

grav.

Questa perdita va sommata alle perdite per slip e per attrito.

1.1.8. METODO DI MARTINELLI E NELSON

Negli anni ‘settanta, data la complessita analitica del problema, si effettuarono numerose
esperienze per determinare le cadute di pressione in miscele bifasiche di acqua ed aria.

Inizialmente Lochkart e Martinelli definirono un moltiplicatore, X,, definito come radice quadrata
del rapporto fra la caduta di pressione nella fase liquida e la caduta di pressione nella fase aeriforme ed ¢

dato a sua volta dalla relazione:
0.9 0.5 0.1
e (EYPANPY
Ap, X P 1,

con x titolo del vapore e con il solito significato per gli altri simboli. In Figura 5 si ha 'andamento
delle curve sperimentali che forniscono il moltiplicatore di Martinelli, X7/, al variare della pressione e del
titolo della miscela.

Si osservi, pero, che il titolo della miscela non ¢ costante lungo il condotto per cui sarebbe
necessario conoscere la legge di variazione di x e procedere a successive integrazioni.

xtt =

Successivamente sono state elaborate altre curve sperimentali alla base del metodo di calcolo
semiempirico detto di Martinelli ¢ Nelson.

Se si suppone, almeno inizialmente, che il titolo vari linearmente fra ingresso e uscita (con x=0 in
ingresso del condotto) e che vi sia somministrazione uniforme di calore allora Martinelli e Nelson
definiscono il rapporto:

M — ApZ Fa
AplFIa

ove si ha il seguente simbolismo:
Ap,s,  caduta di pressione per attrito per moto bifase, Pay

Ap,p,  caduta di pressione per attrito per portata totale pensata di solo liquido, Pa.

In definitiva M (sempre >1) ¢ il rapporto fra le cadute di pressione per attrito nelle reali
condizioni di moto bifase rispetto a quelle che si avrebbero, sempre per attrito, se la portata totale fosse
di solo liquido.

Queste ultime sono calcolabili facilmente con i metodi della Fluidodinamica monofase visti nei
precedenti capitoli e pertanto se si conosce M di possono calcolare le perdite di attrito bifase mediante
la relazione:

Ap?_Fa =M AplFIa

Martinelli e Nelson hanno determinato 'andamento sperimentale di M partendo dalle curve di
Lochkart — Martinelli, come rappresentato nell’abaco di Figura 6.
L’abaco fornisce M al variare della pressione nel condotto per assegnato titolo, x,, in uscita.
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Si osservi come sia sempre M>7 (quindi le perdite bifase sono sempre maggiori di quelle
monofase) e come le curve tendano a congiungersi per la pressione critica dell’acqua (222 bar) laddove
non si ha piu alcuna differenza fra la fase liquida e il vapore.

Se il titolo in ingresso ¢ x,,#0 allora si puo procedere in questo modo, vedi Figura 7:

si calcola la M, corrispondente alla caduta di pressione fittizia di un condotto avente titolo in
ingresso nullo e in uscita pari ad x;

Si calcola M, per un condotto fittizio nelle condizioni di titolo in ingresso 0 e in uscita x;

Si calcola il fattore M per condotto con titolo in ingresso x; € in uscita x;, dalla differenza:

M=M,-M,
pertanto le perdite di pressione sono date da:

APy, :(Mz - Ml)AplFla

Ricordando quanto detto per le cadute totali di pressione:
AP =Ap+ Ap  + Ap

Slip  Gravimetrico  Attrito

il metodo di Martinelli e Nelson consente di calcolare le cadute di pressione per attrito

Xtt
1000 T
1hurl
500 L
That "1

/
100/1

50

/

5 b
C—T 700
/

/

10 //

NVAEN

210bar

—

X
A 06 08 10

Nl

0.1 0

Figura 5: Diagramma del moltiplicatore X, di Martinelli
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X=X2

M
10001
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o,
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&Ofg
60
100 | .
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1 L | | \
|1 |1O I100
p
Bar
Figura 6: Abaco di Martinelli ¢ Nelson per M
0 M1 M2
t‘ ______ S x=x1 R2
| L1 12

Figura 7: Condizioni iniziali con titolo non nullo

Il termine relativo alle cadute di pressione per slip puo essere calcolato,

sperimentalmente, ponendo:

.2 M2

m
APgip :?(Vz _Vl) = R?

con R (ove ¢, per quanto detto in precedenza, R =V, —V, ) coefficiente dato dall’abaco di Figura 8.
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Figura 8: Abaco di Martinelli e Nelson per R

Nel caso in cui le condizioni iniziali del titolo siano x,#0 allora, in analogia a quanto detto per il
calcolo di M e con riferimento alla Figura 7, si procede cosi:

Si calcola R, per il tratto fittizio con titolo variabile da 0 a x;;
Si calcola R, per il condotto fittizio con titolo variabile da 0 a x;

Si calcola il valore reale: R=R, - R,.
Se nel condotto si hanno anche perdite concentrate allora queste debbono essere valutate per la

sola fase liquida per una portata di liquido equivalente a quella totale. Le perdite di attrito 4p,, sono
date da:

Apl':|a = (Alea )distribuite + (Apl':'a )concentrate

e le perdite bifase totali corrispondenti si calcolano moltiplicando le precedenti per il coefficiente
R calcolato come sopra specificato.

Osservazioni sul Metodo di Martinelli e Nelson

Questo metodo ha come ipotesi di base I'esistenza di due fasi distinte e quindi ¢ in netta
contrapposizione con il modello omogeneo di Hanford. Il modello di riferimento ¢, quindi, quello del
moto anulare o del moto stratificato o anche del moto a nebbia.

I risultati ottenuti con questo metodo vanno bene fino a titoli elevati in uscita (anche x,=7). Esso

¢ tutt’ogei quello piu utilizzato per portate specifiche (M/S ) elevate.
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I risultati sperimentali, ottenuta da Muscettola del CISE’, mostrano una sopravvalutazione di
circa il 20% delle perdite di pressione. Cio ¢ ritenuto dai progettisti una garanzia di maggior sicurezza
sia per le inevitabili incertezze progettuali che per tenere conto dell'invecchiamento del condotto e
quindi del’aumento delle perdite localizzate’. Il metodo di Martinelli e Nelson non fornisce metodi di
calcolo del termine gravimetrico e quindi occorre effettuare separatamente questo calcolo, ad esempio
come illustrato in precedenza ({1.1.7).

1.1.9. METODO DI THOM

Le ipotesi di base sono quindi analoghe a quelle di Martinelli e Nelson e pertanto si ha un
modello a fasi separate. Le ipotesi di base sono quindi analoghe a quelle di Martinelli e Nelson e
pertanto si ha un modello a fasi separate.

E’ il metodo semiempirico piu recente e si basa su una serie di esperienze effettuate negli USA
negli anni cinquanta su miscele di acqua e vapore con pressioni variabili da 1 a 210 bar e titolo in uscita
variabile da 3 al 100%.

11 flusso termico ¢ stato mantenuto uniforme (ipotesi fondamentale) lungo la superficie laterale
del condotto. 1l titolo iniziale ¢ sempre pati a zero.

Il metodo di Thom permette di calcolare tutti e tre i termini (slip, gravimetrico e attrito) per la
caduta totale di pressione mediante abachi sperimentali.

Analogamente a quanto visto in precedenza si ha ancora la definizione del fattore M:

anche se le curve sono diverse da quelle di Figura 6. Le nuove curve sono riportate in Figura 9.

Le curve hanno andamento simile e convergono in corrispondenza della pressione critica
dell’acqua. Si osservi ancora che Thom tiene conto dellinfluenza dello scorrimento fra le due fase
mentre Martinelli e Nelson non ne tenevano conto.

Le perdite di slip si definiscono mediante la relazione:
,m?
Apg;, =R ?VI

e quindi la formulazione ¢ diversa da quella di Martinelli e Nelson anche per la presenza del
volume specifico del liquido, ». II coefficiente R’ ¢ riportato nell’abaco di Figura 10 per vari titoli di
uscita e per varie pressioni di ingresso.

Infine le perdite gravimetriche sono calcolate mediante la relazione:

vise. dZ

1
Apgrav. = v 7 = V_ LS
o- |

11 coefficiente € ¢ dato dall’abaco di Figura 11 per titoli di uscita e pressione di ingresso vatiabili.
La perdita totale di pressione nel tubo bollitore con titolo iniziale nullo ¢ data da:

mo Ll

Aptot :Ap+ Ap + Ap =R ?VI +V—

Slip  Gravimetrico  Attrito |

+MAp,

Thom estende il suo metodo semiempirico anche al caso in cui non ci sia somministrazione di
calore: in questo caso restano le formulazioni precedenti ma il termine di attrito va calcolato utilizzando
I’abaco di Figura 12 anziché quello di Figura 9.

Gli altri coefficienti restano invariati.

¢ 11 CISE (Centro Italiano Studi Elettricita) si ¢ occupato di impianti nucleari proponendo, negli anni sessanta, un tipo di
reattore prova elementi combustibili denominato CIRENE (Clse REattore Nebbia) caratterizzato dal moto a nebbia
all'interno dei canali di refrigerazione.

7 I’invecchiamento del condotto porta al deposito di materiali (incrostazioni) e all'incremento delle asperita interne.
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Figura 9: Abaco di Thom per M

Per condizioni di ingresso diverse dal titolo nullo, come illustrato in Figura 7, si procede allo
stesso modo gia visto per Martinelli e Nelson utilizzando un condotto fittizio tale che per esso il titolo
vari da x=0 ad x=x,.

Osservazioni sul metodo di Thom

Rispetto al metodo di Martinelli e Nelson questo metodo presenta errori minimi rispetto ai dati
sperimentali.

E’ approssimato in eccesso quando le portate specifiche sono inferiori a 230 g/ (cm?.s).

Il metodo ¢ approssimato in difetto per portate specifiche elevate, cioé > 230 g/(cm?.s).

Il metodo di Martinelli e Nelson presenta sempre valori stimati in eccesso rispetto ai dati
sperimentali e 'errore si riduce allorquando il titolo di uscita si avvicina al 100%.

PROG. ING. GIULIANO CAMMARATA



FISICA TECNICA INDUSTRIALE — VOL. 3° - TERMO-FLUIDODINAMICA | 72

R A 60
50 100
30
200
0
10——
=
10
e
L
) —
] 2
1
07
1
05—
021
p
| | | | |
01 |
10 20 5 100 50 200 bar
Figura 10: Abaco di Thom per R
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Fignra 11: Abaco di Thom per &
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Figura 12: Abaco di Thom per M per condotto senza flusso termico

1.1.10. METODO DI CHENOVETH, MARTIN, LESTER

Si tratta ancora di un metodo semiempirico di rapida applicazione per la progettazione di impianti
industriali. La sua validita si ha per diametri dei condotti > 2” (quindi tubi bollitori di caldaie e/o
generatori di vapore) con miscela bifasica acqua — aria 0 acqua — vapore.

Analogamente ai due metodi precedenti, si definisce il fattore M:

M = ApZFa
AplFIa

con M dati in Figura 13, ove le curve sono in funzione del rapporto fra le cadute di pressione per
attrito nella sola fase vapore rispetto a quelle analoghe della fase liquida:

— Apvaa
AplFIa
Nel calcolare questo rapporto si immagina di calcolare le perdite di pressione per attrito prima il
condotto con solo vapore di portata pari a quella totale e poi di solo liquido con analoga portata totale.

In ascisse si ha la frazione di sezione occupata dal liquido, 1-a, essendo a la frazione di vuoto
definita dal rapporto fra 'area occupata dal vapore rispetto all’area totale della sezione del condotto:
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S

Questo metodo non ¢ molto indicato per basse pressioni.

M AT
1000 1000 ADypiy
100 4
10
| | | -
1 | | | |

Figura 13: fattore M per C-M-L
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7. STABILITA DEI TUBI BOLLITORI

Negli impianti industriali (caldaie, generatori di vapore, reattori chimici, ....) riveste grande
importanza la stabilita e la sicurezza dei tubi bollitori all'interno dei quali si hanno 1 cambiamenti di
stato dell’acqua (come di qualunque altra sostanza).

I fenomeni che possono avvenire all'interno dei tubi bollitori sono molteplici in funzione del
flusso termico, delle proprieta termofisiche del fluido e della topologia dell'impianto.

7.1. TUBO BOLLITORE ORIZZONTALE

Si supponga inizialmente che il tubo bollitore sia orizzontale e a sezione costante, che sia nota la
pressione di sbocco, p,, e che sia uniforme e costante il flusso termico lungo le pareti.

Quando non c’¢ ebollizione a velocita elevate il numero di Reynolds varia poco con il variare
della portata ponderale poiché alle diminuzioni di portata corrisponde, a parita di flusso termico, un
incremento di temperatura del fluido secondo la relazione:

$=c(tf -t,)

m

essendo Z; la temperatura del fluido e Z, la temperatura della parete.
Pertanto la viscosita diminuisce ed essendo:

:4mg:Km‘

Re >
rd®u

si puo ritenere che il rapporto M/ si mantenga sensibilmente costante. Viceversa avviene se la
portata ponderale cresce poiché si avrebbe una.diminuzione del salto termico ed un incremento della
viscosita dinamica.

La caduta di pressione nel condotto, nell'ipotesi di assenza di ebollizione e quindi con flusso

monofase, ¢ data dalla solita relazione:
2

L m
Ap=£— Vv
P=c 25
ove per la relazione di Weissbach si ha:
£=0.184 Re %2

che varia poco essendo Re sensibilmente costante, come sopra illustrato.
Ne segue che possiamo scrivere, raggruppando i termini:

Ap=p,—p, = K1m2

che, in coordinate (p, mz), vedi Figura 14, ¢ una retta passante per l'origine e coefficiente
angolare K,.(retta OR).

Un diagramma piu preciso potrebbe essere tracciato per punti calcolando le perdite di pressione
effettive. La retta OR rappresenta le condizioni di funzionamento fino alla portata M, in cui inizia
I’ebollizione sottoraffreddata (vedi capitolo dell’Ebollizione). Al di sotto di questa portata si hanno
perdite di pressione crescenti (si ricordi che le perdite bifase sono sempre maggiori di quelle monofasi)
al diminuire della portata di massa anche perché, a pari flusso termico, cresce il titolo di vapore
presente.Allo sbocco abbiamo:

Q.

— =X
M 2

ove X, ¢ il titolo finale della miscela.
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D1H' Vupoﬁ ~swisml1ufo Liquido + Vapore Liquido

B N\

Figura 14: Andamento delle pressioni al variare della portata

Si ha, quindi, la curva BH di Figura 14 che si raccorda con continuita con la OR in quanto
I'ebollizione non si presenta contemporaneamente e nella stessa forma in tutte le sezioni del condotto.

In corrispondenza ad un titolo x=025-0,30 (a seconda dei casi), punto | della figura, si ha il
massimo della caduta di pressione P, — P, =Ap,. Se la portata decresce ulteriormente allora p,
diminuisce fino al punto S (dove si ha x=7) dove si ha la scomparsa del liquido allo sbocco.Una
ulteriore diminuzione della portata comporta il surriscaldamento del vapore (si ¢ quindi in regime
nuovamente monofase ma di vapore e non piu di liquido) con andamento lineare con una nuova K,. In
realta giunti nel punto Z si ha la bruciatura (burm ou?) del tubo bollitore.

St osservi che ci si puo spingere fino al punto Z solo se il flusso termico specifico (cio¢ per unita
di superficie) ¢ basso. Con i valoti correnti dei flussi termici si ha la bruciatura molto prima di arrivare
ad S, piu precisamente per x=0.7+0.6.

Se il flusso termico ¢ particolarmente elevato si puo avere la bruciatura del tubo bollitore gia
durante I'ebollizione sottoraffreddata.

1.1.11. PUNTO DI LAVORO DEL TUBO BOLLITORE
Supponiamo di avere la pressione iniziale p,=p; , come indicato in Figura 14, ed introduciamo

all'ingresso del condotto una resistenza localizzata (ad esempio un ugello) tale che si abbia una caduta di
pressione data da:
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rws* mivo .,
 =——=r—==r'm
v 2 2S

con 7’ funzione della resistenza adottata. In figura si ha la rappresentazione della caduta di

Ap

pressione con la retta p;D formante con la p;R (orizzontale) un angolo a tale che sia Zag(c)=r"

11 significato fisico di queste rette appare evidente se si considera che per ogni valore della portata
di massa Msi hanno segmenti intercetti fra esse che rappresentano le cadute di pressione Ap, nella
resistenza localizzata.

I punti M ed N rappresentano punti di funzionamento in presenza dell’'ugello quando all'imbocco
¢ applicata una pressione p=1R cosi come i punti R, R’ rappresentano punti possibili di funzionamento
in assenza dell’'ugello. In corrispondenza dei predetti punti, infatti, la somma della caduta di pressione
nell’ugello Ap, e nel tubo bollitore eguaglia la caduta di pressione totale p, —p..

I punti come R ed M sono punti di funzionamento stabile: infatti se per ragioni accidentali la
portata aumenta o diminuisce si ha, rispettivamente, un difetto o un eccesso di pressione motrice che
tende a ripristinare le condizioni primitive.

Non si puo dire lo stesso di R” ed N: infatti un aumento accidentale di portata provoca un salto
repentino in R o in M (rispettivamente) mentre una diminuzione di portata tende ad esaltarsi portando
il condotto alla bruciatura.

Se si sceglie come pressione di imbocco pyy st puo ottenere il funzionamento nel punto R con
I'introduzione di una resistenza tale che sia:

r'=taga'= p1|< '_zle
m

Per questo valore tracciamo la retta p, R tale che sia:

PP
.2 =r = .2
mr m

taga ' =

Questa retta incontra la curva delle pressioni, oltre che in R, anche in K e K’. Di questi punti solo
R e K sono relativi ad un funzionamento stabile mentre K ¢ instabile e si salta in R o in K. Quindi con
la scelta della pressione p,p per la pressione di imbocco una eventuale instabilita si ferma in K e
pertanto, se la bruciatura avviene oltre questo punto, si puo evitare il danno al tubo bollitore.
Quando il funzionamento nel punto R ¢ ottenuto con la pressione p,; si € garantiti contro
eventuali bruciature per ostruzioni accidentali aventi:
RD'

-2
Mg

r<

mentre con la pressione p;; questo valore diviene piu elevato, fino a:
. R"D"
s

La pressione p;. presenta anche il vantaggio che, in caso di ostruzioni che portino il
funzionamento nella curva VS, si ha ancora un funzionamento stabile e la bruciatura puo essere evitata
con maggiore facilita se si dispone di un apparecchio di allarme acustico.

La scelta della pressione p’;; sulla tangente da R al punto H, oltre a migliorare le condizioni di
sicurezza precedentemente citati (con riferimento alle ostruzioni accidentali) permette un ritorno
automatico delle condizioni dell’arco ZSH al punto R. Questo non ¢ possibile con pressioni minore di
puvs infatti dalla Figura 14 si osserva che se:p; < p,y per il ritorno dell’arco SV ed R non basta regolare
la resistenza di imbocco ma occorre ridurre anche la potenza termica fornita in modo da avere una
diminuzione di p,,,, (in corrispondenza di V). La scelta di una pressione di imbocco piu elevata di p,y
consente il funzionamento in tutte le condizioni mediante lintroduzione di resistenza variabili
(saracinesche di regolazione); si possono, infatti, intersecare con la retta di carico tutti i punti della curva
del tubo bollitore ed avere un funzionamento stabile.
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In definitiva, la scelta della pressione a monte di un tubo bollitore va fatta oculatamente in base al
grado di sicurezza che si desidera ottenere.

11 raggiungimento di condizioni di optimum comporta la necessita di scegliere pressioni piuttosto
elevate, introducendo all’ingresso del condotto resistenze concentrate (ugelli, saracinesche, ...). Queste
resistenze proteggono il tubo bollitore (che di solito funziona in parallelo ad altri tubi) dato che
variazioni accidentali della portata nominale hanno minore peso.

L’introduzione di ugelli allo sbocco (anziché all'imbocco) esercita una protezione, nel senso che
fa crescere la pressione a monte. In questo caso I'ebollizione inizia a temperature piu elevate e quindi
per portate minori.

Tuttavia, se I’ebollizione inizia allora le condizioni risultano aggravate. L’ugello posto all'imbocco
¢ sempre attraversato da solo liquido mentre se ¢ posto allo sbocco ¢ attraversato da una miscela di
liquido e vapore e quindi producendo una resistenza maggiore. La portata, per conseguenza, diminuisce
rapidamente e la bruciatura del condotto viene facilitata.

7.2. TUBO BOLLITORE VERTICALE

Lo studio det tubi bollitori verticali ¢ piu complesso di quello prima mostrato di tubi orizzontali.
Per questi condotti si possono avere due casi:

Moto del fluido dal basso verso l'alto: in questo caso si hanno condizioni di stabilita maggiori
rispetto ai tubi orizzontali;

Moto del fluido dall’alto verso il basso: le condizioni di sicurezza diminuiscono rispetto al caso di
condotto orizzontale.

1.1.12. CALCOLO DELLA PORTATA DI INIZIO E FINE EBOLLIZIONE

Al fini dell’analisi della stabilita e sicurezza di un tubo bollitore ¢ necessario conoscere le portate
di inizio e fine ebollizione. Si abbia, quindi, un condotto sottoposto a flusso termico (), esterno
(supposto costante ed uniforme). Il fluido entra alla temperatura # con entalpia 4, e ad una pressione p
che possiamo ritenere costante. Il calore necessario per avere I’ebollizione ¢ pari a:
qel‘z - h|2 - h|1
x=0
ove /, ¢ l'entalpia del fluido in ebollizione alla pressione p e ¢, il flusso specifico (J/4&g) da fornire
al fluido. Noto il flusso totale esterno ), e la portata totale di massa si calcola:

Qe

qel,z = m

Si puo anche scrivere, per la portata totale e il flusso termico totale, la relazione globale di
bilancio:

essendo M, la portata di massa di inizio ebollizione.

Supponendo costante la pressione® p del condotto, alla fine dell’ebollizione I'entalpia del vapore
saturo vale:

hvz = hl2 +h

essendo 7, il calore latente di vaporizzazione alla pressione considerata. Il flusso specifico vale:
a, :h\lz _h|1 :h|2 +r,—h

x=1

Iy

8 Si ricordi che le cadute di pressione sono sempre mantenute basse per evitare grandi potenze di pompaggio per il
moto del fluido nel condotto considerato.
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e deve aversi:

h|2 +r2—h|1 ==t

ove M, ¢ la portata specifica di fine ebollizione. Risulta, pertanto:

__Q

~h, +r,-h,

Le cadute di pressione per portate di massa inferiori a quella di inizio ebollizione, M;, si calcolano
con le solite relazioni per flusso monofase (Weissbach):

L w? L m?
ap=g= =M,
P=C v = d 25

Per il calcolo di & si utilizza la solita correlazione per tubi lisci & =0.184Re 7.
Allorquando ha inizio I’ebollizione la caduta di pressione va calcolata con uno dei metodi prima
esposti per le perdite di pressione in moto bifase, ad esempio con il metodo di Thom.

Il titolo di vapore in uscita dal tubo bollitore si calcola mediante la gia citata equazione
dell’energia:

2
G, =4, [h + 0z +W?j

Ponendo x;,=0 e trascurando il contributo dei termini meccanici (cinetico e gravimetrico) si puo
scrivere:

ovvero anche:

Q.
— =X
; 222
m
Da questa relazione si calcola il titolo in uscita x, al variare di M. Noto x, si calcola la caduta
totale di pressione:
22
m LS
Apl,z = ApZFa +Apslip + Apgrav =M Apl,zl,qa +R 82 VIZ + Vv
|2
con M, R e { calcolati con gli abachi di Thom’.
Va osservato, infine, che la portata allo sbocco non puo variare a piacere dovendo essere sempre
inferiore alla velocita massima (per tubi a sezione costante) pari a quella del suono, come si ¢ visto per il
moto dei fluidi comprimibili.

7.3. EFFETTI DELLA VARIAZIONE DI DENSITA NEL MOTO DEI
FLUIDI IN CONDOTTI VERTICALI

All'interno dei tubi bollitori o dei canali di refrigerazione degli impianti nucleari o di reattori
chimici si ha moto di fluido con cambiamento di densita, dovuta alle variazioni di temperatura lungo il
condotto, che possono produrre problemi di instabilita se non adeguatamente controllati.

Ambiamo gia trovato ’equazione A) che qui si ripete riscrivendo diversamente il termine cinetico:

9 E’ ovvio che lo stesso discorso vale per I'applicazione del metodo di Martinelli e Nelson ove, pero, le perdite
gravimetriche debbono essere stimate separatamente.
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Integrando questa equazione fra le sezioni 1 e 2 (ingresso e uscita) e trascurando il termine
dovuto al lavoro positivo del circolatore si ha:

2dR
-

 waw + _[2 dz +
=P =) v e
In questa equazione occorre osservare che, per condotti a sezione costante, la variazione di
volume specifico ¢ di solito piccola e quindi le variazioni di velocita sono parimenti piccole e pertanto il
termine cinetico apporta contributi trascurabili.

Nel termine gravimetrici il peso specifico y varia con la temperatura secondo la legge:
7:71[1+ﬁ(t_t1)]

con P coefficiente di dilatazione cubica (o di espansione isobaro gia visto in Termodinamica) e #
la temperatura corrente. La stessa relazione vale per la variazione della densita con la temperatura.

Per saldi termici piccoli si puo ritenere parimenti piccola la variazione di densita e pertanto si puo
utilizzare il suo valore medio, p, fra le due sezioni considerate e quindi la caduta totale di pressione

diviene:
2
PL— P, :/_)RLz +71(22 _21)_71_[1 ﬂ(t_tl)dz

Sempre supponendo piccole variazioni dei parametri termofisici e linearizzando le variazioni con
I'altezza, possiamo ancora scrivere:

L m?

Lm _ Q
d 2pS? '

pl_p2+7/l(zl_22):é: o

Z,— 1,
np 5

ove si ¢ tenuto conto che ¢ Q, =C I"h(t2 —ti) .

L’ultimo termine (negativo) rappresenta 'alleggerimento termico (zhermal bugyancy) della colonna
di fluido dovuto al riscaldamento subito ed ¢ quello che determina il movimento del fluido nei casi di
circolazione naturale'.

La precedente equazione puo essere cosi schematizzata:

; B )
P, — Py —Z = A*? - (movimento verso l'alto)
; B ) .
P, — P,y —Z = A*® + — (movimento verso il basso)
m

ove A e B sono costanti di raggruppamento positive.

Gli indici 1 e 2 si riferiscono sempre all'imbocco e allo sbocco, qualunque sia 'orientamento del
condotto.

Si ¢ anche supposto, secondo la relazione di Weissbach per tubi lisci, che sia &=Km™®? ed
inoltre si ¢ supposto K/ p indipendente dalla portata e pati al suo valore medio fra le due sezioni
considerate.

10 Ta circolazione naturale non ¢ quasi mai utilizzata direttamente per il moto dei fluidi negli impianti ma rappresenta
sempre un elemento di sicurezza da considerare quando viene meno la potenza motrice della pompa. Se il fluido puo ancora
circolare esso puo trasportare calore e quindi mantenere la temperatura del canale sotto controllo. In un impianto nucleare o
in un reattore chimico o in un generatore di vapore 'arresto del fluido all’interno dei canali puo portare facilmente a scoppi
estremamente pericolosi e distruttivi.
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In Figura 15 si ha la rappresentazione grafica della caduta totale di pressione sia per moto verso
'alto che per moto verso il basso. In essa sono riportati anche gli andamenti dei singoli termini,

.18 . . . . .
—, AM™, Z per i due casi, secondo le precedenti equazioni.
m

Nella figura la portata M ¢ posta in relazione con Ap — Z per il moto verso I’alto e con Ap + Z
per il moto verso il basso. Le curve in neretto rappresentano le combinazioni dei termini, come dianzi
specificato. Al crescere della potenza ceduta al fluido la curva complessiva si sposta verso destra,
allontanandosi da quella segnata. Si osservi che le due curve (moto verso I'alto e moto verso il basso) si
raccordano, per continuita, nel modo segnato a tratto punteggiato in figura.

. . . . , B
Quando la potenza cresce il termine AM™® varia poco mentre cambia molto — essendo B N Q..
m

Le curve reali si arrestano in corrispondenza dei punti X nei quali ha inizio I’ebollizione. A pieno
carico, cio¢ per il massimo valore di Q,, 'ebollizione inizia, come si intuisce,a valori piu alti della portata
essendo I'aumento di temperatura dato (per quanto detto in precedenza) dalla relazione:

Q.

cm

Pertanto quando ci si trova nelle condizioni di fluido lavorante in caldaia o in un reattore nucleare
a potenza ridotta occorre fare in modo che il salto di temperatura dello stesso fluido sia il pit possibile
costante e pari al valore di regime precedente.

Cio si ottiene riducendo la portata M in modo proporzionale al calore Q..

Riducendo la portata M ci si porta in corrispondenza del punto M o del punto N (a seconda del
verso del fluido) di Figura 15. Il movimento in corrispondenza di questi punti ¢ stabile: infatti, se per
qualsivoglia ragione la portata M cresce o diminuisce il punto di lavoro si sposta a destra o a sinistra e
si determina un difetto di pressione motrice che tende a ripristinare le condizioni iniziali.

Lo stesso succede a sinistra del punto B. A destra di B si ha, invece, instabilita e si tende verso la
condizione del punto X di inizio ebollizione e quindi verso le condizioni di burn out del condotto.
Anche per il tratto MB le condizioni operative non sono buone perché un aumento accidentale della
resistenza puo provocare, con relativa facilita, un salto nel tratto BX della curva.

Tutte le circostanze sopra indicate debbono essere tenute in conto quando si progetta un tubo
bollitore o un qualunque sistema nel quale il fluido lavorante funga da refrigerante per il sistema.

In definitiva, in base a quanto detto, il moto verso I'alto risulta sempre stabile. Tuttavia spesso si
preferisce il moto verso il basso per avere di migliori condizioni operative ai fini della protezione in
caso di incidenti'".

1.1.13.PROGETTO DEI CONDOTTI

Si tenga sempre presente che Iinizio dell’ebollizione porta sempre ad avere maggiori perdite di
pressione e quindi aumenti consistenti della resistenza al movimento che facilitano le condizioni di bum
ount del condotto e pertanto occotrre intervenire opportunamente per evitare che queste condizioni si
raggiungano. Quando i tubi bollitori sono posti in parallelo (nei generatori termici e nei reattori nucleari
si utilizza spesso questa configurazione) allora le condizioni operative divengono piu critiche poiché
Paumento della resistenza in un condotto porta ad avere una nuova ridistribuzione della portata negli
altri condotti e quindi si ha una variazione rispetto alle condizioni nominali di lavoro.

Se si osserva la relazione precedentemente ottenuta:

.2
m Q

L Z,—1
pl_p2+71(21_22):§ _71ﬂ%(:m

d 28°

11 Negli impianti nucleari, ad esempio, il moto verso il basso consente di contenere nella zona inferiore dell’impianto
il fluido caldo e radioattivo.
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Variamione della densita

Dp

Versio il basso

in

Verso l'alto
4 X

=10 -8 - -4 -2 1] 2 4 ] 2 10
~10 x 10
Portata massica

Figura 15: Caduta totale di pressione

si puo dire che il sistema prima dell’ebollizione risulta tanto piu stabile quanto piu il termine

. . . Z,—1
relativo alla variazione della densita, 7,/ #&

2

, tisulta piccolo rispetto a quello delle perdite per
mZ
2pS%

, L
ttrito, &—
attrito, & g

Cadute di pressione molto maggiori delle variazioni di densita

Se quest’ultimo ¢ relativamente grande allora la progettazione di condotti in parallelo puo essere
effettuata con i metodi visti in precedenza per i condotti in serie e in parallelo.
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Cadute di pressione piccole rispetto alle variazioni di densita

Se il termine di variazione della densita prevale su quelle delle perdite di attrito allora si possono
avere condizioni di instabilita e si procede iterativamente nella progettazione.

In pratica si scelgono le pressioni di imbocco, p;, e di sbocco, p,, ed i diametri dei condotti. Si
calcolano le portate M, dei singoli condotti utilizzando la relazione precedente e quindi si calcola la

portata totale M= Z m, . Se la portata totale M ¢ inferiore a quella desiderata si modificano alcuni
1->N

parametri di progetto e si ripete il calcolo fino al raggiungimento delle condizioni finali volute.

Si osservi che ¢ sempre necessario verificare, oltre alle condizioni di moto, anche quelle di
congruenza relative alla trasmissione del calore e cio¢ che la superficie totale dei condotti sia tale da
assicurare lo smaltimento del calore Q. e cioe che sia:

Q = Zi:HN KiSiAt

Caso di circolazione naturale

Spesso si desidera avere una circolazione del fluido di tipo naturale'” allora la driving force &€ proprio
dovuta alla variazione di densita che ¢ in diretta proporzione al calore ricevuto. Pertanto la velocita di
regime nei condotti cresce se cresce la potenza termica ceduta e cid provoca una sorta di uniformazione
delle velocita nei condotti che riduce le tensioni termiche fra le varie zone dell'impianto.

La circolazione naturale avviene usualmente con basse perdite di pressione e cio porta ad avere
diametri di condotti superiori ai corrispondenti a circolazione forzata, come gia visto in precedenza.

12 In alcune zone degli impianti nucleari, ad esempio negli schermi radioattivi, si preferisce avere moto verso 'alto a
bassa velocita e con piccole cadute di pressione. Si osservi che le condizioni di circolazione naturale sono sempre da
prendere in considerazione per le condizioni di emergenza. Una fermata delle pompe di circolazione, infatti, non pud e non
deve comportare il blocco del fluido all’interno dei tubi bollitori perché cio produrrebbe certamente un incidente: il calore
fornito non sarebbe piu trasportato via e quindi si hanno scoppi o altri disastri. E” quanto avvenuto, ad esempio, nel reattore
di Chernobil dove la fermata (forse volontaria) delle pompe di circolazione ha portato alla stagnazione del fluido refrigerante
con conseguente surriscaldamento del nocciolo del reattore nucleare che ¢ fuso.
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